Skip to main content

3D printing: It’s microfluidic functions and environmental impacts

Abstract

Innovative micro products essential for the utilization of a wide variety of macro subjects have complicated three-dimensional (3D) microstructures in addition to a high aspect ratio. Till date, many micro manufacturing processes have been developed, but a specific class of such processes is applicable for fabrication of true 3D micro assembly. The aptitude to process a broad range of materials and the ability to fabricate functional and geometrically complicated, 3D microstructures provides the additive manufacturing (AM) processes which significant profits over traditional methods, such as lithography-based or micromachining approaches investigated widely in the past. In this paper, 3D micro-AM processes have been classified into three main groups, including scalable micro-AM systems, 3D direct writing, and hybrid processes, and the key processes have been reviewed comprehensively. Principle and recent progress of each 3D micro-AM process have been described, and the advantages and disadvantages of each process have low-cost along with its occupational health safety & environmental issues.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Demello, A. J. and Wootton, R. C., “Miniaturization: Chemistry at the Crossroads,” Nature Chemistry, Vol. 1, pp. 28–29, 2009.

    Article  Google Scholar 

  2. 2.

    Lipson, H. and Kurman, M., “Fabricated: The New World of 3D Printing,” John Wiley & Sons, 2013.

    Google Scholar 

  3. 3.

    De Jong, J. P. and De Bruijn, E., “Innovation Lessons from 3-D Printing,” MIT Sloan Management Review, Vol. 54, No. 2, p. 43, 2013.

    Google Scholar 

  4. 4.

    Garg, A. and Lam, J. S. L., “Measurement of Environmental Aspect of 3-D Printing Process Using Soft Computing Methods,” Measurement, Vol. 75, pp. 210–217, 2015.

    Article  Google Scholar 

  5. 5.

    Godoi, F. C., Prakash, S., and Bhandari, B. R., “3D Printing Technologies Applied for Food Design: Status and Prospects,” Journal of Food Engineering, Vol. 179, pp. 44–54, 2016.

    Article  Google Scholar 

  6. 6.

    Goole, J. and Amighi, K., “3D Printing in Pharmaceutics: A New Tool for Designing Customized Drug Delivery Systems,” International Journal of Pharmaceutics, Vol. 499, No.1, pp. 376–394, 2016.

    Article  Google Scholar 

  7. 7.

    Bonyár, A., Sántha, H., Ring, B., Varga, M., Kovács, J. G., et al., “3D Rapid Prototyping Technology (RPT) as a Powerful Tool in Microfluidic Development,” Procedia Engineering, Vol. 5, pp. 291–294, 2010.

    Article  Google Scholar 

  8. 8.

    Joe Lopes, A., MacDonald, E., and Wicker, R. B., “Integrating Stereolithography and Direct Print Technologies for 3D Structural Electronics Fabrication,” Rapid Prototyping Journal., Vol. 18, No. 2, pp. 129–143, 2012.

    Article  Google Scholar 

  9. 9.

    Wicker, R. B. and MacDonald, E. W., “Multi-Material, Multi-Technology Stereolithography: This Feature Article Covers a Decade of Research Into Tackling One of the Major Challenges of the Stereolithography Technique, which Is Including Multiple Materials in One Construct,” Virtual and Physical Prototyping, Vol. 7, No. 3, pp. 181–194, 2012.

    Article  Google Scholar 

  10. 10.

    Kim, M.-S., Chu, W.-S., Kim, Y.-M., Avila, A. P. G., and Ahn, S.-H., “Direct Metal Printing of 3D Electrical Circuit Using Rapid Prototyping,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 5, pp. 147–150, 2009.

    Article  Google Scholar 

  11. 11.

    Ko, H., Moon, S. K., and Hwang, J., “Design for Additive Manufacturing in Customized Products,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 11, pp. 2369–2375, 2015.

    Article  Google Scholar 

  12. 12.

    Ho, C. M. B., Ng, S. H., and Yoon, Y.-J., “A Review on 3D Printed Bioimplants,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 5, pp. 1035–1046, 2015.

    Article  Google Scholar 

  13. 13.

    Vatani, M., Lu, Y., Engeberg, E. D., and Choi, J.-W., “Combined 3D Printing Technologies and Material for Fabrication of Tactile Sensors,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 7, pp. 1375–1383, 2015.

    Article  Google Scholar 

  14. 14.

