Advertisement

A Review on Eco-Friendly Quantum Dot Solar Cells: Materials and Manufacturing Processes

  • Hyekyoung Choi
  • Sohee Jeong
Review Paper

Abstract

Power conversion efficiencies of colloidal quantum dot solar cells, which have focused mainly on lead chalcogenide systems until recently, have increased rapidly and currently exceed 12%. Among the many issues involved in commercialization of this technology as a consumer product, lead-based materials in these systems must be replaced. This requires the use of a low-cost, low-loss, and non-toxic chemical, along with the development of an eco-friendly manufacturing process. Herein, we review recent progress in ecofriendly colloidal quantum dot photovoltaics, with a focus on two aspects. First, we examine non-toxic or less-toxic quantum dot materials designed for efficient thin-film based solar cells by considering factors such as bandgap tunability, exciton binding energy, and more. We then present the performance of quantum dot solar cells using these green quantum dot materials, and discuss the scientific and technological issues facing them. Second, we review fabrication methods of quantum dot thin films with low-cost, lowwaste, and non-toxic chemicals, for use in eco-friendly manufacturing processes.

Keywords

Quantum dots Solar cells Green Eco-friendly Materials Processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Choi, H., Ko, J.-H., Kim, Y.-H., and Jeong, S., “Steric-Hindrance-Driven Shape Transition in PbS Quantum Dots: Understanding Size-Dependent Stability,” Journal of the American Chemical Society, Vol. 135, No. 14, pp. 5278–5281, 2013.CrossRefGoogle Scholar
  2. 2.
    Ithurria, S., Tessier, M., Mahler, B., Lobo, R., Dubertret, B., et al., “Colloidal Nanoplatelets with Two-Dimensional Electronic Structure,” Nature Materials, Vol. 10, No. 12, pp. 936–941, 2011.CrossRefGoogle Scholar
  3. 3.
    Etgar, L., “Semiconductor Nanocrystals as Light Harvesters in Solar Cells,” Materials, Vol. 6, No. 2, pp. 445–459, 2013.CrossRefGoogle Scholar
  4. 4.
    Colvin, V., Schlamp, M., and Alivisatos, A. P., “Light-Emitting-Diodes Made from Cadmium Selenide Nanocrystals and a Semiconducting Polymer,” Nature, Vol. 370, No. 6488, pp. 354–357, 1994.CrossRefGoogle Scholar
  5. 5.
    Talapin, D. V. and Murray, C. B., “PbSe Nanocrystal Solids for nand p-Channel Thin Film Field-Effect Transistors,” Science, Vol. 310, No. 5745, pp. 86–89, 2005.CrossRefGoogle Scholar
  6. 6.
    Shirasaki, Y., Supran, G. J., Bawendi, M. G., and Bulovic, V., “Emergence of Colloidal Quantum-Dot Light-Emitting Technologies,” Nature Photonics, Vol. 7, No. 1, pp. 13–23, 2013.CrossRefGoogle Scholar
  7. 7.
    Hong, S., Bae, J., Koo, B., Chang, I., Cho, G. Y., et al., “Nanostructuring Methods for Enhancing Light Absorption Rate of Si-Based Photovoltaic Devices: A Review,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 1, pp. 67–74, 2014.CrossRefGoogle Scholar
  8. 8.
    Cheng, Y.-B., Pascoe, A., Huang, F., and Peng, Y., “Print Flexible Solar Cells,” Nature News, Vol. 539, No. 7630, pp. 488–489, 2016.CrossRefGoogle Scholar
  9. 9.
    Polman, A., Knight, M., Garnett, E. C., Ehrler, B., and Sinke, W. C., “Photovoltaic Materials: Present Efficiencies and Future Challenges. Science,” Vol. 352, No. 6283, pp. 4424–1-4424-10, 2016.CrossRefGoogle Scholar
  10. 10.
