Skip to main content
Log in

Substrate-dependent growth of nanothin film solid oxide fuel cells toward cost-effective nanostructuring

  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Nanothin and pinhole-free electrolyte-embedded solid oxide fuel cells (SOFCs) on nanothin bottom electrode catalyst-coated anodic aluminum oxide (AAO) substrates with 20 nm and 80 nm-sized nanopores are morphologically and electrochemically characterized to identify the substrate-dependent nanostructuring effects. Reliable electrolytes were fabricated through the application of a protective layer deposited by atomic layer deposition, whose microstructural distortion reduced as the electrolyte became thinner. At 450°C, the SOFC on the AAO substrate with 80 nm nanopores generated a higher peak power density by approximately 22% than the SOFC on the AAO substrate with 20 nm nanopores when the electrolyte and the bottom electrode catalyst are as thin as 300 nm and 50 nm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Son, J.-W. and Song, H.-S., “Influence of Current Collector and Cathode Area Discrepancy on Performance Evaluation of Solid Oxide Fuel Cell with Thin-Film-Processed Cathode,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 4, pp. 313–316, 2014.

    Article  Google Scholar 

  2. Choi, H., Cho, G. Y., and Cha, S.-W., “Fabrication and Characterization of Anode Supported YSZ/GDC Bilayer Electrolyte SOFC Using Dry Press Process,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 2, pp. 95–99, 2014.

    Article  Google Scholar 

  3. Ji, S., Chang, I., Lee, Y. H., Lee, M. H., and Cha, S. W., “Performance Enhancement of Thin-Film Ceramic Electrolyte Fuel Cell Using Bi-Layered Yttrium-Doped Barium Zirconate,” Thin Solid Films, Vol. 539, pp. 117–121, 2013.

    Article  Google Scholar 

  4. Lee, W. and Prinz, F. B., “Localized Charge Transfer Reactions near the Pt-YSZ Interfaces Using Kelvin Probe Microscopy,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 3, pp. 201–205, 2014.

    Article  Google Scholar 

  5. Pornprasertsuk, R., Yuwapattanawong, C., Permkittikul, S., and Tungtidtham, T., “Preparation of Doped BaZrO3 and BaCeO3 from Nanopowders,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 10, pp. 1813–1819, 2012.

    Article  Google Scholar 

  6. An, J., Kim, Y.-B., Park, J., Gur, T. M., and Prinz, F. B., “Three-Dimensional Nanostructured Bilayer Solid Oxide Fuel Cell with 1.3 W/cm2 at 450°C,” Nano letters, Vol. 13, No. 9, pp. 4551–4555, 2013.

    Article  Google Scholar 

  7. An, J., Kim, Y. B., Jung, H. J., Park, J. S., Cha, S. W., et al., “Structural and Compositional Analysis of Solid Oxide Fuel Cell Electrolytes Using Transmission Electron Microscopy,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 7, pp. 1273–1279, 2012.

    Article  Google Scholar 

  8. Su, P.-C. and Prinz, F. B., “Nanoscale Membrane Electrolyte Array for Solid Oxide Fuel Cells,” Electrochemistry Communications, Vol. 16, No. 1, pp. 77–79, 2012.

    Article  Google Scholar 

  9. Thirumalairajan, S., Girija, K., Mastelaro, V. R., and Ponpandian, N., “Surface Morphology-Dependent Room-Temperature LaFeO3 Nanostructure Thin Films as Selective NO2 Gas Sensor Prepared by Radio Frequency Magnetron Sputtering,” ACS Applied Materials and Interfaces, Vol. 6, No. 16, pp. 13917–13927, 2014.

    Article  Google Scholar 

  10. Cassir, M., Ringuedé, A, and Niinistö, L., “Input of Atomic Layer Deposition for Solid Oxide Fuel Cell Applications,” Journal of Materials Chemistry, Vol. 20, No. 41, pp. 8987–8993, 2010.

    Article  Google Scholar 

  11. Bachmann, J., “Atomic Layer Deposition, a Unique Method for the Preparation of Energy Conversion Devices,” Beilstein Journal of Nanotechnology, Vol. 5, No. 1, pp. 245–248, 2014.

