Skip to main content

From design for manufacturing (DFM) to manufacturing for design (MFD) via hybrid manufacturing and smart factory: A review and perspective of paradigm shift

Abstract

Manufacturing paradigms have historically been shaped by social, economic, and technological aspect, including limitations and needs. Design for manufacturing (DFM) has been the main paradigm for last three decades since design is defined by the limitations of available manufacturing processes. Since reducing the time required for the development of new products has been one of the key issues for businesses, removing the gap between designers and manufacturers has been one of today’s main goals. Many methods were developed to reduce this gap including information and communication technologies (ICT). However, current issues have been shifting towards design-related issues such that researchers have been trying to make products desired by the customers rather than that which is cheaper to manufacture. In this article, hybrid manufacturing (HM) and the concept of smart factory are introduced as key technologies for the future paradigm of manufacturing: Manufacturing for Design (MFD). Issues related to the development of HM process and examples of HM process are explained, and the importance of smart factories for the implementation of MFD is shown. Finally, future trends of HM and smart factory are predicted at the end of this article.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Pahl, G. and Beitz, W., “Engineering Design: A Systematic Approach,” Springer, 2nd Ed., 1996.

    Book  Google Scholar 

  2. 2.

    Bralla, J. G., “Design for Excellence,” McGraw-Hill, 1996.

    Google Scholar 

  3. 3.

    Apple, “Environmental Responsibility, Product Reports,” http://www.apple.com/environment/reports/(Accessed 28 March 2016)

    Google Scholar 

  4. 4.

    Zhu, Z., Dhokia, V. G., Nassehi, A., and Newman, S. T., “A Review of Hybrid Manufacturing Processes-State of the Art and Future Perspectives,” International Journal of Computer Integrated Manufacturing, Vol. 26, No. 7, pp. 596–615, 2013.

    Article  Google Scholar 

  5. 5.

    Swift, K. and Booker, J., “Process Selection: From Design to Manufacture,” Butterworth-Heinemann, 2nd Ed., pp. 1–13, 2003.

    Book  Google Scholar 

  6. 6.

    Nassehi, A., Newman, S., Dhokia, V., Zhu, Z., and Asrai, R., “Using Formal Methods to Model Hybrid Manufacturing Processes,” in: Enabling Manufacturing Competitiveness and Economic Sustainability, ElMaraghy, H. A. (Ed.), Springer Berlin Heidelberg, pp. 52–56, 2012.

    Chapter  Google Scholar 

  7. 7.

    Kozak, J. and Rajurkar, K. P., “Hybrid Machining Process Evaluation and Eevelopment,” Proc. of Machining and Measurements of Sculptured Surfaces the 2nd International Conference, pp. 20–22, 2000.

    Google Scholar 

  8. 8.

    Menzies, I. and Koshy, P., “Assessment of Aabrasion-Assisted Material Removal in Wire EDM,” CIRP Annals-Manufacturing Technology, Vol. 57, No. 1, pp. 195–198, 2008.

    Article  Google Scholar 

  9. 9.

    Rivette, M., Hacoët, J. Y., and Mognol, P., “A Graph-Based Methodology for Hybrid Rapid Design,” Proc. of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 221, No. 4, pp. 685–697, 2007.

    Article  Google Scholar 

  10. 10.

    Dandekar, C. R., Shin, Y. C., and Barnes, J., “Machinability Improvement of Titanium Alloy (Ti-6Al-4V) via LAM and Hybrid Machining,” International Journal of Machine Tools and Manufacture, Vol. 50, No. 2, pp. 174–182, 2010.

    Article  Google Scholar 

  11. 11.

    Molian, R., Neumann, C., Shrotriya, P., and Molian, P., “Novel Laser/Water-Jet Hybrid Manufacturing Process for Cutting Ceramics,” Journal of Manufacturing Science and Engineering, Vol. 130, No. 3, pp. 1008.1–1008.11, 2008.

    Article  Google Scholar 

  12. 12.

    Araghi, B. T., Manco, G. L., Bambach, M., and Hirt, G., “Investigation into a New Hybrid Forming Process: Incremental Sheet Forming Combined with Stretch Forming,” CIRP Annals-Manufacturing Technology, Vol. 58, No. 1, pp. 225–228, 2009.

    Article  Google Scholar 

  13. 13.

    She, C. H. and Hung, C. W., “Development of Multi-Axis Numerical Control Program for Mill-Turn Machine,” Proc. of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 222, No. 6, pp. 741–745, 2008.

    Article  Google Scholar 

  14. 14.

    Roderburg, A., Gerhardt, K., Hinke, C., Hong-Seok, P., Buchholz, S., et al., “Design Methodology for Innovative Hybrid Manufacturing Technologies,” Proc. of 17th International Conference: Concurrent Enterprising (ICE), pp. 1–9, 2011.

    Google Scholar 

  15. 15.

    Holtkamp, J., Roesner, A., and Gillner, A., “Advances in Hybrid Laser Joining,” The International Journal of Advanced Manufacturing Technology, Vol. 47, No. 9–12, pp. 923–930, 2010.

    Article  Google Scholar 

  16. 16.

    Rajurkar, K. P., Zhu, D., McGeough, J. A., Kozak, J., and De Silva, A., “New Developments in Electro-Chemical Machining,” CIRP Annals-Manufacturing Technology, Vol. 48, No. 2, pp. 567–579, 1999.

    Article  Google Scholar 

  17. 17.

    Curtis, D. T., Soo, S. L., Aspinwall, D. K., and Sage, C., “Electrochemical Superabrasive Machining of a Nickel-Based Aeroengine Alloy Using Mounted Grinding Points,” CIRP Annals-Manufacturing Technology, Vol. 58, No. 1, pp. 173–176, 2009.

    Article  Google Scholar 

  18. 18.

    Nau, B., Roderburg, A., and Klocke, F., “Ramp-Up of Hybrid Manufacturing Technologies,” CIRP Journal of Manufacturing Science and Technology, Vol. 4, No. 3, pp. 313–316, 2011.

    Article  Google Scholar 

  19. 19.

    Lauwers, B., Klocke, F., and Klink, A., “Advanced Manufacturing through the Implementation of Hybrid and Media Assisted Processes,” Proc. of International Chemnitz Manufacturing Colloquium, Vol. 54, pp. 205–220, 2010.

    Google Scholar 

  20. 20.