    Carey, G. H., Abdelhady, A. L., Ning, Z., Thon, S. M., Bakr, O. M., et al., “Colloidal Quantum Dot Solar Cells,” Chemical Reviews, Vol. 115, No. 23, pp. 12732–12763, 2015.CrossRefGoogle Scholar
  11. 11.
    Song, J. H. and Jeong, S., “Colloidal Quantum Dot Based Solar Cells: From Materials to Devices,” Nano Convergence, Vol. 4, No.1, p. 21, 2017.CrossRefGoogle Scholar
  12. 12.
    Shockley, W. and Queisser, H. J., “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” Journal of Applied Physics, Vol. 32, No. 3, pp. 510–519, 1961.CrossRefGoogle Scholar
  13. 13.
    Schaller, R. D., Agranovich, V. M., and Klimov, V. I., “High-Efficiency Carrier Multiplication Through Direct Photogeneration of Multi-Excitons via Virtual Single-Exciton States,” Nature Physics, Vol. 1, No. 3, pp. 189–194, 2005.CrossRefGoogle Scholar
  14. 14.
    Semonin, O. E., Luther, J. M., Choi, S., Chen, H.-Y., Gao, J., et al., “Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell,” Science, Vol. 334, No. 6062, pp. 1530–1533, 2011.CrossRefGoogle Scholar
  15. 15.
    Crisp, R. W., Pach, G. F., Kurley, J. M., France, R. M., Reese, M. O., et al., “Tandem Solar Cells from Solution-Processed CdTe and PbS Quantum Dots Using a ZnTe-ZnO Tunnel Junction,” Nano Letters, Vol. 17, No. 2, pp. 1020–1027, 2017.CrossRefGoogle Scholar
  16. 16.
    Song, Z., Werner, J., Watthage, S. C., Sahli, F., Shrestha, N., De Wolf, S., et al., “Imaging the Spatial Evolution of Degradation in Perovskite/Si Tandem Solar Cells After Exposure to Humid Air,” IEEE J. Photovoltaics, Vol. 7, No. 6, pp. 1563–1568, 2017.CrossRefGoogle Scholar
  17. 17.
    Bailie, C. D., Christoforo, M. G., Mailoa, J. P., Bowring, A. R., Unger, E. L., et al., “Semi-Transparent Perovskite Solar Cells for Tandems with Silicon and CIGS,” Energy & Environmental Science, Vol. 8, No. 3, pp. 956–963, 2015.CrossRefGoogle Scholar
  18. 18.
    Choi, H., Kim, J. K., Song, J. H., Kim, Y., and Jeong, S., “Increased Open-Circuit Voltage in a Schottky Device Using Pbs Quantum Dots with Extreme Confinement,” Applied Physics Letters, Vol. 102, No. 19, pp. 193902, 2013.CrossRefGoogle Scholar
  19. 19.
    Fan, J. Z., Liu, M., Voznyy, O., Sun, B., Levina, L., et al., “Halide Re-Shelled Quantum Dot Inks for Infrared Photovoltaics,” ACS Applied Materials & Interfaces, Vol. 9, No. 43, pp. 37536–37541, 2017.CrossRefGoogle Scholar
  20. 20.
    Tamang, S., Lee, S., Choi, H., and Jeong, S., “Tuning Size and Size Distribution of Colloidal InAs Nanocrystals via Continuous Supply of Prenucleation Clusters on Nanocrystal Seeds,” Chemistry of Materials, Vol. 28, No. 22, pp. 8119–8122, 2016.CrossRefGoogle Scholar
  21. 21.
    Bernechea, M., Miller, N. C., Xercavins, G., So, D., Stavrinadis, A., et al., “Solution-Processed Solar Cells Based on Environmentally Friendly AgBiS2 Nanocrystals,” Nature Photonics, Vol. 10, No. 8, pp. 521–525, 2016.CrossRefGoogle Scholar
  22. 22.
