Sustainability aspects of a digitalized industry – A comparative study from China and Germany


Industrial production is currently undergoing a fundamental transformation, leading towards a digitalized and interconnected industrial production, which is subsumed under the term Industrial Internet (of Things) or Industrie 4.0. This paper discusses the changes that digitalization is expected to bring about in the industrial sector by comparing a highly industrialized (Germany) with a major emerging industrial economy (China). We conducted two empirical surveys asking manufacturing companies from different sectors in Germany and China respectively, how they expect the digitalization of their processes will affect them. Both questionnaires addressed the future of work in production and the future of production itself. The main contribution of this paper is its empirical investigation of how the digitalization of industry is likely to affect sustainability aspects of manufacturing companies in two countries with very different industrial structures. Our findings suggest that this transformation will not only impact the ecological dimension (resource efficiency, renewable energy), but that the technical transformation is likely to be accompanied by social transformations. The findings of this paper will help decision-makers in the political sphere to anticipate and shape pathways towards a more sustainable future in the industrial sector.



Total amount of given answers


  1. 1.

    Herrmann, C., Schmidt, C., Kurle, D., Blume, S., and Thiede, S., “Sustainability in Manufacturing and Factories of the Future,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 4, pp. 283–292, 2014.

    Article  Google Scholar 

  2. 2.

    Kang, H. S., Lee, J. Y., Choi, S., Kim, H., Park, J. H., et al., “Smart Manufacturing: Past Research, Present Findings, and Future Directions,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 1, pp. 111–128, 2016.

    Article  Google Scholar 

  3. 3.

    Mercator Institute for China Studies, “Industrie 4.0: Deutsche Technologie für Chinas Industrielle Aufholjagd,” (Accessed 24 MAR 2017)

  4. 4.

    International Federation of Robotics, “China Robot Boom,” (Accessed 10 AUG 2016)

  5. 5.

    Eurostat, “National Accounts by 10 Branches -Aggregates at Current Prices,” =nama_nace10_c&lang=en (Accessed 23 FEB 2016)

  6. 6.

    Eurostat, “National Accounts by 10 Branches -Employment Data,” _e&lang=en (Accessed 15 DEC 2015)

  7. 7.

    Eurostat, “Final Energy Consumption by Sector,” 320& plugin=1 (Accessed 15 DEC 2015)

  8. 8.

    Eurostat, “Greenhouse Gas Emissions by Sector,” =en&pcode=tsdcc210&plugin=1 (Accessed 10 DEC 2015)

  9. 9.

    European Environment Agency, “Costs of Air Pollution from European Industrial Facilities 2008-2012,” /publications/costs-of-air-pollution-2008-2012 (Accessed 29 FEB 2016)

  10. 10.

    National Bureau of Statistics of China, “Resources and Environment,” (Accessed 24 FEB 2015)

  11. 11.

    Forschungsunion, “Deutschlands Zukunft als Produktionsstandort sichern: Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4.0.,” (Accessed 24 MAR 2017)

  12. 12.

    Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., et al., “Industry 4.0. The Future of Productivity and Growth in Manufacturing Industries,” Industrial Products & Processes, Technology & Digital, 2015.

    Google Scholar 

  13. 13.

    Bowles, J., “The Computerisation of European Jobs. Who Will Win and Who Will Lose from the Impact of New Technology onto Old Areas of Employment,” 10 JUN 2015)

  14. 14.

    Wolter, M. I., Mönnig, A., Hummel, M., Schneemann, C., Weber, E., et al., “Industrie 4.0 und die Folgen für Arbeitsmarkt und Wirtschaft. Szenario-Rechnungen im Rahmen der BIBB-IAB-Qualifikations-und Berufsfeldprojektionen,” IAB Forschungsbericht, pp. 1–68, 2015.

    Google Scholar 

  15. 15.

    Spath, D., Ganschar, O., Gerlach, S., Hämmerle, M., Krause, T., et al., “Produktionsarbeit der Zukunft-Industrie 4.0,” Fraunhofer Verlag Stuttgart, 2013.

    Google Scholar 

  16. 16.

    Renn, O. and Marsiske, H.-A., “Der Große Bruder Kommt als Algorithmus,” Brand Eins Wirtschaftsmagazin, Vol. 16, pp. 47–50, 2014.

    Google Scholar 

  17. 17.

    Botthof, A. and Hartmann, E. A., “Zukunft der Arbeit in Industrie 4.0,” Springer, 2014.

  18. 18.

    Duflou, J. R., Sutherland, J. W., Dornfeld, D., Herrmann, C., Jeswiet, J., et al., “Towards Energy and Resource Efficient Manufacturing: A Processes and Systems Approach,” CIRP Annals-Manufacturing Technology, Vol. 61, No. 2, pp. 587–609, 2012.

    Article  Google Scholar 

  19. 19.

    Brecher, C., Herfs, W., Heyers, C., Klein, W., Triebs, J., et al., “Ressourceneffizienz von Werkzeugmaschinen im Fokus der Forschung,” Wt Werkstattstechnik Online, Vol. 100, Nos. 7-8, pp. 559–564, 2010.

    Google Scholar 

  20. 20.

