Sustainability aspects of a digitalized industry – A comparative study from China and Germany

  • Grischa BeierEmail author
  • Silke Niehoff
  • Tilla Ziems
  • Bing Xue
Open Access
Regular Paper


Industrial production is currently undergoing a fundamental transformation, leading towards a digitalized and interconnected industrial production, which is subsumed under the term Industrial Internet (of Things) or Industrie 4.0. This paper discusses the changes that digitalization is expected to bring about in the industrial sector by comparing a highly industrialized (Germany) with a major emerging industrial economy (China). We conducted two empirical surveys asking manufacturing companies from different sectors in Germany and China respectively, how they expect the digitalization of their processes will affect them. Both questionnaires addressed the future of work in production and the future of production itself. The main contribution of this paper is its empirical investigation of how the digitalization of industry is likely to affect sustainability aspects of manufacturing companies in two countries with very different industrial structures. Our findings suggest that this transformation will not only impact the ecological dimension (resource efficiency, renewable energy), but that the technical transformation is likely to be accompanied by social transformations. The findings of this paper will help decision-makers in the political sphere to anticipate and shape pathways towards a more sustainable future in the industrial sector.


Digitalization Industrial internet Industrie 4.0 Survey Sustainability 



Total amount of given answers


  1. 1.
    Herrmann, C., Schmidt, C., Kurle, D., Blume, S., and Thiede, S., “Sustainability in Manufacturing and Factories of the Future,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 4, pp. 283–292, 2014.CrossRefGoogle Scholar
  2. 2.
    Kang, H. S., Lee, J. Y., Choi, S., Kim, H., Park, J. H., et al., “Smart Manufacturing: Past Research, Present Findings, and Future Directions,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 1, pp. 111–128, 2016.CrossRefGoogle Scholar
  3. 3.
    Mercator Institute for China Studies, “Industrie 4.0: Deutsche Technologie für Chinas Industrielle Aufholjagd,” (Accessed 24 MAR 2017)Google Scholar
  4. 4.
    International Federation of Robotics, “China Robot Boom,” (Accessed 10 AUG 2016)Google Scholar
  5. 5.
    Eurostat, “National Accounts by 10 Branches -Aggregates at Current Prices,” =nama_nace10_c&lang=en (Accessed 23 FEB 2016)Google Scholar
  6. 6.
    Eurostat, “National Accounts by 10 Branches -Employment Data,” _e&lang=en (Accessed 15 DEC 2015)Google Scholar
  7. 7.
    Eurostat, “Final Energy Consumption by Sector,” 320& plugin=1 (Accessed 15 DEC 2015)Google Scholar
  8. 8.
    Eurostat, “Greenhouse Gas Emissions by Sector,” =en&pcode=tsdcc210&plugin=1 (Accessed 10 DEC 2015)Google Scholar
  9. 9.
    European Environment Agency, “Costs of Air Pollution from European Industrial Facilities 2008-2012,” /publications/costs-of-air-pollution-2008-2012 (Accessed 29 FEB 2016)Google Scholar
  10. 10.
    National Bureau of Statistics of China, “Resources and Environment,” (Accessed 24 FEB 2015)Google Scholar
  11. 11.
    Forschungsunion, “Deutschlands Zukunft als Produktionsstandort sichern: Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4.0.,” (Accessed 24 MAR 2017)Google Scholar
  12. 12.
    Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., et al., “Industry 4.0. The Future of Productivity and Growth in Manufacturing Industries,” Industrial Products & Processes, Technology & Digital, 2015.Google Scholar
  13. 13.
    Bowles, J., “The Computerisation of European Jobs. Who Will Win and Who Will Lose from the Impact of New Technology onto Old Areas of Employment,” 10 JUN 2015)Google Scholar
  14. 14.
    Wolter, M. I., Mönnig, A., Hummel, M., Schneemann, C., Weber, E., et al., “Industrie 4.0 und die Folgen für Arbeitsmarkt und Wirtschaft. Szenario-Rechnungen im Rahmen der BIBB-IAB-Qualifikations-und Berufsfeldprojektionen,” IAB Forschungsbericht, pp. 1–68, 2015.Google Scholar
  15. 15.
    Spath, D., Ganschar, O., Gerlach, S., Hämmerle, M., Krause, T., et al., “Produktionsarbeit der Zukunft-Industrie 4.0,” Fraunhofer Verlag Stuttgart, 2013.Google Scholar
  16. 16.
    Renn, O. and Marsiske, H.-A., “Der Große Bruder Kommt als Algorithmus,” Brand Eins Wirtschaftsmagazin, Vol. 16, pp. 47–50, 2014.Google Scholar
  17. 17.
    Botthof, A. and Hartmann, E. A., “Zukunft der Arbeit in Industrie 4.0,” Springer, 2014.Google Scholar
  18. 18.
    Duflou, J. R., Sutherland, J. W., Dornfeld, D., Herrmann, C., Jeswiet, J., et al., “Towards Energy and Resource Efficient Manufacturing: A Processes and Systems Approach,” CIRP Annals-Manufacturing Technology, Vol. 61, No. 2, pp. 587–609, 2012.CrossRefGoogle Scholar