    Jiao, S., Du, J., Du, Z., Long, D., Jiang, W., et al., “Nitrogen-Doped Mesoporous Carbons as Counter Electrodes in Quantum Dot Sensitized Solar Cells with a Conversion Efficiency Exceeding 12%,” Journal of Physical Chemistry Letters, Vol. 8, No. 3, pp. 559–564, 2017.CrossRefGoogle Scholar
  23. 23.
    Jean, J., Brown, P. R., Jaffe, R. L., Buonassisi, T., and Bulovic, V., “Pathways for Solar Photovoltaics. Energy & Environmental,” Science, Vol. 8, No. 4, pp. 1200–1219, 2015.Google Scholar
  24. 24.
    Yuan, M., Liu, M., and Sargent, E. H., “Colloidal Quantum Dot Solids for Solution-Processed Solar Cells,” Natature Energy, Vol. 1, pp. 16016, 2016.CrossRefGoogle Scholar
  25. 25.
    Swarnkar, A., Marshall, A. R., Sanehira, E. M., Chernomordik, B. D., Moore, D. T., et al., “Quantum Dot-Nduced Phase Stabilization of a-CsPbI3 Perovskite for High-Efficiency Photovoltaics,” Science, Vol. 354, No. 6308, pp. 92–95, 2016.CrossRefGoogle Scholar
  26. 26.
    Schaller, R. D., Pietryga, J. M., and Klimov, V. I., “Carrier Multiplication in InAs Nanocrystal Quantum Dots with an Onset Defined by the Energy Conservation Limit,” Nano Letters, Vol. 7, No. 11, pp. 3469–3476, 2007.CrossRefGoogle Scholar
  27. 27.
    Liu, W., Lee, J.-S., and Talapin, D. V., “III-V Nanocrystals Capped with Molecular Metal Chalcogenide Ligands: High Electron Mobility and Ambipolar Photoresponse,” Journal of the American Chemical Society, Vol. 135, No. 4, pp. 1349–1357, 2013.CrossRefGoogle Scholar
  28. 28.
    Adachi, S., “Optical Dispersion Relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs, and In1-xGaxAsyP1-y,” Journal of Applied Physics, Vol. 66, No. 12, pp.6030–6040, 1989.CrossRefGoogle Scholar
  29. 29.
    Yu, P., Beard, M. C., Ellingson, R. J., Ferrere, S., Curtis, C., et al., “Absorption Cross-Section and Related Optical Properties of Colloidal InAs Quantum Dots,” Journal of Physical Chemistry B, Vol. 109, No. 15, pp.7084–7087, 2015.CrossRefGoogle Scholar
  30. 30.
    Aharoni, A., Mokari, T., Popov, I., and Banin, U., “Synthesis of InAs/CdSe/ZnSe Core/Shell1/Shell2 Structures with Bright and Stable Near-Infrared Fluorescence,” Journal of the American Chemical Society, Vol. 128, No. 1, pp. 257–264, 2006.CrossRefGoogle Scholar
  31. 31.
    Heath, J., “Covalency in Semiconductor Quantum Dots,” Chemical Society Reviews, Vol. 27, No. 1, pp. 65–71, 1998.CrossRefGoogle Scholar
  32. 32.
    Franke, D., Harris, D. K., Chen, O., Bruns, O. T., Carr, J. A., et al., “Continuous Injection Synthesis of Indium Arsenide Quantum Dots Emissive in the Short-Wavelength Infrared,” Nature Communications, Vol. 7, Article No. 12749, 2016.Google Scholar
  33. 33.
    Lin, S., Feng, Y., Wen, X., Zhang, P., Woo, S., et al., “Theoretical and Experimental Investigation of the Electronic Structure and Quantum Confinement of Wet-Chemistry Synthesized Ag2S Nanocrystals,” Journal of Physical Chemistry C, Vol. 119, No. 1, pp. 867–872, 2014.CrossRefGoogle Scholar
  34. 34.