    Klocke, F., Roderburg, A., and Zeppenfeld, C., “Design Methodology for Hybrid Production Processes,” Procedia Engineering, Vol. 9, pp. 417–430, 2011.

    Article  Google Scholar 

  21. 21.

    Chu, W. S., Kim, C. S., Lee, H. T., Choi, J. O., Park, J. I., et al., “Hybrid Manufacturing in Micro/Nano Scale: A Review,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 1, pp. 75–92, 2014.

    Article  Google Scholar 

  22. 22.

    Fessler, J. R., Merz, R., Nickel, A. H., Prinz, F. B., and Weiss, L. E., “Laser Deposition of Metals for Shape Deposition Manufacturing,” Proc. of the Solid Freeform Fabrication Symposium, pp. 117–124, 1996.

    Google Scholar 

  23. 23.

    Weiss, L., Prinz, F. B., and Siewiork, D. P., “A Framework for Thermal Spray Shape Deposition: The MD* System,” Proc. of Solid Freeform Fabrication Symposium, pp. 178–186, 1991.

    Google Scholar 

  24. 24.

    Fessler, J. R., Nickel, A. H., Link, G., Prinz, F. B., and Fussell, P., “Functional Gradient Metallic Prototypes through Shape Deposition Manufacturing,” Proc. of the Solid Freeform Fabrication Symposium, pp. 521–528, 1997.

    Google Scholar 

  25. 25.

    Kietzman, J., “Rapid Prototyping Polymer Parts via Shape Deposition Manufacturing,” Ph.D. Thesis, Department of Mechenical Engineering, Stanford University, 1999.

    Google Scholar 

  26. 26.

    Pinilla, J. M., “Retaining Flexibility in Process Planning: Applications to Shape Deposition Manufacturing,” Ph. D. Thesis, Department of Mechenical Engineering, Stanford University, 2001.

    Google Scholar 

  27. 27.

    Chu, W. S., Kim, S. G., Ung, W. K., Kim, H., and Ahn, S. H., “Fabrication of Micro Parts Using Nano Composite Deposition System,” Rapid Prototyping Journal, Vol. 13, No. 5, pp. 276–283, 2007.

    Article  Google Scholar 

  28. 28.

    Ahn, J. W., Woo, W. S., and Lee, C. M., “A Study on the Energy, Efficiency of Specific Cutting Energy in Laser-Assisted Machining,” Applied Thermal Engineering, Vol. 94, pp. 748–753, 2016.

    Article  Google Scholar 

  29. 29.

    Jeon, Y., Park, H. W., and Lee, C. M., “Current Research Trends in External Energy Assisted Machining,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 2, pp. 337–342, 2013.

    Article  Google Scholar 

  30. 30.

    Jeon, Y. and Lee, C. M., “Current Research Trend on Laser Assisted Machining,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 2, pp. 311–317, 2012.

    Article  Google Scholar 

  31. 31.

    Choi, J. Y. and Lee, C. M., “Evaluation of Cutting Force and Surface Temperature for Round and Square Member in Laser Assisted Turn-Mill,” Applied Mechanics and Materials, Vols. 229–231, pp. 718–722, 2012.

    Article  Google Scholar 

  32. 32.

    Kang, D. W. and Lee, C. M., “A Study on the Development of the Laser-Assisted Milling Process and a Related Constitutive Equation for Silicon Nitride,” CIRP Annals-Manufacturing Technology, Vol. 63, No. 1, pp. 109–112, 2014.

    Article  Google Scholar 

  33. 33.

    Lei, S., Shin, Y. C., and Incropera, F. P., “Deformation Mechanisms and Constitutive Modeling for Silicon Nitride Undergoing Laser-Assisted Machining,” International Journal of Machine Tools Manufacture, Vol. 40, No. 15, pp. 2213–2233, 2000.

    Article  Google Scholar 

  34. 34.

    Pfefferkorn, F. E., Incropera, F. P., and Shin, Y. C., “Heat Transfer Model of Semi-Transparent Ceramics Undergoing Laser-Assisted Machining,” International Journal of Heat and Mass Transfer, Vol. 48, No. 10, pp. 1999–2012, 2005.

    Article  Google Scholar 

  35. 35.

    Dumitrescu, P., Koshy, P., Stenekes, J., and Elbestawi, M. A., “High-Power Diode Laser Assisted Hard Turning of AISI D2 Tool Steel,” International Journal of Machine Tools Manufacture, Vol. 46, No. 15, pp. 2009–2016, 2006.

    Article  Google Scholar 

  36. 36.

    Chang, C. W. and Kuo, C. P., “An Investigation of Laser-Assisted Machining of Al2O3 Ceramics Planing,” International Journal of Machine Tools Manufacture, Vol. 47, No. 3–4, pp. 452–461, 2007.

    Article  Google Scholar 

  37. 37.

    Sun, S., Harris, J., and Brandt, M., “Parametric Investigation of Laser-Assisted Machining of Commercially Pure Titanium,” Advanced Engineering Materials, Vol. 10, No. 6, pp. 565–752, 2008.

    Article  Google Scholar 

  38. 38.

    Attia, H., Tavakoli, S., Vargas, R., and Thomson, V., “Laser-Assisted High-Speed Finish Turning of Superalloy Inconel 718 under Dry Conditions,” CIRP Annals-Manufacturing Technology, Vol. 59, No. 1, pp. 83–88, 2010.

    Article  Google Scholar 

  39. 39.

    Navas, G. V., Arriola, I., Gonzalo, O., and Leunda, J., “Mechanisms Involved in the Improvement of Inconel 718 Machinability by Laser Assisted Machining (LAM),” International Journal of Machine Tools Manufacture, Vol. 74, pp. 19–28, 2013.

    Article  Google Scholar 

  40. 40.

    Shen, X. and Lei, S., “Experimental Study on Operating Temperature in Laser-Assisted Milling of Silicon Nitride Ceramics,” International Journal of Advanced Manufacturing Technology, Vol. 52, No. 1, pp. 143–154, 2011.

    Article  Google Scholar 

  41. 41.

    Brecher, C., Rosen, C., and Emonts, M., “Laser-Assisted Milling of Advanced Materials,” Physics Procedia, Vol. 5, Part. 2, pp. 259–272, 2010.

    Article  Google Scholar 

  42. 42.

    Wiedenmann, R., Leibl, S., and Zahe, M. F., “Influencing Factors and Workpiece’s Microstructure in Laser-Assisted Milling of Titanium,” Physics Procedia, Vol. 39, pp. 265–276, 2012.