    Kang, H. S., Lee, J. Y., Choi, S., Kim, H., Park, J. H., et al., “Smart Manufacturing: Past Research, Present Findings, and Future Directions,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 1, pp. 111–128, 2016.

    Article  Google Scholar 

  15. 15.

    Chu, W.-S., Kim, M.-S., Jang, K.-H., Song, J.-H., Rodrigue, H., et al., “From Design for Manufacturing (DFM) to Manufacturing for Design (MFD) Via Hybrid Manufacturing and Smart Factory: A Review and Perspective of Paradigm Shift,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 2, pp. 209–222, 2016.

    Article  Google Scholar 

  16. 16.

    Matsumoto, M., Yang, S., Martinsen, K., and Kainuma, Y., “Trends and Research Challenges in Remanufacturing,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 1, pp. 129–142, 2016.

    Article  Google Scholar 

  17. 17.

    Willis, K., Brockmeyer, E., Hudson, S., and Poupyrev, I., “Printed Optics: 3D Printing of Embedded Optical Elements for Interactive Devices,” Proc. of the 25th Annual ACM Symposium on User Interface Software and Technology, pp. 589–598, 2012.

    Google Scholar 

  18. 18.

    Sun, K., Wei, T. S., Ahn, B. Y., Seo, J. Y., Dillon, S. J., et al., “3D Printing of Interdigitated Li-Ion Microbattery Architectures,” Advanced Materials, Vol. 25, No. 33, pp. 4539–4543, 2013.

    Article  Google Scholar 

  19. 19.

    Perez, K. B. and Williams, C. B., “Combining Additive Manufacturing and Direct Write for Integrated Electronics-A Review,” Proc. of the 24th International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference, pp. 962–979, 2013.

    Google Scholar 

  20. 20.

    Jang, S. H., Oh, S. T., Lee, I. H., Kim, H.-C., and Cho, H. Y., “3-Dimensional Circuit Device Fabrication Process Using Stereolithography and Direct Writing,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 7, pp. 1361–1367, 2015.

    Article  Google Scholar 

  21. 21.

    Goyanes, A., Buanz, A. B., Basit, A. W., and Gaisford, S., “Fused-Filament 3D Printing (3DP) for Fabrication of Tablets,” International Journal of Pharmaceutics, Vol. 476, No. 1, pp. 88–92, 2014.

    Article  Google Scholar 

  22. 22.

    Chia, H. N. and Wu, B. M., “Recent Advances in 3D Printing of Biomaterials,” Journal of Biological Engineering, Vol. 9, No. 1, p. 4, 2015.

    Article  Google Scholar 

  23. 23.

    Melocchi, A., Parietti, F., Loreti, G., Maroni, A., Gazzaniga, A., et al., “3D Printing by Fused Deposition Modeling (FDM) of a Swellable/Erodible Capsular Device for Oral Pulsatile Release of Drugs,” Journal of Drug Delivery Science and Technology, Vol. 30, pp. 360–367, 2015.

    Article  Google Scholar 

  24. 24.

    Goyanes, A., Buanz, A. B., Hatton, G. B., Gaisford, S., and Basit, A. W., “3D Printing of Modified-Release Aminosalicylate (4-ASA and 5-ASA) Tablets,” European Journal of Pharmaceutics and Biopharmaceutics, Vol. 89, pp. 157–162, 2015.

    Article  Google Scholar 

  25. 25.

    Ganeriwala, R. and Zohdi, T. I., “Multiphysics Modeling and Simulation of Selective Laser Sintering Manufacturing Processes,” Procedia CIRP, Vol. 14, pp. 299–304, 2014.

    Article  Google Scholar 

  26. 26.

    Olakanmi, E. O. T., Cochrane, R., and Dalgarno, K., “A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties,” Progress in Materials Science, Vol. 74, pp. 401–477, 2015.

    Article  Google Scholar 

  27. 27.

    Yi, X., Tan, Z.-J., Yu, W.-J., Li, J., Li, B.-J., et al., “Three Dimensional Printing of Carbon/Carbon Composites by Selective Laser Sintering,” Carbon, Vol. 96, pp. 603–607, 2016.

    Article  Google Scholar 

  28. 28.

    Deckers, J., Meyers, S., Kruth, J., and Vleugels, J., “Direct Selective Laser Sintering/Melting of High Density Alumina Powder Layers at Elevated Temperatures,” Physics Procedia, Vol. 56, pp. 117–124, 2014.