    Englman, T., Terkieltaub, E., and Etgar, L., “High Open Circuit Voltage in Sb2S3/Metal Oxide-Based Solar Cells,” Journal of Physical Chemistry C, Vol. 119, No. 23, pp. 12904–12909, 2015.CrossRefGoogle Scholar
  35. 35.
    Bang, J., Park, J., Lee, J. H., Won, N., Nam, J., et al., “ZnTe/ZnSe (Core/Shell) Type-II Quantum Dots: Their Optical and Photovoltaic Properties,” Chemistry of Materials, Vol. 22, No. 1, pp. 233–240, 2009.CrossRefGoogle Scholar
  36. 36.
    Whitham, P. J., Marchioro, A., Knowles, K. E., Kilburn, T. B., Reid, P. J., and Gamelin, D. R., “Single-Particle Photoluminescence Spectra, Blinking, and Delayed Luminescence of Colloidal CuInS2 Nanocrystals,” Journal of Physical Chemistry C, Vol. 120, No. 30, pp. 17136–17142, 2016.CrossRefGoogle Scholar
  37. 37.
    Park, Y. J., Oh, J. H., Han, N. S., Yoon, H. C., Park, S. M., et al., “Photoluminescence of Band Gap States in AgInS2 Nanoparticles,” Journal of Physical Chemistry C, Vol. 118, No. 44, pp. 25677–25683, 2014.CrossRefGoogle Scholar
  38. 38.
    Sandroni, M., Wegner, K. D., Aldakov, D., and Reiss, P., “Prospects of Chalcopyrite-Type Nanocrystals for Energy Applications,” ACS Energy Letters, Vol. 2, No. 5, pp. 1076–1088, 2017.CrossRefGoogle Scholar
  39. 39.
    Aldakov, D., Lefrançois, A., and Reiss, P., “Ternary and Quaternary Metal Chalcogenide Nanocrystals: Synthesis, Properties and Applications,” Journal of Physical Chemistry C, Vol. 1, No. 24, pp. 3756–3776, 2013.Google Scholar
  40. 40.
    Reiss, P., Carrière, M., Lincheneau, C., Vaure, L., and Tamang, S., “Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials,” Chemical Reviews, Vol. 116, No. 18, pp. 10731–10819, 2016.CrossRefGoogle Scholar
  41. 41.
    Li, C., Chen, W., Wu, D., Quan, D., Zhou, Z., et al., “Large Stokes Shift and High Efficiency Luminescent Solar Concentrator Incorporated with CuInS2/ZnS Quantum Dots,” Scientific Reports, Vol. 5, Article No. 17777, 2015.Google Scholar
  42. 42.
    Du, J., Du, Z., Hu, J.-S., Pan, Z., Shen, Q., et al., “Zn-Cu-In-Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%,” Journal of the American Chemical Society, Vol. 138, No. 12, pp. 4201–4209, 2016.CrossRefGoogle Scholar
  43. 43.
    So, D., Pradhan, S., and Konstantatos, G., “Solid-State Colloidal CuInS2 Quantum Dot Solar Cells Enabled by Bulk Heterojunctions,” Nanoscale, Vol. 8, No. 37, pp. 16776–16785, 2016.CrossRefGoogle Scholar
  44. 44.
    Caram, J. R., Bertram, S. N., Utzat, H., Hess, W. R., Carr, J. A., et al., “PbS Nanocrystal Emission is Governed by Multiple Emissive States,” Nano Letters, Vol. 16, No. 10, pp. 6070–6077, 2016.CrossRefGoogle Scholar
  45. 45.
    Knowles, K. E., Hartstein, K. H., Kilburn, T. B., Marchioro, A., Nelson, H. D., et al., “Luminescent Colloidal Semiconductor Nanocrystals Containing Copper: Synthesis, Photophysics, and Applications,” Chemical Reviews, Vol. 116, No. 18, pp. 10820–10851, 2016.CrossRefGoogle Scholar
  46. 46.