    Article  Google Scholar 

  43. 43.

    Bermingham, M. J., Schaffarzyk, P., Palanisamy, S., and Dargusch, M. S., “Laser-Assisted Milling Strategies with Different Cutting Paths,” International Journal of Advanced Manufacturing Technology, Vol. 74, No. 9, pp. 1487–1494, 2014.

    Article  Google Scholar 

  44. 44.

    Kumar, M. and Melkote, S. N., “Process Capability Study of Laser Assisted Micro Milling of a Hard-to-Machine Material,” Journal of Manufacturing Processes, Vol. 14, No. 1, pp. 41–51, 2012.

    Article  Google Scholar 

  45. 45.

    Tian, Y., Wu, B., Anderson, M., and Shin, Y. C., “Laser-Assisted Milling of Silicon Nitride Ceramics and Inconel 718,” Journal of Manufacturing Science and Engineering, Vol. 130, No. 3, Paper No. 031013, 2008.

    Article  Google Scholar 

  46. 46.

    Shelton, J. and Shin, Y. C., “Comparative Evaluation of Laser-Assisted Micro-Milling for AISI 316, AISI 422, TI-6AL-4V and Inconel 718 in a Side-Cutting Configuration,” Journal of Micromechanics and Microengineering, Vol. 20, No. 7, Paper No. 075012, 2010.

    Article  Google Scholar 

  47. 47.

    Cha, N. H., Woo, W. S., and Lee, C. M., “A Study on the Optimum Machining Conditions for Laser-Assisted Turn-Mill,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 11, pp. 2327–2332, 2015.

    Article  Google Scholar 

  48. 48.

    Cha, N. H. and Lee, C. M., “A Study on Machining Characteristics of Silicon Nitride with Spline Members in Laser-Assisted Turn-Mill,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 13, pp. 2691–2697, 2015.

    Article  Google Scholar 

  49. 49.

    Kim, D. H. and Lee, C. M., “Development of a One-Axis Manipulator for Laser-Assisted Machining,” Journal of Central South University, Vol. 20, No. 2, pp. 378–384, 2013.

    Article  Google Scholar 

  50. 50.

    Kim, D. H. and Lee, C. M., “A Study of Cutting Force and Preheating-Temperature Prediction for Laser-Assisted Milling of Inconel 718 and AISI 1045 Steel,” International Journal of Heat and Mass Transfer, Vol. 71, pp. 264–274, 2014.

    Article  Google Scholar 

  51. 51.

    Kim, T. W. and Lee, C. M., “Determination of the Machining Parameters of Nickel-Based Alloys by High-Power Diode Laser,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 2, pp. 309–314, 2015.

    Article  Google Scholar 

  52. 52.

    Woo, W. S. and Lee, C. M., “A Study of the Machining Characteristics of AISI 1045 Steel and Inconel 718 with a Cylindrical Shape in Laser-Assisted Milling,” Applied Thermal Engineering, Vol. 91, pp. 33–42, 2015.

    Article  Google Scholar 

  53. 53.

    Wüthrich, R. and Fascio, V., “Machining of Non-Conducting Materials Using Electrochemical Discharge Phenomenon: An Overview,” International Journal of Machine Tools and Manufacture, Vol. 45, No. 9, pp. 1095–1108, 2005.

    Article  Google Scholar 

  54. 54.

    Zheng, Z. P., Cheng, W. H., Huang, F. Y., and Yan, B. H., “3D Microstructuring of Pyrex Glass Using the Electrochemical Discharge Machining Process,” Journal of Micromechanics Microengineering, Vol. 17, No. 5, pp. 960–966, 2007.

    Article  Google Scholar 

  55. 55.

    Cao, X. D., Kim, B. H., and Chu, C. N., “Micro-Structuring of Glass with Features Less than 100 μm by Electrochemical Discharge Machining,” Precision Engineering, Vol. 33, No. 4, pp. 459–465, 2009.

    Article  Google Scholar 

  56. 56.

    Cao, X. D., Kim, B. H., and Chu, C. N., “Hybrid Micromachining of Glass Using ECDM and Micro Grinding,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 1, pp. 5–10, 2013.

    Article  Google Scholar 

  57. 57.

    Nguyen-Tran, H.-D., Oh, H. S., Hong, S. T., Han, H. N., Cao, J., et al., “A Review of Electrically-Assisted Manufacturing,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 4, pp. 365–376, 2015.

    Article  Google Scholar 

  58. 58.

    Baranov, S. A., Staschenko, V. I., Sukhov, A. V., Troitskiy, O. A., and Tyapkin, A. V., “Electroplastic Metal Cutting,” Russian Electrical Engineering, Vol. 82, No. 9, pp. 477–479, 2011.

    Article  Google Scholar 

  59. 59.

    Ross, C. D., Kronenberger, T. J., and Roth, J. T., “Effect of DC on the Formability of Ti-6Al-4V,” Journal of Engineering Materials and Technology, Vol. 131, No. 3, Paper No. 031004, 2009.

    Article  Google Scholar 

  60. 60.

    Jones, J. J., Mears, L., and Roth, J. T., “Electrically-Assisted Forming of Magnesium AZ31: Effect of Current Magnitude and Deformation Rate on Forgeability,” Journal of Manufacturing Science and Engineering, Vol. 134, No. 3, Paper No. 034504, 2012.

    Article  Google Scholar 

  61. 61.

    Bunget, C., Salandro, W., Mears, L., and Roth, J. T., “Energy-Based Modeling of an Electrically-Assisted Forging Process,” Transactions of the North American Manufacturing Research Institution of SME, Vol. 38, pp. 647–654, 2010.

    Google Scholar 

  62. 62.

    Xu, Z., Tang, G., Tian, S., Ding, F., and Tian, H., “Research of Electroplastic Rolling of AZ31 Mg Alloy Strip,” Journal of Materials Processing Technology, Vol. 182, No. 1–3, pp. 128–133, 2007.

    Article  Google Scholar 

  63. 63.

    Lu, Y., Qu, T., Zeng, P., Lei, L., Fang, G., et al., “The Influence of Electroplastic Rolling on the Mechanical Deformation and Phase Evolution of Bi-2223/Ag Tapes,” Journal of Materials Science, Vol. 45, No. 13, pp. 3514–3519, 2010.

    Article  Google Scholar 

  64. 64.

