Skip to main content

Mathematical modeling of hybrid renewable energy system: A review on small hydro-solar-wind power generation

Abstract

Harnessing energy from alternative energy source has been recorded since early history. Renewable energy is abundantly found anywhere, free of cost and has non-polluting characteristics. However, these energy sources are based on the weather condition and possess inherited intermittent nature, which hinders stable power supply. Combining multiple renewable energy resources can be a possible solution to overcome defects, which not only provides reliable power but also leads to reduction in required storage capacity. Although an oversized hybrid system satisfies the load demand, it can be unnecessarily expensive. An undersized hybrid system is economical, but may not be able to meet the load demand. The optimal sizing of the renewable energy power system depends on the mathematical model of system components. This paper summarizes the mathematical modeling of various renewable energy system particularly PV, wind, hydro and storage devices. Because of the nonlinear power characteristics, wind and PV system require special techniques to extract maximum power. Hybrid system has complex control system due to integration of two (or more) different power sources. The complexity of system increases with maximum power point tracking (MPPT) techniques employed in their subsystems. This paper also summarizes mathematical modeling of various MPPT techniques for hybrid renewable energy systems.

References

  1. 1.

    Dornfeld, D., “Moving Towards Green and Sustainable Manufacturing,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 1, pp. 63–66, 2014.

    Article  Google Scholar 

  2. 2.

    Nema, P., Nema, R. K., and Rangnekar, S., “A Current and Future State of Art Development of Hybrid Energy System using Wind and PV-solar: A Review,” Renewable and Sustainable Energy Reviews, Vol. 13, No. 8, pp. 2096–2103, 2009.

    Article  Google Scholar 

  3. 3.

    Stroe, D., Stan, A., Visa, I., and Stroe, I., “Modeling and Control of Variable Speed Wind Turbine Equipped with PMSG,” 2011.

    Google Scholar 

  4. 4.

    Ahn, S. -H., “An Evaluation of Green Manufacturing Technologies Based on Research Databases,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 1, pp. 5–9, 2014.

    Article  Google Scholar 

  5. 5.

    Kalantar, M. and Mousavi G, S. M., “Dynamic Behavior of a Stand-Alone Hybrid Power Generation System of Wind Turbine, Microturbine, Solar Array and Battery Storage,” Applied Energy, Vol. 87, No. 10, pp. 3051–3064, 2010.

    Article  Google Scholar 

  6. 6.

    Soetedjo, A., Lomi, A., and Mulayanto, W. P., “Modeling of Wind Energy System with MPPT Control,” International Conference on Electrical Engineering and Informatics (ICEEI), pp. 1–6, 2011.

    Google Scholar 

  7. 7.

    Adzic, E., Ivanovic, Z., Adzic, M., and Katic, V., “Maximum Power Search in Wind Turbine Based on Fuzzy Logic Control,” Acta Polytechnica Hungarica, Vol. 6, No. 1, pp. 131–149, 2009.

    Google Scholar 

  8. 8.

    Ahn, S. H., Lee, K. T., Bhandari, B., Lee, G. Y., Lee, C. S., and Song, C. K., “Formation Strategy of Renewable Energy Sources for High Mountain Off-grid System Consideting Sustainability,” J. Korean Soc. Precis. Eng., Vol. 29, No. 9, pp. 958–963, 2012.

    Article  Google Scholar 

  9. 9.

    Bekele, G. and Palm, B., “Feasibility Study for a Standalone Solar-Wind-Based Hybrid Energy System for Application in Ethiopia,” Applied Energy, Vol. 87, No. 2, pp. 487–495, 2010.

    Article  Google Scholar 

  10. 10.

    Chedid, R. and Rahman, S., “Unit Sizing and Control of Hybrid Wind-Solar Power Systems,” IEEE Transactions on Energy Conversion, Vol. 12, No. 1, pp. 79–85, 1997.

    Article  Google Scholar 

  11. 11.

    Chedid, R. B., Karaki, S. H., and El-Chamali, C., “Adaptive Fuzzy Control for Wind-Diesel Weak Power Systems,” IEEE Transactions on Energy Conversion, Vol. 15, No. 1, pp. 71–78, 2000.

    Article  Google Scholar 

  12. 12.

    Kane, M., “Small Hybrid Solar Power System,” Energy, Vol. 28, No. 14, pp. 1427–1443, 2003.