    Xie, R., Rutherford, M., and Peng, X., “Formation of High-Quality I-III-VI Semiconductor Nanocrystals by Tuning Relative Reactivity of Cationic Precursors,” Journal of the American Chemical Society, Vol. 131, No. 15, pp. 5691–5697, 2009.CrossRefGoogle Scholar
  47. 47.
    Chen, B., Zhong, H., Zhang, W., Tan, Z. A., Li, Y., et al., “Highly Emissive and Color-Tunable CuInS2-Based Colloidal Semiconductor Nanocrystals: Off-Stoichiometry Effects and Improved Electroluminescence Performance,” Advanced Functional Materials, Vol. 22, No. 10, pp. 2081–2088, 2012.CrossRefGoogle Scholar
  48. 48.
    Knowles, K. E., Nelson, H. D., Kilburn, T. B., and Gamelin, D. R., “Singlet-Triplet Splittings in the Luminescent Excited States of Colloidal Cu+: CdSe, Cu+: InP, and CuInS2 Nanocrystals: Charge-Transfer Configurations and Self-Trapped Excitons,” Journal of the American Chemical Society, Vol. 137, No. 40, pp. 13138–13147, 2015.CrossRefGoogle Scholar
  49. 49.
    Nelson, H. D., Li, X., and Gamelin, D. R., “Computational Studies of the Electronic Structures of Copper-Doped CdSe Nanocrystals: Oxidation States, Jahn-Teller Distortions, Vibronic Bandshapes, and Singlet-Triplet Splittings,” Journal of Physical Chemistry C, Vol. 120, No. 10, pp. 5714–5723, 2016.CrossRefGoogle Scholar
  50. 50.
    Pan, L., Bérardan, D., and Dragoe, N., “High Thermoelectric Properties of n-Type AgBiSe2,” Journal of the American Chemical Society, Vol. 135, No. 13, pp. 4914–4917, 2013.CrossRefGoogle Scholar
  51. 51.
    Wojciechowski, K., Tobola, J., Schmidt, M., and Zybala, R., “Crystal Structure, Electronic and Transport Properties of AgSbSe2 and AgSbTe2,” Journal of Physics and Chemistry of Solids, Vol. 69, No. 11, pp. 2748–2755, 2008.CrossRefGoogle Scholar
  52. 52.
    Guin, S. N., Chatterjee, A., Negi, D. S., Datta, R., and Biswas, K., “High Thermoelectric Performance in Tellurium Free p-Type AgSbSe2,” Energy & Environmental Science, Vol. 6, No. 9, pp. 2603–2608, 2013.CrossRefGoogle Scholar
  53. 53.
    Garza, J., Shaji, S., Rodriguez, A., Roy, T. D., and Krishnan, B., “AgSbSe2 and AgSb(S,Se)2 Thin Films for Photovoltaic Applications,” Applied Surface Science, Vol. 257, No. 24, pp. 10834–10838, 2011.CrossRefGoogle Scholar
  54. 54.
    Chen, C., Qiu, X., Ji, S., Jia, C., and Ye, C., “The Synthesis of Monodispersed AgBiS2 Quantum Dots with a Giant Dielectric Constant,” CrystEngComm, Vol. 15, No. 38, pp. 7644–7648, 2013.CrossRefGoogle Scholar
  55. 55.
    Choi, H., Kim, S., Luther, J. M., Kim, S.-W., Shin, D., et al., “Facet-Specific Ligand Interactions on Ternary AgSbS2 Colloidal Quantum Dots,” Chemistry: A European Journal, Vol. 23, No. 70, pp. 17707–17713, 2017.CrossRefGoogle Scholar
  56. 56.
    Zhou, B., Li, M., Wu, Y., Yang, C., Zhang, W. H., et al., “Monodisperse AgSbS2 Nanocrystals: Size-Control Strategy, Large-Scale Synthesis, and Photoelectrochemistry,” Chemistry: A European Journal, Vol. 21, No. 31, pp. 11143–11151, 2015.CrossRefGoogle Scholar
  57. 57.