    Zhu, R., Tang, G., Shi, S., and Fu, M., “Effect of Electroplastic Rolling on Deformability and Oxidation of Nitinb Shape Memory Alloy,” Journal of Materials Processing Technology, Vol. 213, No. 1, pp. 30–35, 2013.

    Article  Google Scholar 

  65. 65.

    Zhu, R., Tang, G., Shi, S., and Fu, M., “Effect of Electroplastic Rolling on the Ductility and Superelasticity of TiNi Shape Memory Alloy,” Materials & Design, Vol. 44, pp. 606–611, 2013.

    Article  Google Scholar 

  66. 66.

    Ng, M.-K., Fan, Z., Gao, R. X., Smith, E. F., and Cao, J., “Characterization of Electrically-Assisted Micro-Rolling for Surface Texturing Using Embedded Sensor,” CIRP Annals-Manufacturing Technology, Vol. 63, No. 1, pp. 269–272, 2014.

    Article  Google Scholar 

  67. 67.

    Tang, G., Zhang, J., Zheng, M., Zhang, J., Fang, W., et al., “Experimental Study of Electroplastic Effect on Stainless Steel Wire 304L,” Materials Science and Engineering: A, Vol. 281, No. 1, pp. 263–267, 2000.

    Article  Google Scholar 

  68. 68.

    Yao, K.-F., Wang, J., Zheng, M., Yu, P., and Zhang, H., “A Research on Electroplastic Effects in Wire-Drawing Process of an Austenitic Stainless Steel,” Scripta Materialia, Vol. 45, No. 5, pp. 533–539, 2001.

    Article  Google Scholar 

  69. 69.

    Tang, G., Zhang, J., Yan, Y., Zhou, H., and Fang, W., “The Engineering Application of the Electroplastic Effect in the Cold-Drawing of Stainless Steel Wire,” Journal of Materials Processing Technology, Vol. 137, No. 1, pp. 96–99, 2003.

    Article  Google Scholar 

  70. 70.

    Zimniak, Z. and Radkiewicz, G., “The Electroplastic Effect in the Cold-Drawing of Copper Wires for the Automotive Industry,” Archives of Civil and Mechanical Engineering, Vol. 8, No. 2, pp. 173–179, 2008.

    Article  Google Scholar 

  71. 71.

    Stashenko, V., Troitskii, O., and Novikova, N., “Electroplastic Drawing of a Cast-Iron Wire,” Journal of Machinery Manufacture and Reliability, Vol. 38, No. 2, pp. 182–184, 2009.

    Article  Google Scholar 

  72. 72.

    Stashenko, V., Troitskii, O., and Novikova, N., “Electroplastic Drawing Medium-Carbon Steel,” Journal of Machinery Manufacture and Reliability, Vol. 38, No. 4, pp. 369–372, 2009.

    Article  Google Scholar 

  73. 73.

    Wang, S., “Effect of Electric Pulses on Drawability and Corrosion Property of AZ31 Magnesium Alloy,” M.Sc. Thesis, Materials Science and Engineering, Tsinghua University, 2009.

    Google Scholar 

  74. 74.

    Mai, J., Peng, L., Lai, X., and Lin, Z., “Electrical-Assisted Embossing Process for Fabrication of Micro-Channels on 316l Stainless Steel Plate,” Journal of Materials Processing Technology, Vol. 213, No. 2, pp. 314–321, 2013.

    Article  Google Scholar 

  75. 75.

    Kim, W., Yeom, K.-H., Thien, N. T., Hong, S.-T., Min, B.-K., et al., “Electrically Assisted Blanking Using the Electroplasticity of Ultra-High Strength Metal Alloys,” CIRP Annals-Manufacturing Technology, Vol. 63, No. 1, pp. 273–276, 2014.

    Article  Google Scholar 

  76. 76.

    Jones, J. J. and Mears, L., “A Process Comparison of Simple Stretch Forming Using both Conventional and Electrically-Assisted Forming Techniques,” Proc. of ASME International Manufacturing Science and Engineering Conference, pp. 623–631, 2010.

    Google Scholar 

  77. 77.

    Cao, J., Xia, Z. C., Gutowski, T. G., and Roth, J., “A Hybrid Forming System: Electrical-Assisted Double Side Incremental Forming (EADSIF) Process for Enhanced Formability and Geometrical Flexibility,” Northwestern University, Document ID: DE-EE0003460, 2012.

    Google Scholar 

  78. 78.

    Asghar, J. and Reddy, N., “Importance of Tool Configuration in Incremental Sheet Metal Forming of Difficult to Form Materials Using Electro-Plasticity,” Proc. of the World Congress on Engineering, Vol. 3, 2013.

  79. 79.

    Ferrando, W. A., “The Concept of Electrically Assisted Friction Stir Welding (EAFSW) and Application to the Processing of Various Metals,” DTIC Document, Accession No. ADA487963, 2008.

    Google Scholar 

  80. 80.

    Pitschman, M., Dolecki, J. W., Johns, G. W., Zhou, J., and Roth, J. T., “Application of Electric Current in Friction Stir Welding,” Proc. of ASME International Manufacturing Science and Engineering Conference, pp. 185–189, 2010.

    Google Scholar 

  81. 81.

    Potluri, H., Jones, J. J., and Mears, L., “Comparison of Electrically-Assisted and Conventional Friction Stir Welding Processes by Feed Force and Torque,” Proc. of ASME International Manufacturing Science and Engineering Conference Collocated with the 41st North American Manufacturing Research Conference, Paper No. MSEC2013-1192, 2013.

    Google Scholar 

  82. 82.

    Xu, Z. T., Peng, L. F., Yi, P. Y., and Lai, X. M., “Study on a Novel Electrical-Assisted Pressure Welding Process of Thin Metallic Foils,” Applied Mechanics and Materials, Vols. 271–272, pp. 147–151, 2013.

    Google Scholar 

  83. 83.

    Cho, Y. T., Cho, W. I., and Na, S. J., “Numerical Analysis of Hybrid Plasma Generated by Nd: YAG Laser and Gas Tungsten ARC,” Optics & Laser Technology, Vol. 43, No. 3, pp. 711–720, 2011.

    Article  Google Scholar 

  84. 84.

    Cho, Y. T. and Na, S. J., “Numerical Analysis of Plasma in CO2 Laser and ARC Hybrid Welding,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 4, pp. 787–795, 2015.

    Article  Google Scholar 

  85. 85.