    Gu, C., Leveneur, S., Estel, L., and Yassine, A., “Modeling and Optimization of Material/Energy Flow Exchanges in an Eco-Industrial Park,” Energy Procedia, Vol. 36, pp. 243–252, 2013.

    Article  Google Scholar 

  21. 21.

    Rohn, H., Pastewski, N., Lettenmeier, M., Wiesen, K., and Bienge, K., “Resource Efficiency Potential of Selected Technologies, Products and Strategies,” The Science of the Total Environment, Vol. 473, pp. 32–35, 2014.

    Article  Google Scholar 

  22. 22.

    Meyer, B., Meyer, M., and Distelkamp, M., “Modeling Green Growth and Resource Efficiency New Results,” Mineral Economics, Vol. 24, Nos. 2-3, pp. 145–154, 2012.

    Article  Google Scholar 

  23. 23.

    Ding, K., Jiang, P., and Zheng, M., “Environmental and Economic Sustainability-Aware Resource Service Scheduling for Industrial Product Service Systems,” Journal of Intelligent Manufacturing, pp. 1–14, 2015.

    Google Scholar 

  24. 24.

    Neugebauer, R., Westkämper, E., Klocke, F., Kuhn, A., Schenk, M., et al., “Energieeffizienz in der Produktion: Untersuchung zum Handlungs-und Forschungsbedarf,” München, 2008.

    Google Scholar 

  25. 25.

    Fysikopoulos, A., Pastras, G., Alexopoulos, T., and Chryssolouris, G., “On a Generalized Approach to Manufacturing Energy Efficiency,” The International Journal of Advanced Manufacturing Technology, Vol. 73, Nos. 9-12, pp. 1437–1452, 2014.

    Article  Google Scholar 

  26. 26.

    Herrmann, C., Thiede, S., Kara, S., and Hesselbach, J., “Energy Oriented Simulation of Manufacturing Systems-Concept and Application,” CIRP Annals-Manufacturing Technology, Vol. 60, No. 1, pp. 45–48, 2011.

    Article  Google Scholar 

  27. 27.

    Schmidt, C., Li, W., Thiede, S., Kara, S., and Herrmann, C., “A Methodology for Customized Prediction of Energy Consumption in Manufacturing Industries,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 2, pp. 163–172, 2015.

    Article  Google Scholar 

  28. 28.

    Weinert, N., Chiotellis, S., and Seliger, G., “Methodology for Planning and Operating Energy-Efficient Production Systems,” CIRP Annals-Manufacturing Technology, Vol. 60, No. 1, pp. 41–44, 2011.

    Article  Google Scholar 

  29. 29.

    Bornschlegl, M., Drechsel, M., Kreitlein, S., Bregulla, M., and Franke, J., “A New Approach to Increasing Energy Efficiency by Utilizing Cyber-Physical Energy Systems,” Proc. of the 11th Workshop on Intelligent Solutions in Embedded Systems, pp. 1–6, 2013.

    Google Scholar 

  30. 30.

    Shrouf, F. and Miragliotta, G., “Energy Management Based on Internet of Things: Practices and Framework for Adoption in Production Management,” Journal of Cleaner Production, Vol. 100, pp. 235–246, 2015.

    Article  Google Scholar 

  31. 31.

    Brizzi, P., Conzon, D., Khaleel, H., Tomasi, R., Pastrone, C., et al., “Bringing the Internet of Things along the Manufacturing Line: A Case Study in Controlling Industrial Robot and Monitoring Energy Consumption Remotely,” Proc. of the IEEE 18th Conference on Emerging Technologies & Factory Automation, pp. 1–8, 2013.

    Google Scholar 

  32. 32.

    Chu, W. S., Kim, M. S., Jang, K. H., Song, J.-H., Rodriguez, H., et al., “From Design for Manufacturing (DFM) to Manufacturing for Design (MFD) Via Hybrid Manufacturing and Smart Factory: A Review and Perspective of Paradigm Shift,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 2, pp. 209–222, 2016.

    Article  Google Scholar 

  33. 33.

    Zhao, W.-B., Jeong, J.-W., Noh, S. D., and Yee, J. T., “Energy Simulation Framework Integrated with Green Manufacturing-Enabled PLM Information Model,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 3, pp. 217–224, 2015.

    Article  Google Scholar 

  34. 34.

    Bundesministerium für Bildung und Forschung, “Zukunftsbild Industrie 4.0,” _40.pdf (Accessed 20 FEB 2016)

  35. 35.

    International Federation of Robotics, “World Robotics 2015. Industrial Robots,” 23 FEB 2016)

  36. 36.

    Ford, M., “China’s Troubling Robot Revolution,” html?_r=1 (Accessed 29 FEB 2016)

Download references

Author information



Corresponding author

Correspondence to Grischa Beier.

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beier, G., Niehoff, S., Ziems, T. et al. Sustainability aspects of a digitalized industry – A comparative study from China and Germany. Int. J. of Precis. Eng. and Manuf.-Green Tech. 4, 227–234 (2017).

Download citation


  • Digitalization
  • Industrial internet
  • Industrie 4.0
  • Survey
  • Sustainability