    Tipcompor, N., Thongtem, S., and Thongtem, T., “Characterization of Cubic AgSbS2 Nanostructured Flowers Synthesized by Microwave-Assisted Refluxing Method,” Journal of Nanomaterials, Vol. 2013, Paper No. 117, 2013.Google Scholar
  58. 58.
    Woo, J. Y., Ko, J.-H., Song, J. H., Kim, K., Choi, H., et al., “Ultrastable PbSe Nanocrystal Quantum Dots via in Situ Formation of Atomically Thin Halide Adlayers on PbSe (100),” Journal of the American Chemical Society, Vol. 136, No. 25, pp. 8883–8886, 2014.CrossRefGoogle Scholar
  59. 59.
    Correa-Baena, J.-P., Saliba, M., Buonassisi, T., Grätzel, M., Abate, A., et al., “Promises and Challenges of Perovskite Solar Cells,” Science, Vol. 358, No. 6364, pp. 739–744, 2017.CrossRefGoogle Scholar
  60. 60.
    Sanehira, E. M., Marshall, A. R., Christians, J. A., Harvey, S. P., Ciesielski, P. N., et al., “Enhanced Mobility CsPbI3 Quantum Dot Arrays for Record-Efficiency, High-Voltage Photovoltaic Cells,” Science Advances, Vol. 3, No. 10, pp. 4204–1-8, 2017.CrossRefGoogle Scholar
  61. 61.
    Volonakis, G., Haghighirad, A. A., Milot, R. L., Sio, W. H., Filip, M. R., et al., “Cs2InAgCl6: A New Lead-Free Halide Double Perovskite with Direct Band Gap,” Journal of Physical Chemistry Letters, Vol. 8, No. 4, pp. 772–778, 2017.CrossRefGoogle Scholar
  62. 62.
    Giustino, F. and Snaith, H. J., “Toward Lead-Free Perovskite Solar Cells, ACS Energy Letters,” Vol. 1, No 6, pp. 1233–1240, 2016.CrossRefGoogle Scholar
  63. 63.
    Volonakis, G., Filip, M. R., Haghighirad, A. A., Sakai, N., Wenger, B., et al., “Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals,” Journal of Physical Chemistry Letters, Vol. 7, No. 7, pp. 1254–1259, 2016.CrossRefGoogle Scholar
  64. 64.
    Hebig, J.-C., Kuhn, I., Flohre, J., and Kirchartz, T., “Optoelectronic Properties of (CH3NH3)3Sb2I9 Thin Films for Photovoltaic Applications,” ACS Energy Letters, Vol. 1, No. 1, pp. 309–314, 2016.CrossRefGoogle Scholar
  65. 65.
    Wei, F., Deng, Z., Sun, S., Zhang, F., Evans, D. M., et al., “Synthesis and Properties of a Lead-Free Hybrid Double Perovskite:(CH3NH3) 2AgBiBr6,” Chemistry of Materials, Vol. 29, No. 3, pp. 1089–1094, 2017.CrossRefGoogle Scholar
  66. 66.
    Meng, W., Wang, X., Xiao, Z., Wang, J., Mitzi, D. B., et al., “Parity-Forbidden Transitions and Their Impacts on the Optical Absorption Properties of Lead-Free Metal Halide Perovskites and Double Perovskites,” Journal of Physical Chemistry Letters, Vol. 8, No. 13, pp. 2999–3007, 2017.CrossRefGoogle Scholar
  67. 67.
    Jellicoe, T. C., Richter, J. M., Glass, H. F., Tabachnyk, M., Brady, R., et al., “Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Nanocrystals,” Journal of the American Chemical Society, Vol. 138, No. 9, pp. 2941–2944, 2016.CrossRefGoogle Scholar
  68. 68.
    Chen, L.-J., Lee, C.-R., Chuang, Y.-J., Wu, Z.-H., and Chen, C., “Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Quantum Rods with High-Performance Solar Cell Application,” Journal of Physical Chemistry Letters, Vol. 7, No. 24, pp. 5028–5035, 2016.CrossRefGoogle Scholar
  69. 69.