    Article  Google Scholar 

  13. 13.

    Dali, M., Belhadj, J., and Roboam, X., “Hybrid solar-Wind System with Battery Storage Operating in Grid-Connected and Standalone Mode: Control and Energy Management — Experimental Investigation,” Energy, Vol. 35, No. 6, pp. 2587–2595, 2010.

    Article  Google Scholar 

  14. 14.

    Ram Prabhakar, J. and Ragavan, K., “Power Management Based Current Control Technique for Photovoltaic-Battery Assisted Wind-Hydro Hybrid System,” International Journal of Emerging Electric Power Systems, Vol. 14, No. 4, pp. 351–362, 2013.

    Article  Google Scholar 

  15. 15.

    Diaf, S., Notton, G., Belhamel, M., Haddadi, M., and Louche, A., “Design and Techno-Economical Optimization for Hybrid PV/Wind System under Various Meteorological Conditions,” Applied Energy, Vol. 85, pp. 968–987, 2008.

    Article  Google Scholar 

  16. 16.

    Jeon, Y. -J., Kim, D. -S., and Shin, Y -E., “Study of Characteristics of Solar Cells through Thermal Shock and High-Temperature and High-Humidity Testing,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 2, pp. 355–360, 2014.

    Article  Google Scholar 

  17. 17.

    Hashimoto, S., Yachi, T., and Tani, T., “A New Stand-Alone Hybrid Power System with Wind Turbine Generator and Photovoltaic Modules for a Small-Scale Radio Base Station,” IEEJ Transactions on Power and Energy, Vol. 125, No. 11, pp. 1041–1046, 2005.

    Article  Google Scholar 

  18. 18.

    Sharaf, A. M. and El-Sayed, M. A. H., “A Novel Hybrid Integrated Wind-PV Micro Co-Generation Energy Scheme for Village Electricity,” Proc. of IEEE International Electric Machines and Drives Conference(IEMDC’ 09), pp. 1244–1249, 2009.

    Google Scholar 

  19. 19.

    Bakos, G. C., “Feasibility Study of a Hybrid Wind/Hydro Power-System for Low-Cost Electricity Production,” Applied Energy, Vol. 72, No. 3–4, pp. 599–608, 2002.

    Article  Google Scholar 

  20. 20.

    Bekele, G. and Tadesse, G., “Feasibility Study of Small Hydro/PV/Wind Hybrid System for Off-Grid Rural Electrification in Ethiopia,” Applied Energy, Vol. 97, pp. 5–15, 2012.

    Article  Google Scholar 

  21. 21.

    Saheb-Koussa, D., Haddadi, M., and Belhamel, M., “Economic and Technical Study of a Hybrid System (wind-photovoltaic-diesel) for Rural Electrification in Algeria,” Applied Energy, Vol. 86, No. 7–8, pp. 1024–1030, 2009.

    Article  Google Scholar 

  22. 22.

    Fadaeenejad, M., Radzi, M. A. M., AbKadir, M. Z. A., and Hizam, H., “Assessment of Hybrid Renewable Power Sources for Rural Electrification in Malaysia,” Renewable and Sustainable Energy Reviews, Vol. 30, pp. 299–305, 2014.

    Article  Google Scholar 

  23. 23.

    Goodbody, C., Walsha, E., McDonnella, K. P., and Owendeb, P., “Regional Integration of Renewable Energy Systems in Ireland — The Role of Hybrid Energy Systems for Small Communities,” International Journal of Electrical Power & Energy Systems, Vol. 44, No. 1, pp. 713–720, 2013.

    Article  Google Scholar 

  24. 24.

    Akikur, R. K., Saidur, R., Ping, H. W., and Ullah, K. R., “Comparative Study of Stand-Alone and Hybrid Solar Energy Systems Suitable for Off-Grid Rural Electrification: A review,” Renewable and Sustainable Energy Reviews, Vol. 27, pp. 738–752, 2013.

    Article  Google Scholar 

  25. 25.

    Djamel, L. and Abdallah, B., “Power Quality Control Strategy for Grid-Connected Renewable Energy Sources using PV Array, Wind Turbine and Battery,” Proc. of 2013 Fourth International Conference on Power Engineering, Energy and Electrical Drives(POWERENG), pp. 1671–1675, 2013.

    Google Scholar 

  26. 26.