  19. 19.
    Brecher, C., Herfs, W., Heyers, C., Klein, W., Triebs, J., et al., “Ressourceneffizienz von Werkzeugmaschinen im Fokus der Forschung,” Wt Werkstattstechnik Online, Vol. 100, Nos. 7-8, pp. 559–564, 2010.Google Scholar
  20. 20.
    Gu, C., Leveneur, S., Estel, L., and Yassine, A., “Modeling and Optimization of Material/Energy Flow Exchanges in an Eco-Industrial Park,” Energy Procedia, Vol. 36, pp. 243–252, 2013.CrossRefGoogle Scholar
  21. 21.
    Rohn, H., Pastewski, N., Lettenmeier, M., Wiesen, K., and Bienge, K., “Resource Efficiency Potential of Selected Technologies, Products and Strategies,” The Science of the Total Environment, Vol. 473, pp. 32–35, 2014.CrossRefGoogle Scholar
  22. 22.
    Meyer, B., Meyer, M., and Distelkamp, M., “Modeling Green Growth and Resource Efficiency New Results,” Mineral Economics, Vol. 24, Nos. 2-3, pp. 145–154, 2012.CrossRefGoogle Scholar
  23. 23.
    Ding, K., Jiang, P., and Zheng, M., “Environmental and Economic Sustainability-Aware Resource Service Scheduling for Industrial Product Service Systems,” Journal of Intelligent Manufacturing, pp. 1–14, 2015.Google Scholar
  24. 24.
    Neugebauer, R., Westkämper, E., Klocke, F., Kuhn, A., Schenk, M., et al., “Energieeffizienz in der Produktion: Untersuchung zum Handlungs-und Forschungsbedarf,” München, 2008.Google Scholar
  25. 25.
    Fysikopoulos, A., Pastras, G., Alexopoulos, T., and Chryssolouris, G., “On a Generalized Approach to Manufacturing Energy Efficiency,” The International Journal of Advanced Manufacturing Technology, Vol. 73, Nos. 9-12, pp. 1437–1452, 2014.CrossRefGoogle Scholar
  26. 26.
    Herrmann, C., Thiede, S., Kara, S., and Hesselbach, J., “Energy Oriented Simulation of Manufacturing Systems-Concept and Application,” CIRP Annals-Manufacturing Technology, Vol. 60, No. 1, pp. 45–48, 2011.CrossRefGoogle Scholar
  27. 27.
    Schmidt, C., Li, W., Thiede, S., Kara, S., and Herrmann, C., “A Methodology for Customized Prediction of Energy Consumption in Manufacturing Industries,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 2, pp. 163–172, 2015.CrossRefGoogle Scholar
  28. 28.
    Weinert, N., Chiotellis, S., and Seliger, G., “Methodology for Planning and Operating Energy-Efficient Production Systems,” CIRP Annals-Manufacturing Technology, Vol. 60, No. 1, pp. 41–44, 2011.CrossRefGoogle Scholar
  29. 29.
    Bornschlegl, M., Drechsel, M., Kreitlein, S., Bregulla, M., and Franke, J., “A New Approach to Increasing Energy Efficiency by Utilizing Cyber-Physical Energy Systems,” Proc. of the 11th Workshop on Intelligent Solutions in Embedded Systems, pp. 1–6, 2013.Google Scholar
  30. 30.
    Shrouf, F. and Miragliotta, G., “Energy Management Based on Internet of Things: Practices and Framework for Adoption in Production Management,” Journal of Cleaner Production, Vol. 100, pp. 235–246, 2015.CrossRefGoogle Scholar
  31. 31.
    Brizzi, P., Conzon, D., Khaleel, H., Tomasi, R., Pastrone, C., et al., “Bringing the Internet of Things along the Manufacturing Line: A Case Study in Controlling Industrial Robot and Monitoring Energy Consumption Remotely,” Proc. of the IEEE 18th Conference on Emerging Technologies & Factory Automation, pp. 1–8, 2013.Google Scholar
  32. 32.
    Chu, W. S., Kim, M. S., Jang, K. H., Song, J.-H., Rodriguez, H., et al., “From Design for Manufacturing (DFM) to Manufacturing for Design (MFD) Via Hybrid Manufacturing and Smart Factory: A Review and Perspective of Paradigm Shift,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 2, pp. 209–222, 2016.CrossRefGoogle Scholar
  33. 33.
    Zhao, W.-B., Jeong, J.-W., Noh, S. D., and Yee, J. T., “Energy Simulation Framework Integrated with Green Manufacturing-Enabled PLM Information Model,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 3, pp. 217–224, 2015.CrossRefGoogle Scholar
  34. 34.
    Bundesministerium für Bildung und Forschung, “Zukunftsbild Industrie 4.0,” _40.pdf (Accessed 20 FEB 2016)Google Scholar
  35. 35.
    International Federation of Robotics, “World Robotics 2015. Industrial Robots,” 23 FEB 2016)Google Scholar
  36. 36.
    Ford, M., “China’s Troubling Robot Revolution,” html?_r=1 (Accessed 29 FEB 2016)Google Scholar

Copyright information

© Korean Society for Precision Engineering 2017

Authors and Affiliations

  • Grischa Beier
    • 1
    Email author
  • Silke Niehoff
    • 1
  • Tilla Ziems
    • 1
  • Bing Xue
    • 1
    • 2
  1. 1.Institute for Advanced Sustainability Studies E. V.PotsdamGermany
  2. 2.Key Lab of Pollution, Ecology and Environmental Engineering, Institute of Applied EcologyChinese Academy of SciencesShenyangChina

Personalised recommendations