    Li, L., Pandey, A., Werder, D. J., Khanal, B. P., Pietryga, J. M., et al., “Efficient Synthesis of Highly Luminescent Copper Indium Sulfide-Based Core/Shell Nanocrystals with Surprisingly Long-Lived Emission,” Journal of the American Chemical Society, Vol. 133, No. 5, pp. 1176–1179, 2011.CrossRefGoogle Scholar
  70. 70.
    McDaniel, H., Fuke, N., Pietryga, J. M., and Klimov, V. I., “Engineered CuInSexS2–x Quantum Dots for Sensitized Solar Cells,” Journal of Physical Chemistry Letters, Vol. 4, No. 3, pp. 355–361, 2013.CrossRefGoogle Scholar
  71. 71.
    Chen, Y., Li, S., Huang, L., and Pan, D., “Low-Cost and Gram-Scale Synthesis of Water-Soluble Cu-In-S/ZnS Core/Shell Quantum Dots in An Electric Pressure Cooker,” Nanoscale, Vol. 6, No. 3, pp. 1295–1298, 2014.CrossRefGoogle Scholar
  72. 72.
    Tamang, S., Lincheneau, C., Hermans, Y., Jeong, S., and Reiss, P., “Chemistry of InP Nanocrystal Syntheses,” Chemistry of Materials, Vol. 28, No. 8, pp. 2491–2506, 2016.CrossRefGoogle Scholar
  73. 73.
    Song, W.-S., Lee, H.-S., Lee, J. C., Jang, D. S., Choi, Y., et al., “Amine-Derived Synthetic Approach to Color-Tunable InP/ZnS Quantum Dots with High Fluorescent Qualities,” Journal of Nanoparticle Research, Vol. 15, No. 6, pp. 1–10, 2013.CrossRefGoogle Scholar
  74. 74.
    Tessier, M. D., Dupont, D., De Nolf, K., De Roo, J., and Hens, Z., “Economic and Size-Tunable Synthesis of InP/ZnE (E = S, Se) Colloidal Quantum Dots,” Chemistry of Materials, Vol. 27, No. 13, pp. 4893–4898, 2015.CrossRefGoogle Scholar
  75. 75.
    Kim, K., Yoo, D., Choi, H., Tamang, S., Ko, J. H., et al., “Halide-Amine Co-Passivated Indium Phosphide Colloidal Quantum Dots in Tetrahedral Shape,” Angewandte Chemie, Vol. 128, No. 11, pp. 3778–3782, 2016.CrossRefGoogle Scholar
  76. 76.
    Kim, D., Park, H. K., Choi, H., Noh, J., Kim, K., et al., “Continuous Flow Purification of Nanocrystal Quantum Dots,” Nanoscale, Vol. 6, No. 23, pp. 14467–14472, 2014.CrossRefGoogle Scholar
  77. 77.
    Lim, H., Woo, J. Y., Lee, D. C., Lee, J., Jeong, S., et al., “Continuous Purification of Colloidal Quantum Dots in Large-Scale Using Porous Electrodes in Flow Channel,” Scientific Reports, Vol. 7, Paper No. 43581, 2017.Google Scholar
  78. 78.
    Choi, H., Lee, J.-G., Mai, X. D., Beard, M. C., Yoon, S. S., et al., “Supersonically Spray-Coated Colloidal Quantum Dot Ink Solar Cells,” Scientific Reports, Vol. 7, Article No. 622, 2017.Google Scholar

Copyright information

© Korean Society for Precision Engineering 2018

Authors and Affiliations

  1. 1.Nano-Convergence Systems Research DivisionKorea Institute of Machinery and Materials (KIMM)DaejeonRepublic of Korea
  2. 2.Department of NanomechatronicsKorea University of Science and Technology (UST)DaejeonRepublic of Korea

Personalised recommendations