    Article  Google Scholar 

  29. 29.

    Gebler, M., Uiterkamp, A. J. S., and Visser, C., “A Global Sustainability Perspective on 3D Printing Technologies,” Energy Policy, Vol. 74, pp. 158–167, 2014.

    Article  Google Scholar 

  30. 30.

    Kitson, P. J., Symes, M. D., Dragone, V., and Cronin, L., “Combining 3D Printing and Liquid Handling to Produce User-Friendly Reactionware for Chemical Synthesis and Purification,” Chemical Science, Vol. 4, No. 8, pp. 3099–3103, 2013.

    Article  Google Scholar 

  31. 31.

    Venkateswaran, P., Kashyap, D., Agarwal, A., and Goel, S., “Computational Analysis of a Microfluidic Viscometer and its Application in the Rapid and Automated Measurement of Biodiesel Blending under Pressure Driven Flow,” Journal of Computational and Theoretical Nanoscience, Vol. 12, No. 9, pp. 2311–2317, 2015.

    Article  Google Scholar 

  32. 32.

    Comina, G., Suska, A., and Filippini, D., “PDMS Lab-on-a-Chip Fabrication Using 3D Printed Templates,” Lab on a Chip, Vol. 14, No. 2, pp. 424–430, 2014.

    Article  Google Scholar 

  33. 33.

    Thomas, D., Tehrani, Z., and Redfearn, B., “3-D Printed Composite Microfluidic Pump for Wearable Biomedical Applications,” Additive Manufacturing, Vol. 9, pp. 30–38, 2016.

    Article  Google Scholar 

  34. 34.

    Paydar, O., Paredes, C., Hwang, Y., Paz, J., Shah, N., et al., “Characterization of 3D-Printed Microfluidic Chip Interconnects with Integrated O-Rings,” Sensors and Actuators A: Physical, Vol. 205, pp. 199–203, 2014.

    Article  Google Scholar 

  35. 35.

    Kane, R. S., Takayama, S., Ostuni, E., Ingber, D. E., and Whitesides, G. M., “Patterning Proteins and Cells Using Soft Lithography,” Biomaterials, Vol. 20, No. 23, pp. 2363–2376, 1999.

    Article  Google Scholar 

  36. 36.

    Lee, K. G., Park, K. J., Seok, S., Shin, S., Park, J. Y., et al., “3D Printed Modules for Integrated Microfluidic Devices,” RSC Advances, Vol. 4, No. 62, pp. 32876–32880, 2014.

    Article  Google Scholar 

  37. 37.

    Venkateswaran, P. S., Sharma, A., Dubey, S., Agarwal, A., and Goel, S., “Rapid and Automated Measurement of Milk Adulteration Using a 3D Printed Optofluidic Microviscometer (OMV),” IEEE Sensors Journal, Vol. 16, No. 9, pp. 3000–3007, 2016.

    Article  Google Scholar 

  38. 38.

    Therriault, D., White, S. R., and Lewis, J. A., “Chaotic Mixing in Three-Dimensional Microvascular Networks Fabricated by Direct-Write Assembly,” Nature Materials, Vol. 2, No. 4, pp. 265–271, 2003.

    Article  Google Scholar 

  39. 39.

    Mathieson, J. S., Rosnes, M. H., Sans, V., Kitson, P. J., and Cronin, L., “Continuous Parallel ESI-MS Analysis of Reactions Carried Out in a Bespoke 3D Printed Device,” Beilstein Journal of Nanotechnology, Vol. 4, No. 1, pp. 285–291, 2013.

    Article  Google Scholar 

  40. 40.

    Snowden, M. E., King, P. H., Covington, J. A., Macpherson, J. V., and Unwin, P. R., “Fabrication of Versatile Channel Flow Cells for Quantitative Electroanalysis Using Prototyping,” Analytical Chemistry, Vol. 82, No. 8, pp. 3124–3131, 2010.

    Article  Google Scholar 

  41. 41.

    Anderson, K. B., Lockwood, S. Y., Martin, R. S., and Spence, D. M., “A 3D Printed Fluidic Device that Enables Integrated Features,” Analytical Chemistry, Vol. 85, No. 12, pp. 5622–5626, 2013.

    Article  Google Scholar 

  42. 42.