    Meshram, S., Agnihotri, G., and Gupta, S., “Performance Analysis of Grid Integrated Hydro and Solar Based Hybrid Systems,” Advances in Power Electronics, Vol. 2013, pp. 1–7, 2013.

    Article  Google Scholar 

  27. 27.

    Ismail, M. S., Moghavvemi, M., and Mahlia, T. M. I., “Design of an Optimized Photovoltaic and Microturbine Hybrid Power System for a Remote Small Community: Case Study of Palestine,” Energy Conversion and Management, Vol. 75, No. 11, pp. 271–281, 2013.

    Article  Google Scholar 

  28. 28.

    Daud, A.-K. and Ismail, M. S., “Design of Isolated Hybrid Systems Minimizing Costs and Pollutant Emissions,” Renewable Energy, Vol. 44, pp. 215–224, 2012.

    Article  Google Scholar 

  29. 29.

    Ismail, M. S., Moghavvemi, M., and Mahlia, T. M. I., “Technoeconomic Analysis of an optimized Photovoltaic and Diesel Generator Hybrid Power System for Remote Houses in a Tropical Climate,” Energy Conversion and Management, Vol. 69, pp. 163–173, 2013.

    Article  Google Scholar 

  30. 30.

    Menshsari, A., Ghiamy M., Mir Mousavi, M. M., and Bagal, H. A., “Optimal Design of hybrid Water-Wind-Solar System based on Hydrogen Storage and Evaluation of Reliability Index of System using Ant Colony Algorithm,” International Research Journal of Applied and Basic Science, Vol. 4, No. 11, pp. 3582–3600, 2013.

    Google Scholar 

  31. 31.

    Vitali, D. and Ricci, R., “Design, Testing and Simulation of Hybrid Wind-Solar Energy Systems,” 2013.

    Google Scholar 

  32. 32.

    Saha, N. C., Acharjee, S., Mollah, M. A. S., Rahman, K. T., Rafi, F. H. M., and et al., “Modeling and Performance Analysis of a Hybrid Power System,” Proc. of International Conference on Informatics, Electronics & Vision(ICIEV), pp. 1–5, 2013.

    Google Scholar 

  33. 33.

    Suha Yazici, M., Yavasoglu, H. A., and Eroglu, M., “A Mobile Off-Grid Platform Powered with Photovoltaic/Wind/Battery/Fuel Cell Hybrid Power Systems,” International Journal of Hydrogen Energy, Vol. 38, No. 26, pp. 11639–11645, 2013.

    Article  Google Scholar 

  34. 34.

    Bhandari, B., “Design and Evaluaion of Tri-hybrid Renewable Energy System (THRES),” Ph. D. Thesis, Department of Mechanical & Aerospace Engineering, Seoul National Univ., 2014.

    Google Scholar 

  35. 35.

    Karaki, S. H., Chedid, R. B., and Ramadan, R., “Probabilistic Performance Assessment of Autonomous Solar-Wind Energy Conversion Systems,” IEEE Transactions on Energy Conversion, Vol. 14, No. 3, pp. 766–772, 1999.

    Article  Google Scholar 

  36. 36.

    Markvart, T., “Solar Electricity,” John Wiley & Sons, pp. 5–19, 2000.

    Google Scholar 

  37. 37.

    Hong, S., Bae, J., Koo, B., Chang, I., Cho, G. Y., and et al., “Nanostructuring methods for Enhancing Light Absorption Rate of Si-based Photovoltaic Devices: A review,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 1, pp. 67–74, 2014.

    Article  Google Scholar 

  38. 38.

    Kanellos, F., Tsouchnikas, A. I., and Hatziargyriou, N., “Micro-grid Simulation during Grid-Connected and Islanded Modes of Operation,” International Conference on Power Systems Transients, Paper No. IPST05-113, 2005.

    Google Scholar 

  39. 39.

    Ye, L., Sun, H. B., Song, X. R., and Li, L. C., “Dynamic Modeling of a Hybrid Wind/Solar/Hydro Microgrid in EMTP/ATP,” Renewable Energy, Vol. 39, No. 1, pp. 96–106, 2012.

    Article  Google Scholar 

  40. 40.

    Salam, Z., Ishaque, K., and Taheri, H., “An Improved Two-Diode Photovoltaic (PV) Model for PV System,” Proc. of Joint International Conference on Power Electronics, Drives and Energy Systems(PEDES) & 2010 Power India, pp. 1–5, 2010.