    Article  Google Scholar 

  12. Ji, S., Chang, I., Lee, Y. H., Park, J., Paek, J. Y., et al., “Fabrication of Low-Temperature Solid Oxide Fuel Cells with a Nanothin Protective Layer by Atomic Layer Deposition,” Nanoscale Research Letters, Vol. 8, Paper No. 48, 2013.

    Article  Google Scholar 

  13. Kim, M., Ha, Y.-C., Nguyen, T. N., Choi, H. Y., and Kim, D., “Extended Self-Ordering Regime in Hard Anodization and Its Application to Make Asymmetric AAO Membranes for Large Pitch-Distance Nanostructures,” Nanotechnology, Vol. 24, No. 50, Paper No. 505304, 2013.

    Article  Google Scholar 

  14. Lee, M. H. and Hwang, C. S., “Resistive Switching Memory: Observations with Scanning Probe Microscopy,” Nanoscale, Vol. 3, No. 2, pp. 490–502, 2011.

    Article  Google Scholar 

  15. Kwon, C.-W., Son, J.-W., Lee, J.-H., Kim, H.-M., Lee, H.-W., et al., “High-Performance Micro-Solid Oxide Fuel Cells Fabricated on Nanoporous Anodic Aluminum Oxide Templates,” Advanced Functional Materials, Vol. 21, No. 6, pp. 1154–1159, 2011.

    Article  Google Scholar 

  16. Shim, J. H., Kang, S., Cha, S-.W., Lee, W., Kim, Y. B., et al., “Atomic Layer Deposition of Thin-Film Ceramic Electrolytes for High-Performance Fuel Cells,” Journal of Materials Chemistry: A, Vol. 1, No. 41, pp. 12695–12705, 2013.

    Article  Google Scholar 

  17. Ji, S., Cho, G. Y., Yu, W., Su, P.-C., Lee, M. H., et al., “Plasma-Enhanced Atomic Layer Deposition of Nanoscale Yttria-Stabilized Zirconia Electrolyte for Solid Oxide Fuel Cells with Porous Substrate,” ACS Applied Materials and Interfaces, Vol. 7, No. 5, pp. 2998–3002, 2015.

    Article  Google Scholar 

  18. Ji, S., Chang, I., Cho, G. Y., Lee, Y. H., Shim, J. H., et al., “Application of Dense Nano-Thin Platinum Films for Low-Temperature Solid Oxide Fuel Cells by Atomic Layer Deposition,” International Journal of Hydrogen Energy, Vol. 39, No. 23, pp. 12402–12408, 2014.

    Article  Google Scholar 

  19. Ji, S., Hwang, Y.-S., Park, T., Lee, Y. H., Peak, J. Y., et al., “Graphite Foil Based Assembled Bipolar Plates for Polymer Electrolyte Fuel Cells,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 12, pp. 2183–2186, 2012.

    Article  Google Scholar 

  20. Ji, S., Lee, Y. H., Park, T., Cho, G. Y., Noh, S., et al., “Doped Ceria Anode Interlayer for Low-Temperature Solid Oxide Fuel Cells with Nanothin Electrolyte,” Thin Solid Films, Vol. 591, pp. 250–254, 2015.

    Article  Google Scholar 

  21. Ji, S., Tanveer, W. H., Yu, W., Kang, S., Cho, G. Y., et al., “Surface Engineering of Nanoporous Substrate for Solid Oxide Fuel Cells with Atomic Layer-Deposited Electrolyte,” Beilstein Journal of Nanotechnology, Vol. 6, No. 1, pp. 1805–1810, 2015.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk Won Cha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, S., Ha, J., Park, T. et al. Substrate-dependent growth of nanothin film solid oxide fuel cells toward cost-effective nanostructuring. Int. J. of Precis. Eng. and Manuf.-Green Tech. 3, 35–39 (2016). https://doi.org/10.1007/s40684-016-0005-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-016-0005-7

Keywords

Navigation