    Waldbaur, A., Rapp, H., Länge, K., and Rapp, B. E., “Let there be Chip-Towards Rapid Prototyping of Microfluidic Devices: One-Step Manufacturing Processes,” Analytical Methods, Vol. 3, No. 12, pp. 2681–2716, 2011.

    Article  Google Scholar 

  43. 43.

    Melchels, F. P., Feijen, J., and Grijpma, D. W., “A Review on Stereolithography and its Applications in Biomedical Engineering,” Biomaterials, Vol. 31, No. 24, pp. 6121–6130, 2010.

    Article  Google Scholar 

  44. 44.

    Erkal, J. L., Selimovic, A., Gross, B. C., Lockwood, S. Y., Walton, E. L., et al., “3D Printed Microfluidic Devices with Integrated Versatile and Reusable Electrodes,” Lab on a Chip, Vol. 14, No. 12, pp. 2023–2032, 2014.

    Article  Google Scholar 

  45. 45.

    Dragone, V., Sans, V., Rosnes, M. H., Kitson, P. J., and Cronin, L., “3DPrinted Devices for Continuous-Flow Organic Chemistry,” Beilstein Journal of Organic Chemistry, Vol. 9, No. 1, pp. 951–959, 2013.

    Article  Google Scholar 

  46. 46.

    Kruth, J.-P., “Material Incress Manufacturing by Rapid Prototyping Techniques,” CIRP Annals-Manufacturing Technology, Vol. 40, No. 2, pp. 603–614, 1991.

    Article  Google Scholar 

  47. 47.

    Crump, S. S., “Fast, Precise, Safe Prototypes with FDM,” ASME, Vol. 50, pp. 53–60, 1991.

    Google Scholar 

  48. 48.

    Deckard, C. R., “Method and Apparatus for Producing Parts by Selective Sintering,” US Patent, 4863538 A, 1989.

    Google Scholar 

  49. 49.

    Kumar, S., “Selective Laser Sintering: A Qualitative and Objective Approach,” Journal of the Minerals, Metals and Materials Society, Vol. 55, No. 10, pp. 43–47, 2003.

    Article  Google Scholar 

  50. 50.

    Niu, H. and Chang, I., “Selective Laser Sintering of Gas Atomized M2 High Speed Steel Powder,” Journal of Materials Science, Vol. 35, No. 1, pp. 31–38, 2000.

    Article  Google Scholar 

  51. 51.

    Kumar, S., Murali, K., Saha, P., Choudhury, A., Roy, S., et al., “A Study of Bearing Characteristics of Laser Sintered Iron Powder with Graphite Inclusions,” Proc. of the International Conference on Advances in Materials Processing, pp. 842–846, 2002.

    Google Scholar 

  52. 52.

    Kruth, J.-P., Leu, M.-C., and Nakagawa, T., “Progress in Additive Manufacturing and Rapid Prototyping,” CIRP Annals-Manufacturing Technology, Vol. 47, No. 2, pp. 525–540, 1998.

    Article  Google Scholar 

  53. 53.

    Kruth, J.-P., Wang, X., Laoui, T., and Froyen, L., “Lasers and Materials In Selective Laser Sintering,” Assembly Automation, Vol. 23, No. 4, pp. 357–371, 2003.

    Article  Google Scholar 

  54. 54.

    Kochan, D., “Solid Freeform Manufacturing: Advanced Rapid Prototyping,” Elsevier Science Inc., 1993.

    Google Scholar 

  55. 55.

    Wohlers, T., “Wohlers Report: Rapid Prototyping, Tooling & Manufacturing State of the Industry Annual Worldwide Progress Report,” Wohlers Associates, 2001.

    Google Scholar 

  56. 56.

    Xu, X., Sachs, E., and Allen, S., “The Design of Conformal Cooling Channels in Injection Molding Tooling,” Polymer Engineering & Science, Vol. 41, No. 7, pp. 1265–1279, 2001.

    Article  Google Scholar 

  57. 57.

    Bak, D., “Rapid Prototyping or Rapid Production? 3D Printing Processes Move Industry Towards the Latter,” Assembly Automation, Vol. 23, No. 4, pp. 340–345, 2003.

    Article  Google Scholar 

  58. 58.

    Seitz, H., Rieder, W., Irsen, S., Leukers, B., and Tille, C., “Three DImensional Printing of Porous Ceramic Scaffolds for Bone Tissue Engineering,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 74, No. 2, pp. 782–788, 2005.

    Article  Google Scholar 

  59. 59.