    Google Scholar 

  41. 41.

    Zhou, W., Yang, H., and Fang, Z., “A Novel Model for Photovoltaic Array Performance Prediction,” Applied Energy, Vol. 84, No. 12, pp. 1187–1198, 2007.

    Article  Google Scholar 

  42. 42.

    Betz, A., “Introduction to the theory of flow machines,” Oxford: Pergamon Press, 1966.

    Google Scholar 

  43. 43.

    Lu, L., Yang, H., and Burnett, J., “Investigation on Wind Power Potential on Hong Kong Islands-an Analysis of Wind Power and Wind Turbine Characteristics,” Renewable Energy, Vol. 27, No. 1, pp. 1–12, 2002.

    Article  Google Scholar 

  44. 44.

    Yang, H., Wei, Z., and Chengzhi, L., “Optimal Design and Techno-Economic Analysis of a Hybrid Solar-Wind Power Generation System,” Applied Energy, Vol. 86, No. 2, pp. 163–169, 2009.

    Article  Google Scholar 

  45. 45.

    Chedid, R., Mrad, F., and Basma, M., “Intelligent Control of a Class of Wind Energy Conversion Systems,” IEEE Transactions on Energy Conversion, Vol. 14, No. 4, pp. 1597–1604, 1999.

    Article  Google Scholar 

  46. 46.

    Boukhezzar, B. and Siguerdidjane, H., “Comparison between Linear and Nonlinear Control Strategies for Variable Speed Wind Turbine Power Capture Optimization,” Ecologic Vehicles Renewable Energies, pp. 26–29, 2009.

    Google Scholar 

  47. 47.

    Boukhezzar, B. and Siguerdidjane, H., “Nonlinear Control with wind Estimation of a DFIG Variable Speed Wind Turbine for Power Capture Optimization,” Energy Conversion and Management, Vol. 50, No. 4, pp. 885–892, 2009.

    Article  Google Scholar 

  48. 48.

    Shi, W., Kim, C. -W., Chung, C. -W., and Park, H. -C., “Dynamic Modeling and Analysis of a Wind Turbine Drivetrain using the Torsional Dynamic Model,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 1, pp. 153–159, 2013.

    Article  Google Scholar 

  49. 49.

    Bait, A. F. and Brennan, F., “The Modelling, Simulation and Control of a 50 kW Vertical Axis Wind Turbine,” Asian Transactions on Engineering, Vol. 2, No. 4, pp. 14–23, 2012.

    Google Scholar 

  50. 50.

    Hong, C. -M., Chen, C. -H., and Tu, C. -S., “Maximum Power Point Tracking-Based Control Algorithm for PMSG wind Generation System without Mechanical Sensors,” Energy Conversion and Management, Vol. 69, pp. 58–67, 2013.

    Article  Google Scholar 

  51. 51.

    Samanvorakij, S. and Kumkratug, P., “Modeling and Simulation PMSG based on Wind Energy Conversion System in MATLAB/SIMULINK,” Proc. of Second Intl. Conf. on Advances in Electronics and Electrical Engineering, pp. 37–41, 2013.

    Google Scholar 

  52. 52.

    Haque, M. E., Negnevitsky, M., and Muttaqi, K. M., “A Novel Control Strategy for a Variable Speed Wind Turbine with a Permanent Magnet Synchronous Generator,” IEEE Transactions on Industry Applications, Vol. 46, No. 1, pp. 1–8, 2008.

    Google Scholar 

  53. 53.

    Hemeida, A. M., Farag, W. A., and Mahgoub, O. A., “Modeling and Control of Direct Driven PMSG for Ultra Large Wind Turbines,” World Academy of Science, Engineering and Technology, Vol. 59, pp. 621–627, 2011.

    Google Scholar 

  54. 54.

    Abdullah, M. A., Yatim, A. H. M., and Chee Wei, T., “A Study of Maximum Power Point Tracking Algorithms for Wind Energy system,” Proc. of IEEE First Conference on Clean Energy and Technology(CET), pp. 321–326, 2011.

    Google Scholar 

  55. 55.

    Raza Kazmi, S. M., Goto, H., Guo, H. -J., and Ichinokura, O., “Review and Critical Analysis of the Research Papers Published Till Date on Maximum Power Point Tracking in Wind Energy Conversion System,” IEEE Energy Conversion Congress and Exposition(ECCE), pp. 4075–4082, 2010.