    Hong, S., Yeo, J., Lee, J., Lee, H., Lee, P., et al., “Selective Laser Direct Patterning of Metal Nanowire Percolation Network Transparent Conductor for Capacitive Touch Panel Applications,” Journal of Nanoscience and Nanotechnology, Vol. 15, No. 3, pp. 2317–2323, 2015.

    Article  Google Scholar 

  86. 86.

    Han, S., Hong, S., Kang, B., Yang, M.-Y., and Ko, S. H., “Nano-Recycling: Monolithic Integration of Copper and Copper Oxide Nanowire Network Electrode through Selective Reversible Photo-Thermo-Chemical Reduction,” Advanced Materials, Vol. 27, No. 41, pp. 6397–6403, 2015.

    Article  Google Scholar 

  87. 87.

    Yeo, J., Hong, S., Kim, G., Park, I., Grigoropoulos, C. P., et al., “Laser Induced Hydrothermal Growth of Heterogeneous Metal-Oxide Nanowire on Flexible Substrate by Laser Absorption Layer Design,” ACS Nano, Vol. 9, No. 6, pp. 6059–6068, 2015.

    Article  Google Scholar 

  88. 88.

    Yeo, J., Hong, S., Manorotkul, W., Suh, Y. D., Lee, J., et al., “Digital 3D Local Growth of Iron Oxide Micro-And Nanorods by Laser-Induced Photothermal Chemical Liquid Growth,” The Journal of Physical Chemistry C, Vol. 118, No. 28, pp. 15448–15454, 2014.

    Article  Google Scholar 

  89. 89.

    Han, S., Hong, S., Ham, J., Yeo, J., Lee, J., et al., “Fast Plasmonic Laser Nanowelding for a Cu-Nanowire Percolation Network for Flexible Transparent Conductors and Stretchable Electronics,” Advanced Materials, Vol. 26, No. 33, pp. 5808–5814, 2014.

    Article  Google Scholar 

  90. 90.

    An, K., Hong, S., Han, S., Lee, H., Yeo, J., et al., “Selective Sintering of Metal Nanoparticle Ink for Maskless Fabrication of Electrode Micropattern Using Spatially Modulated Laser Beam by a Digital Micromirror Device,” ACS Applied Materials & Interfaces, Vol. 6, No. 4, pp. 2786–2790, 2014.

    Article  Google Scholar 

  91. 91.

    Yeo, J., Kim, G., Hong, S., Kim, M. S., Kim, D., et al., “Flexible Supercapacitor Fabrication by Room Temperature Rapid Laser Processing of Roll-to-Roll Printed Metal Nanoparticle Ink for Wearable Electronics Application,” Journal of Power Sources, Vol, 246, pp. 562–568, 2014.

    Article  Google Scholar 

  92. 92.

    Hong, S., Yeo, J., Kim, G., Kim, D., Lee, H., et al., “Nonvacuum, Maskless Fabrication of a Flexible Metal Grid Transparent Conductor by Low-Temperature Selective Laser Sintering of Nanoparticle Ink,” ACS Nano, Vol. 7, No. 6, pp. 5024–5031, 2013.

    Article  Google Scholar 

  93. 93.

    Yeo, J., Hong, S., Lee, D., Hotz, N., Lee, M. T., et al., “Next Generation Non-Vacuum, Maskless, Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics,” PLOS ONE, Vol. 7, No. 8, Paper No. e42315, 2012.

    Article  Google Scholar 

  94. 94.

    Son, Y., Yeo, J., Ha, C. W., Lee, J., Hong, S. J., et al., “Application of the Specific Thermal Properties of Ag Nanoparticles to High-Resolution Metal Patterning,” Thermochimica Acta, Vol. 542, pp. 52–56, 2012.

    Article  Google Scholar 

  95. 95.

    Son, Y., Yeo, J., Moon, H., Lim, T. W., Nam, K. H., et al., “Nanoscale Electronics: Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles,” Advanced Materials, Vol. 23, No. 28, pp. 3176–3181, 2011.

    Article  Google Scholar 

  96. 96.

    Ko, S. H., Pan, H., Lee, D., Grigoropoulos, C. P., and Park, H. K., “Nanoparticle Selective Laser Processing for a Flexible Display Fabrication,” Japanese Journal of Applied Physics, Vol. 49, No. 5S1, Paper No. 05EC03, 2010.

    Google Scholar 

  97. 97.

    Ko, S. H., Pan, H., Ryu, S. G., Misra, N., Grigoropoulos, C. P., et al., “Nanomaterial Enabled Laser Transfer for Organic Light Emitting Material Direct Writing,” Applied Physics Letters, Vol. 93, Paper No. 151110, 2008.

    Article  Google Scholar 

  98. 98.

    Ko, S. H., Pan, H., Grigoropoulos, C. P., Luscombe, C. K., Fréchet, J. M. J., et al., “Lithography-Free High-Resolution Organic Transistors on Polymer Substrate by Low Temperature Selective Laser Ablation of Inkjet Printed Nanoparticle Film,” Applied Physics A, Vol. 92, No. 3, pp. 579–587, 2008.

    Article  Google Scholar 

  99. 99.

    Ko, S. H., Pan, H., Hwang, D. J., Ryu, S. G., Chung, J., et al., “High Resolution Selective Multilayer Laser Processing by Nanosecond Laser Ablation of Metal Nanoparticle Films,” Journal of Applied Physics, Vol. 102, Paper No. 093102, 2007.

    Article  Google Scholar 

  100. 100.

    Ko, S. H., Choi, Y., Hwang, D., Chung, J., Grigoropoulos, C. P., et al., “Nanosecond Laser Ablation of Gold Nanoparticle Films,” Applied Physics Letters, Vol. 89, Paper No. 141126, 2006.

    Article  Google Scholar 

  101. 101.

    Lim, H., Lee, M., Kim, P., and Jeong, S., “Laser Shock Peening of AISI 304 Stainless Steel for the Application to Seawater Desalination Pump Components,” Desalination and Water Treatment, Vol. 33, No. 1–3, pp. 255–260, 2011.

    Article  Google Scholar 

  102. 102.

    Lim, H., Kim, P., Jeong, H., and Jeong, S., “Enhancement of Abrasion and Corrosion Resistance of Duplex Stainless Steel by Laser Shock Peening,” Journal of Materials Processing Technology, Vol. 212, No. 6, pp. 1347–1354, 2012.

    Article  Google Scholar 

  103. 103.