    Leukers, B., Gülkan, H., Irsen, S. H., Milz, S., Tille, C., et al., “Hydroxyapatite Scaffolds for Bone Tissue Engineering Made by 3D Printing,” Journal of Materials Science: Materials in Medicine, Vol. 16, No. 12, pp. 1121–1124, 2005.

    Google Scholar 

  60. 60.

    Sun, Z., Tan, X., Tor, S. B., and Yeong, W. Y., “Selective Laser Melting of Stainless Steel 316L with Low Porosity and High Build Rates,” Materials & Design, Vol. 104, pp. 197–204, 2016.

    Article  Google Scholar 

  61. 61.

    Murr, L., Quinones, S., Gaytan, S., Lopez, M., Rodela, A., et al., “Microstructure and Mechanical Behavior of Ti-6AL-4V Produced by Rapid-Layer Manufacturing, for Biomedical Applications,” Journal of the Mechanical Behavior of Biomedical Materials, Vol. 2, No. 1, pp. 20–32, 2009.

    Article  Google Scholar 

  62. 62.

    Spierings, A., Schneider, M., and Eggenberger, R., “Comparison of Density Measurement Techniques for Additive Manufactured Metallic Parts,” Rapid Prototyping Journal, Vol. 17, No. 5, pp. 380–386, 2011.

    Article  Google Scholar 

  63. 63.

    Wałpuski, B., “Selective Laser Melting of Metal Micropowders with Short-Pulse Laser. in Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments,” Proc. of the International Society for Optics and Photonics, 2016.

    Google Scholar 

  64. 64.

    Scales, J., “Arthroplasty of the Hip Using Foreign Materials: A History,” Proc. of the Institution of Mechanical Engineers, 1966.

    Google Scholar 

  65. 65.

    Charnley, J., “2 Total Hip Replacement by Low-Friction Arthroplasty,” Clinical Orthopaedics and Related Research, Vol. 72, pp. 7–21, 1970.

    Google Scholar 

  66. 66.

    Madey, S. M., Callaghan, J. J., Olejniczak, J. P., Goetz, D. D., and Johnston, R. C., “Charnley Total Hip Arthroplasty with Use of Improved Techniques of Cementing. The Results After a Minimum of Fifteen Years of Follow-Up,” Journal of Bone & Joint Surgery-American, Vol. 79, No. 1, pp. 53–64, 1997.

    Article  Google Scholar 

  67. 67.

    Rothman, R. H. and Cohn, J. C., “Cemented Versus Cementless Total Hip Arthroplasty: A Critical Review,” Clinical Orthopaedics and Related Research, Vol. 254, pp. 153–169, 1990.

    Google Scholar 

  68. 68.

    Pilliar, R. M., “Cementless Implant Fixation-Toward Improved Reliability,” Orthopedic Clinics of North America, Vol. 36, No. 1, pp. 113–119, 2005.

    Article  Google Scholar 

  69. 69.

    Gruen, T. A., Mcneice, G. M., and Amstutz, H. C., “Modes of Failure of Cemented Stem-Type Femoral Components: A Radiographic Analysis of Loosening,” Clinical Orthopaedics and Related Research, Vol. 141, pp. 17–27, 1979.

    Google Scholar 

  70. 70.

    Huiskes, R., Weinans, H., and Van Rietbergen, B., “The Relationship between Stress Shielding and Bone Resorption Around Total Hip Stems and the Effects of Flexible Materials,” Clinical Orthopaedics and Related Research, Vol. 274, pp. 124–134, 1992.

    Google Scholar 

  71. 71.

    Bobyn, J., Pilliar, R., Cameron, H., and Weatherly, G., “The Optimum Pore Size for the Fixation of Porous-Surfaced Metal Implants by the Ingrowth of Bone,” Clinical Orthopaedics and Related Research, Vol. 150, pp. 263–270, 1980.

    Google Scholar 

  72. 72.

    Clemow, A., Weinstein, A., Klawitter, J., Koeneman, J., and Anderson, J., “Interface Mechanics of Porous Titanium Implants,” Journal of Biomedical Materials Research, Vol. 15, No. 1, pp. 73–82, 1981.

    Article  Google Scholar 

  73. 73.

    Zschieschang, U., Klauk, H., Halik, M., Schmid, G., and Dehm, C., “Flexible Organic Circuits with Printed Gate Electrodes,” Advanced Materials, Vol. 15, No. 14, pp. 1147–1151, 2003.