    Google Scholar 

  56. 56.

    Sarvi, M. and Azarbara, S., “A Novel Maximum Power Point Tracking Method Based on Extension Theory for Wind Energy Conversion System,” International Journal of Computer Science & Engineering Technology(IJCSET), Vol. 3, No. 8, pp. 294–303, 2012.

    Google Scholar 

  57. 57.

    Camblong, H., Martinez de Alegria, I., Rodriguez, M., and Abad, G., “Experimental Evaluation of Wind Turbines Maximum Power Point Tracking Controllers,” Energy Conversion and Management, Vol. 47, No. 18–19, pp. 2846–2858, 2006.

    Article  Google Scholar 

  58. 58.

    Tafticht, T., Agbossou, K., Cheriti, A., and Doumbia, M. L., “Output Power Maximization of a Permanent Magnet Synchronous Generator Based Stand-alone Wind Turbine,” IEEE International Symposium on Industrial Electronics, pp. 2412–2416, 2006.

    Google Scholar 

  59. 59.

    Lee, C. -Y., Shen, Y. -X., Cheng, J. -C., Chang, C. -W., and Li, Y. - Y., “Optimization Method based MPPT for Wind Power Generators,” World Academy of Science, Engineering and Technology, Vol. 60, pp. 169–172, 2009.

    Google Scholar 

  60. 60.

    Hui, J. and Bakhshai, A., “A Fast and Effective Control Algorithm for Maximum Power Point Tracking in Wind Energy Systems,” Proc. of the World Wind Energy Conference, 2008.

    Google Scholar 

  61. 61.

    Quincy, W. and Liuchen, C., “An Intelligent Maximum Power Extraction Algorithm for Inverter-Based Variable Speed Wind Turbine Systems,” IEEE Transactions on Power Electronics, Vol. 19, No. 5, pp. 1242–1249, 2004.

    Google Scholar 

  62. 62.

    Raza Kazmi, S. M., Goto, H., Guo, H.-J., and Ichinokura, O., “A Novel Algorithm for Fast and Efficient Speed-Sensorless Maximum Power Point Tracking in Wind Energy Conversion Systems,” IEEE Transactions on Industrial Electronics, Vol. 58, No. 1, pp. 29–36, 2011.

    Article  Google Scholar 

  63. 63.

    Agarwal, V., Aggarwal, R. K., Patidar, P., and Patki, C., “A Novel Scheme for Rapid Tracking of Maximum Power Point in Wind Energy Generation Systems,” IEEE Transactions on Energy Conversion, Vol. 25, No. 1, pp. 228–236, 2010.

    Article  Google Scholar 

  64. 64.

    Ermis, M., Ertan, H. B., Akpinar, E., and Ulgut, F., “Autonomous Wind Energy Conversion System with a Simple Controller for Maximum-Power Transfer,” IEE Proc. of B, Electric Power Applications, Vol. 139, No. 5, pp. 421–428, 1992.

    Article  Google Scholar 

  65. 65.

    Kot, R., Rolak, M., and Malinowski, M., “Comparison of Maximum Peak Power Tracking Algorithms for a Small Wind Turbine,” Mathematics and Computers in Simulation, Vol. 91, pp. 29–40, 2013.

    MathSciNet  Article  Google Scholar 

  66. 66.

    Hua, C. and Lin, J., “A Modified Tracking Algorithm for Maximum Power Tracking Of Solar Array,” Energy Conversion and Management, Vol. 45, No. 6, pp. 911–925, 2004.

    Article  Google Scholar 

  67. 67.

    Hong, C. -M., Ou, T. -C., and Lu, K. -H., “Development of Intelligent MPPT (maximum power point tracking) Control for a Grid-Connected Hybrid Power Generation System,” Energy, Vol. 50, pp. 270–279, 2013.

    Article  Google Scholar 

  68. 68.

    Hua, C. and Shen, C., “Study of Maximum Power Tracking Techniques and Control of DC/DC Converters for Photovoltaic Power System,” Proc. of 29th Annual IEEE Power Electronics Specialists Conference(PESC 98 Record), Vol. 1, pp. 86–93, 1998.

    Google Scholar 

  69. 69.

    Pandey, A., Dasgupta, N., and Mukerjee, A. K., “High-Performance Algorithms for Drift Avoidance and Fast Tracking in Solar MPPT System,” IEEE Transactions on Energy Conversion, Vol. 23, No. 2, pp. 681–689, 2008.