    Jeong, S., Yeo, I. K., Lim, H. T., and Kim, J., “Laser Shock Peening of Duplex Stainless Steel in Comparison with Other Methods of Surface Treatment,” Review of Laser Engineering, Vol. 42, No. 6, pp. 472–476, 2014.

    Google Scholar 

  104. 104.

    Guo, Y., Sealy, M. P., and Guo, C., “Significant Improvement of Corrosion Resistance of Biodegradable Metallic Implants Processed by Laser Shock Peening,” CIRP Annals-Manufacturing Technology, Vol. 61, No. 1, pp. 583–586, 2012.

    Article  Google Scholar 

  105. 105.

    Carreon, H., Barriuso, S., Porro, J. A., Gonzalez-Carrasco, J. L., and Ocana, J. L., “Characterization of Laser Peening-Induced Effects on a Biomedical Ti6Al4V Alloy by Thermoelectric Means,” Optical Engineering, Vol. 53, No. 12, Paper No. 122502, 2014.

    Article  Google Scholar 

  106. 106.

    Kim, K. K., Hong, S., Cho, H. M., Lee, J., Suh, Y. D., et al., “Highly Sensitive and Stretchable Multi-Dimensional Strain Sensor with Prestrained Anisotropic Metal Nanowire Percolation Networks,” Nano Letters, Vol. 15, No. 8, pp. 5240–5247, 2015.

    Article  Google Scholar 

  107. 107.

    Hong, S., Lee, H., Lee, J., Kwon, J., Han, S., et al., “Highly Stretchable and Transparent Metal Nanowire Heater for Wearable Electronics Application,” Advanced Materials, Vol. 27, No. 32, pp. 4744–4751, 2015.

    Article  Google Scholar 

  108. 108.

    Jeong, C. K., Lee, J., Han, S., Ryu, J., Hwang, G. T., et al., “A Hyper-Stretchable Elastic-Composite Energy Harvester,” Advanced Materials, Vol. 27, No. 18, pp. 2866–2875, 2015.

    Article  Google Scholar 

  109. 109.

    Lee, P., Ham, J., Lee, J., Hong, S., Han, S., et al., “Highly Stretchable or Transparent Conductor Fabrication by a Hierarchical Multiscale Hybrid Nanocomposite,” Advanced Functional Materials, Vol. 24, No. 36, pp. 5671–5678, 2014.

    Article  Google Scholar 

  110. 110.

    Chang, I., Park, T., Lee, J., Lee, H. B., Ji, S., et al., “Performance Enhancement in Bendable Fuel Cell Using Highly Conductive Ag Nanowires,” International Journal of Hydrogen Energy, Vol. 39, No. 14, pp. 7422–7427, 2014.

    Article  Google Scholar 

  111. 111.

    Lee, J., Lee, P., Lee, H. B., Hong, S., Lee, I., et al., “Room-Temperature Nanosoldering of a Very Long Metal Nanowire Network by Conducting-Polymer-Assisted Joining for a Flexible Touch-Panel Application,” Advanced Functional Materials, Vol. 23, No. 34, pp. 4171–4176, 2013.

    Article  Google Scholar 

  112. 112.

    Lee, H. M., Choi, S. Y., Jung, A., and Ko, S. H., “Highly Conductive Aluminum Textile and Paper for Flexible and Wearable Electronics,” Angewandte Chemie International Edition, Vol. 52, No. 30, pp. 7718–7723, 2013.

    Article  Google Scholar 

  113. 113.

    Lee, J. H., Lee, P., Lee, H., Lee, S. S., and Ko, S. H., “Very Long Ag Nanowire Synthesis and Its Application for a Highly Transparent, Conductive and Flexible Metal Electrode Touch Panel,” Nanoscale, Vol. 4, No. 20, pp. 6408–6414, 2012.

    Article  Google Scholar 

  114. 114.

    Lee, H. M., Lee, H. B., Jung, D. S., Yun, J.-Y., Ko, S. H., et al., “Solution Processed Aluminum Paper for Flexible Electronics,” Langmuir, Vol. 28, No. 36, pp. 13127–13135, 2012.

    Article  Google Scholar 

  115. 115.

    Ji, S., Chang, I., Lee, Y. H., Park, J., Paek, J. Y., et al., “Fabrication of Low-Temperature Solid Oxide Fuel Cells with a Nanothin Protective Layer by Atomic Layer Deposition,” Nanoscale Research Letters, Vol. 8, No. 1, pp. 1–7, 2013.

    Article  Google Scholar 

  116. 116.

    Shim, J. H., Kang, S., Cha, S. W., Lee, W., Kim, Y. B., et al., “Atomic Layer Deposition of Thin-Film Ceramic Electrolytes for High-Performance Fuel Cells,” Journal of Materials Chemistry A, Vol. 1, No. 41, pp. 12695–12705, 2013.

    Article  Google Scholar 

  117. 117.

    Jee, Y., Cho, G. Y., An, J., Kim, H. R., Son, J. E., et al., “High Performance Bi-Layered Electrolytes via Atomic Layer Deposition for Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 253, pp. 114–122, 2014.

    Article  Google Scholar 

  118. 118.

    Ji, S., Chang, I., Cho, G. Y., Lee, Y. H., Shim, J. H., et al., “Application of Dense Nano-Thin Platinum Films for Low-Temperature Solid Oxide Fuel Cells by Atomic Layer Deposition,” International Journal of Hydrogen Energy, Vol. 39, No. 23, pp. 12402–12408, 2014.

    Article  Google Scholar 

  119. 119.

    Yu, W., Ji, S., Cho, G. Y., Noh, S., Tanveer, W. H., et al., “Atomic Layer Deposition of Ultrathin Blocking Layer for Low-Temperature Solid Oxide Fuel Cell on Nanoporous Substrate,” Journal of Vacuum Science & Technology A, Vol. 33, No. 1, pp. 01A145–1–01A145–6, 2015.

    Article  Google Scholar 

  120. 120.

    Ji, S., Cho, G. Y., Yu, W., Su, P. C., Lee, M. H., et al., “Plasma-Enhanced Atomic Layer Deposition of Nanoscale Yttria-Stabilized Zirconia Electrolyte for Solid Oxide Fuel Cells with Porous,” ACS Applied Materials & Interfaces, Vol. 7, No. 5, pp. 2998–3002, 2015.

    Article  Google Scholar 

  121. 121.