    Article  Google Scholar 

  74. 74.

    Ko, S. H., Pan, H., Grigoropoulos, C. P., Luscombe, C. K., Fréchet, J. M., et al., “All-Inkjet-Printed Flexible Electronics Fabrication on a Polymer Substrate by Low-Temperature High-Resolution Selective Laser Sintering of Metal Nanoparticles,” Nanotechnology, Vol. 18, No. 34, Paper No. 345202, 2007.

    Google Scholar 

  75. 75.

    Kruth, J.-P., Mercelis, P., Van Vaerenbergh, J., Froyen, L., and Rombouts, M., “Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting,” Rapid Prototyping Journal, Vol. 11, No. 1, pp. 26–36, 2005.

    Article  Google Scholar 

  76. 76.

    Roylance, L. M. and Angell, J. B., “A Batch-Fabricated Silicon Accelerometer,” IEEE Transactions on Electron Devices, Vol. 26, No. 12, pp. 1911–1917, 1979.

    Article  Google Scholar 

  77. 77.

    Yazdi, N., Ayazi, F., and Najafi, K., “Micromachined Inertial Sensors,” Proc. of the IEEE, Vol. 86, No. 8, pp. 1640–1659, 1998.

    Article  Google Scholar 

  78. 78.

    Tufte, O., Chapman, P., and Long, D., “Silicon Diffused-Element Piezoresistive Diaphragms,” Journal of Applied Physics, Vol. 33, No. 11, pp. 3322–3327, 1962.

    Article  Google Scholar 

  79. 79.

    Unger, M. A., Chou, H.-P., Thorsen, T., Scherer, A., and Quake, S. R., “Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography,” Science, Vol. 288, No. 5463, pp. 113–116, 2000.

    Article  Google Scholar 

  80. 80.

    Lin, L. Y., Goldstein, E. L., and Tkach, R. W., “Free-Space Micromachined Optical Switches for Optical Networking,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 5, No. 1, pp. 4–9, 1999.

    Article  Google Scholar 

  81. 81.

    Muller, R. S. and Lau, K. Y., “Surface-Micromachined Microoptical Elements and Systems,” Proc. of the IEEE, Vol. 86, No. 8, pp. 1705–1720, 1998.

    Article  Google Scholar 

  82. 82.

    Hornbeck, L. J., “Deformable-Mirror Spatial Light Modulators,” Proc. of the International Society for Optics and Photonics in 33rd Annual Techincal Symposium, pp. 86–103, 1990.

    Google Scholar 

  83. 83.

    Harrison, D. J., Fluri, K., Seiler, K., Fan, Z., Effenhauser, C. S., et al., “Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip,” Science-New York Then Washington, Vol. 261, pp. 895–895, 1993.

    Article  Google Scholar 

  84. 84.

    Effenhauser, C. S., Bruin, G. J., Paulus, A., and Ehrat, M., “Integrated Capillary Electrophoresis on Flexible Silicone Microdevices: Analysis of DNA Restriction Fragments and Detection of Single DNA Molecules on Microchips,” Analytical Chemistry, Vol. 69, No. 17, pp. 3451–3457, 1997.

    Article  Google Scholar 

  85. 85.

    Duffy, D. C., Schueller, O. J., Brittain, S. T., and Whitesides, G. M., “Rapid Prototyping of Microfluidic Switches in Poly (Dimethyl Siloxane) and their Actuation by Electro-Osmotic Flow,” Journal of Micromechanics and Microengineering, Vol. 9, No. 3, p. 211, 1999.

    Article  Google Scholar 

  86. 86.

    Kenis, P. J., Ismagilov, R. F., and Whitesides, G. M., “Microfabrication inside Capillaries Using Multiphase Laminar Flow Patterning,” Science, Vol. 285, No. 5424, pp. 83–85, 1999.

    Article  Google Scholar 

  87. 87.

    Lötters, J., Olthuis, W., Veltink, P., and Bergveld, P., “The Mechanical Properties of the Rubber Elastic Polymer Polydimethylsiloxane for Sensor Applications,” Journal of Micromechanics and Microengineering, Vol. 7, No. 3, p. 145, 1997.

    Article  Google Scholar 

  88. 88.

    Schasfoort, R. B., Schlautmann, S., Hendrikse, J., and Van Den Berg, A., “Field-Effect Flow Control for Microfabricated Fluidic Networks,” Science, Vol. 286, No. 5441, pp. 942–945, 1999.