    Ji, S., Tanveer, W. H., Yu, W., Kang, S., Cho, G. Y., et al., “Surface Engineering of Nanoporous Substrate for Solid Oxide Fuel Cells with Atomic Layer-Deposited Electrolyte,” Beilstein Journal of Nanotechnology, Vol. 6, No. 1, pp. 1805–1810, 2015.

    Article  Google Scholar 

  122. 122.

    Tanveer, W. H., Ji, S., Yu, W., and Cha, S. W., “Characterization of Atomic Layer Deposited and Sputtered Yttria-Stabilized-Zirconia Thin Films for Low-Temperature Solid Oxide Fuel Cells,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 10, pp. 2229–2234, 2015.

    Article  Google Scholar 

  123. 123.

    Cho, G. Y., Noh, S., Lee, Y. H., Ji, S., Hong, S. W., et al., “Properties of Nanostructured Undoped ZrO2 Thin Film Electrolytes by Plasma Enhanced Atomic Layer Deposition for Thin Film Solid Oxide Fuel Cells,” Journal of Vacuum Science & Technology A, Vol. 34, No. 1, pp. 01A151–1–01A151–7, 2016.

    Article  Google Scholar 

  124. 124.

    Kwon, J., Hong, S., Suh, Y. D., Yeo, J., So, H., et al., “Direct Micro Metal Patterning on Plastic Substrate by Electrohydrodynamic Jet Printing for Flexible Electronic Applications,” Journal of Solid State Science and Technology, Vol. 4, No. 4, pp. P3052–P3056, 2015.

    Article  Google Scholar 

  125. 125.

    Lee, I., Lee, J., Ko, S. H., and Kim, T.-S., “Reinforcing Ag Nanoparticle Thin Films with Very Long Nanowires,” Nanotechnology, Vol. 24, No. 41, Paper No. 415704, 2013.

    Article  Google Scholar 

  126. 126.

    Ko, S. H., Chung, J., Hotz, N., Nam, K. H., and Grigoropoulos, C. P., “Metal Nanoparticle Direct Inkjet Printing for Low Temperature 3D Micro Metal Structure Fabrication,” Journal of Micromechanics and Microengineering, Vol. 20, No. 12, Paper No. 125010, 2010.

    Article  Google Scholar 

  127. 127.

    Ahn, S. H., Choi, J. O., Kim, C. S., Lee, G. Y., Lee, H. T., et al., “Laser-Assisted Nano Particle Deposition System and Its Application for Dye Sensitized Solar Cell Fabrication,” CIRP Annals-Manufacturing Technology, Vol. 61, No. 1, pp. 575–578, 2012.

    Article  Google Scholar 

  128. 128.

    Lee, H. S., Kim, D. I., Jeong, H. D., and Kim, K. H., “Chemical Mechanical Polishing of a Ti-Si-N Nanocomposite and AFM Study on Its Nanostructure,” Journal of the Korean Physical Socciety, Vol. 57, No. 4, pp. 845–849, 2010.

    MathSciNet  Google Scholar 

  129. 129.

    Lee, H. S. and Jeong, H. D., “A Wafer-Scale Material Removal Rate Profile Model for Copper Chemical Mechanical Planarization,” International Journal of Machine Tools and Manufacture, Vol. 51, No. 5, pp. 395–403, 2011.

    MathSciNet  Article  Google Scholar 

  130. 130.

    Park, S. J., Lee, H. S., and Jeong, H. D., “Signal Analysis of CMP Process Based on AE Monitoring System,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 1, pp. 15–19, 2015.

    Article  Google Scholar 

  131. 131.

    Jeong, J. Y. and Lee, W. G., “Formation of Tungsten Oxide Defects during Tungsten CMP,” Electrochemical Solid-State Letters, Vol. 6, No. 3, pp. G45–G47, 2003.

    MathSciNet  Article  Google Scholar 

  132. 132.

    Wang, Y. G., Chen, Y., and Zhao, Y. W., “Chemical Mechanical Planarization of Silicon Wafers at Natural PH for Green Manufacturing,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 9, pp. 2049–2054, 2015.

    Article  Google Scholar 

  133. 133.

    Yuh, M. J., Jang, S. C., Kim, H. J., Lee, H. S., and Jeong, H. D., “Development of Green CMP by Slurry Reduction through Controlling Platen Coolant Temperature,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 4, pp. 339–344, 2015.

    Article  Google Scholar 

  134. 134.

    Kim, D. Y., Kim, H. J., Lee, S. J., and Jeong, H. D., “Effect of Initial Deflection of Diamond Wire on Thickness Variation of Sapphire Wafer in Multi-Wire Saw,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 2, pp. 117–121, 2015.

    Article  Google Scholar 

  135. 135.

    Lee, H. S., Park, B. B., and Jeong, H. D., “Influence of Slurry Components on Uniformity in Copper Chemical Mechanical Planarization,” Microelectronic Engineering, Vol. 85, No. 4, pp. 689–696, 2008.

    Article  Google Scholar 

  136. 136.

    Lee, H. S., Joo, S. B., Kim, H. J., and Jeong, H. D., “Chemical Mechanical Planarization Method for Thick Copper Films of Micro-Electro-Mechanical Systems and Integrated Circuits,” Japanese Journal of Applied Physics, Vol. 47, No. 7, pp. 5708–5711, 2008.

    Article  Google Scholar 

  137. 137.

    Lee, H. S., Wang, H., Park, J. H., and Jeong, H. D., “Experimental Investigation of Process Parameters for Roll-Type Linear Chemical Mechanical Polishing (Roll-CMP) System,” Precision Engineering, Vol. 38, No. 4, pp. 928–934, 2014.

    Article  Google Scholar 

  138. 138.

    Jang, S. C., Jeong, H. D., Yuh, M. J., and Park, J. H., “Effect of Surfactant on Package Substrate in Chemical Mechanical Planarization,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 2, pp. 117–121, 2015.

    Article  Google Scholar 

  139. 139.

    Hong, S. W., Bae, J. W., Koo, B. J., Chang, I. W., Cho, G. Y., et al., “Nanostructuring Methods for Enhancing Light Absorption Rate of Si-Based Photovoltaic Devices: A Review,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 1, pp. 67–74, 2014.

    Article  Google Scholar 

  140. 140.

    Lee, H. S. and Jeong, H. D., “Chemical and Mechanical Balance in Polishing of Electronic Materials for Defect-Free Surfaces,” CIRP Annals-Manufacturing Technology, Vol. 58, No.1, pp. 485–490, 2009.

    MathSciNet  Article  Google Scholar 

  141. 141.

    Park, Y. B., Jeong, H. B., Choi, S. H., and Jeong, H. D., “Planarization of Wafer Edge Profile in Chemical Mechanical Polishing,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 1, pp. 11–15, 2013.

    Article  Google Scholar 

  142. 142.

    Lee, C. S., Park, J. H., Kinoshita, M., and Jeong, H. D., “Analysis of Pressure Distribution and Verification of Pressure Signal by Changes Load and Velocity in Chemical Mechanical Polishing,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 6, pp. 1061–1066, 2015.

    Article  Google Scholar 

  143. 143.

    Lee, H. S., Park, Y. B., Lee, S. J., and Jeong, H. D., “Effect of Wafer Size on Material Removal Rate and Its Distribution in Chemical Mechanical Polishing of Silicon Dioxide Film,” Journal of Mechanical Science and Technology, Vol. 27, No. 10, pp. 2991–2916, 2013.

    Article  Google Scholar 

  144. 144.

    Lee, H. S., Dornfeld, D. A., and Jeong, H. D., “Mathematical Model-Based Evaluation Methodology for Environmental Burden of Chemical Mechanical Planarization Process,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 1, pp. 11–15, 2014.

    Article  Google Scholar 

  145. 145.

    Lee, D. S., Lee, H. S., and Jeong, H. D., “The Effects of a Spray Slurry Nozzle on Copper CMP for Reduction in Slurry Consumption,” Journal of Mechanical Science and Technology, Vol. 29, No. 12, pp. 5057–5062, 2015.

    Article  Google Scholar 

  146. 146.

    Merklein, M., Andreas, K., and Steiner, J., “Influence of Tool Surface on Tribological Conditions in Conventional and Dry Sheet Metal Forming,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 2, pp. 131–137, 2015.

    Article  Google Scholar 

  147. 147.

    Tian, Y., Zhong, Z., and Ng, J. H., “Effects of Chemical Slurries on Fixed Abrasive Chemical Mechanical Polishing of Optical Silicon Substrates,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 8, pp. 1447–1454, 2013.

    Article  Google Scholar 

  148. 148.

    Lee, H. J. and Jeong, H. D., “Analysis of Removal Mechanism on Oxide CMP Using Mixed Abrasive Slurry,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 3, pp. 603–607, 2015.

    Article  Google Scholar 

  149. 149.

    Lee, H. S., Lee, H. J., Jeong, H. B., Choi, S. H., Lee, Y. K., et al., “Macroscopic and Microscopic Investigation on Chemical Mechanical Polishing of Sapphire Wafer,” Journal of Nanoscience and Nanotechnology, Vol. 12, No. 2, pp. 1256–1259, 2012.

    Article  Google Scholar 

  150. 150.

    Lee, H. S., Kim, D. I., An, J. H., Lee, H. J., Kim, K. H., et al., “Hybrid Polishing Mechanism of Single Crystal SiC Using Mixed Abrasive Slurry (MAS),” CIRP Annals-Manufacturing Technology, Vol. 59, No. 1, pp. 333–336, 2010.

    Article  Google Scholar 

  151. 151.

    Lee, H. S., Joo, S. B., and Jeong, H. D., “Mechanical Effect of Colloidal Silica in Copper Chemical Mechanical Planarization,” Journal of Materials Processing Technology, Vol. 209, No. 20, pp. 6134–6139, 2009.

    Article  Google Scholar 

  152. 152.

    Park, C. J., Kim, H. J., Lee, S. J., and Jeong, H. D., “The Influence of Abrasive Size on High-Pressure Chemical Mechanical Polishing of Sapphire Wafer,” Int. J. Precise. Eng. Manuf.-Green Tech., Vol. 2, No. 2, pp. 157–162, 2015.

    Article  Google Scholar 

  153. 153.

    Lee, H. S., Jeong, H. D., and Dornfeld, D. A., “Semi-Empirical Material Removal Rate Distribution Model for SiO2 Chemical Mechanical Polishing (CMP) Processes,” Precision Engineering, Vol. 37, No. 2, pp. 483–490, 2013.

    Article  Google Scholar 

  154. 154.

    Guo, Y. C., Lee, H. S., Lee, Y. K., and Jeong, H. D., “Effect of Pad Groove Geometry on Material Removal Characteristics in Chemical Mechanical Polishing,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 2, pp. 303–306, 2012.

    Article  Google Scholar 

  155. 155.

    Park, B. Y., Lee, H. S., Park, K. H., Kim, H. J., and Jeong, H. D., “Pad Roughness Variation and Its Effect on Material Removal Profile in Ceria-Based CMP Slurry,” Journal of Materials Processing Technology, Vol. 203, No. 1–3, pp. 287–292, 2008.

    Article  Google Scholar 

  156. 156.

    Jeong, H. B., Lee, H. S., Choi, S. H., Lee, Y. K., and Jeong, H. D., “Prediction of Real Contact Area from Microtopography on CMP Pad,” Journal of Advandced Mechanical Design Systems, and Manufacturing, Vol. 6, No. 1, pp. 113–120, 2012.

    Article  Google Scholar 

  157. 157.

    Kim, H. J., “Study on Pad Properties as Polishing Result Affecting Factors in Chemical Mechanical Polishing,” J. Korean Soc. Precis. Eng., Vol. 17, No. 3, pp.184–191, 2000.

    Google Scholar 

  158. 158.

    Lee, H. S., Guo, Y. C., and Jeong, H. D., “Temperature Distribution in Polishing Pad during CMP Process: Effect of Retaining Ring,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 1, pp. 25–31, 2012.

    Article  Google Scholar 

  159. 159.

    Park, Y. B., Lee, H. S., Lee, Y. K., Park, S. J., and Jeong, H. D., “Effect of Contact Angle between Retaining Ring and Polishing Pad on Material Removal Uniformity in CMP Process,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 9, pp. 1513–1518, 2013.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sung-Hoon Ahn.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chu, WS., Kim, MS., Jang, KH. et al. From design for manufacturing (DFM) to manufacturing for design (MFD) via hybrid manufacturing and smart factory: A review and perspective of paradigm shift. Int. J. of Precis. Eng. and Manuf.-Green Tech. 3, 209–222 (2016). https://doi.org/10.1007/s40684-016-0028-0

Download citation

Keywords

  • Design for manufacturing
  • Manufacturing for design
  • Smart factory
  • Hybrid manufacturing
  • Platform