    Article  Google Scholar 

  89. 89.

    Jacobson, S. C., McKnight, T. E., and Ramsey, J. M., “Microfluidic Devices for Electrokinetically Driven Parallel and Serial Mixing,” Analytical Chemistry, Vol. 71, No. 20, pp. 4455–4459, 1999.

    Article  Google Scholar 

  90. 90.

    Cho, K.-J., Koh, J.-S., Kim, S., Chu, W.-S., Hong, Y., et al., “Review of Manufacturing Processes for Soft Biomimetic Robots,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 3, pp. 171–181, 2009.

    Article  Google Scholar 

  91. 91.

    Ahn, S.-H., Lee, K.-T., Kim, H.-J., Wu, R., Kim, J.-S., et al., “Smart Soft Composite: An Integrated 3D Soft Morphing Structure Using Bend-Twist Coupling of Anisotropic Materials,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 4, pp. 631–634, 2012.

    Article  Google Scholar 

  92. 92.

    Shin, B. S., Kim, J. G., Chang, W. S., and Whang, K. H., “Rapid Manufacturing of 3D Micro-Products Using UV Laser Ablation and Phase-Change Filling,” Int. J. Precis. Eng. Manuf., Vol. 7, No. 3, pp. 56–59, 2006.

    Google Scholar 

  93. 93.

    Buchaillot, L., Farnault, E., Hoummady, M., and Fujita, H., “Silicon Nitride Thin Films Young’s Modulus Determination by an Optical Non Destructive Method,” Japanese Journal of Applied Physics, Vol. 36, No. 6B, p. L794, 1997.

    Google Scholar 

  94. 94.

    Xia, Y., Kim, E., Zhao, X.-M., Rogers, J. A., Prentiss, M., et al., “Complex Optical Surfaces Formed by Replica Molding Against Elastomeric Masters,” Science, pp. 347–349, 1996.

    Google Scholar 

  95. 95.

    Chu, C., Graf, G., and Rosen, D. W., “Design for Additive Manufacturing of Cellular Structures,” Computer-Aided Design and Applications, Vol. 5, No. 5, pp. 686–696, 2008.

    Article  Google Scholar 

  96. 96.

    Luo, Y., Ji, Z., Leu, M. C., and Caudill, R., “Environmental Performance Analysis of Solid Freedom Fabrication Processes,” Proc. of the IEEE International Symposium on Electronics and the Environment, pp. 1–6, 1999.

    Google Scholar 

  97. 97.

    Serres, N., Tidu, D., Sankare, S., and Hlawka, F., “Environmental Comparison of MESO-CLAD Process and Conventional Machining Implementing Life Cycle Assessment,” Journal of Cleaner Production, Vol. 19, No. 9, pp. 1117–1124, 2011.

    Article  Google Scholar 

  98. 98.

    Sreenivasan, R. and Bourell, D., “Sustainability Study in Selective Laser Sintering-An Energy Perspective,” http://edge.rit.edu/edge/P10551/public/SFF/SFF%202009%20Proceedings/2009%20SFF%2 0Papers/2009-22-Sreenivasan.pdf (Accessed 25 MAY 2017)

    Google Scholar 

  99. 99.

    Faludi, J., Bayley, C., Bhogal, S., and Iribarne, M., “Comparing Environmental Impacts of Additive Manufacturing vs Traditional Machining Via Life-Cycle Assessment,” Rapid Prototyping Journal, Vol. 21, No. 1, pp. 14–33, 2015.

    Article  Google Scholar 

  100. 100.

    Kreiger, M., Mulder, M., Glover, A., and Pearce, J. M., “Life Cycle Analysis of Distributed Recycling of Post-Consumer High Density Polyethylene for 3-D Printing Filament,” Journal of Cleaner Production, Vol. 70, pp. 90–96, 2014.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jitendra K. Pandey.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Mondal, S., Mondal, A.K. et al. 3D printing: It’s microfluidic functions and environmental impacts. Int. J. of Precis. Eng. and Manuf.-Green Tech. 4, 323–334 (2017). https://doi.org/10.1007/s40684-017-0038-6

Download citation

Keywords

  • 3D microfluidic devices
  • Additive manufacturing
  • Stereo-lithography
  • Occupational health
  • Environmental management
  • 3D printing