    Article  Google Scholar 

  70. 70.

    Hua, C. and Shen, C., “Comparative Study of Peak Power Tracking Techniques for Solar Storage System,” Proc. of Thirteenth Annual Applied Power Electronics Conference and Exposition(APEC’ 98), Vol. 2, pp. 679–685, 1998.

    Article  Google Scholar 

  71. 71.

    Hohm, D. P. and Ropp, M. E., “Comparative Study of Maximum Power Point Tracking Algorithms using an Experimental, Programmable, Maximum Power Point Tracking Test Bed,” Proc. of the Twenty-Eighth IEEE Photovoltaic Specialists Conference, pp. 1699–1702, 2000.

    Chapter  Google Scholar 

  72. 72.

    Subudhi, B. and Pradhan, R., “A Comparative Study on Maximum Power Point Tracking Techniques for Photovoltaic Power Systems,” IEEE Transactions on Sustainable Energy, Vol. 4, No. 1, pp. 89–98, 2013.

    Article  Google Scholar 

  73. 73.

    Kim, S. -K., Kim, E. -S., and Ahn, J. -B., “Modeling and Control of a Grid-connected Wind/PV Hybrid Generation System,” Proc. of 2005/2006 IEEE PES Transmission and Distribution Conference and Exhibition, pp. 1202–1207, 2006.

    Google Scholar 

  74. 74.

    Giraud, F. and Salameh, Z. M., “Steady-State Performance of a Grid-Connected Rooftop Hybrid Wind-Photovoltaic Power System with Battery Storage,” IEEE Power Engineering Review, Vol. 21, No. 2, pp. 54–54, 2001.

    Article  Google Scholar 

  75. 75.

    Cristaldi, L., Faifer, M., Rossi, M., and Toscani, S., “An Improved Model-Based Maximum Power Point Tracker for Photovoltaic Panels,” IEEE Transactions on Instrumentation and Measurement, Vol. 63, No. 1, pp. 63–71, 2014.

    Article  Google Scholar 

  76. 76.

    Masoum, M. A. S., Dehbonei, H., and Fuchs, E. F., “Theoretical and Experimental Analyses of Photovoltaic Systems with Voltageand Current-Based Maximum Power-Point Tracking,” IEEE Transactions on Energy Conversion, Vol. 17, No. 4, pp. 514–522, 2002.

    Article  Google Scholar 

  77. 77.

    Spiazzi, G., Buso, S., and Mattavelli, P., “Analysis of MPPT Algorithms for Photovoltaic Panels Based on Ripple Correlation Techniques in Presence of Parasitic Components,” Proc. of Power Electronics Conference (COBEP’ 09), pp. 88–95, 2009.

    Google Scholar 

  78. 78.

    Ibrahim, H. E. S. A., Houssiny, F. F., El-Din, H. M. Z., and El-Shibini, M. A., “Microcomputer Controlled Buck Regulator for Maximum Power Point Tracker for DC Pumping System Operates from Photovoltaic System,” Proc. of IEEE International Fuzzy Systems Conference, Vol. 1, pp. 406–411, 1999.

    Google Scholar 

  79. 79.

    Kurokami, S. and Takehara, N., “Power control apparatus and method and power generating system using them,” US Patents, No. EP0628901 A2, 1994.

    Google Scholar 

  80. 80.

    Fangrui, L., Kang, Y., Zhang, Y., and Duan, S., “Comparison of P&O and Hill Climbing MPPT Methods for Grid-Connected PV Converter,” Proc. of 3rd IEEE Conference on Industrial Electronics and Applications(ICIEA), pp. 804–807, 2008.

    Google Scholar 

  81. 81.

    Zbeeb, A., Devabhaktuni, V., and Sebak, A., “Improved Photovoltaic MPPT Algorithm Adapted for Unstable Atmospheric Conditions and Partial Shading,” Proc. of International Conference on Clean Electrical Power, pp. 320–323, 2009.

    Google Scholar 

  82. 82.

    Onat, N., “Recent Developments in Maximum Power Point Tracking Technologies for Photovoltaic Systems,” International Journal of Photoenergy, Vol. 2010, pp. 1–11, 2010.

    Article  Google Scholar 

  83. 83.

    Salas, V., Olías, E., Barrado, A., and Lázaro, A., “Review of the Maximum Power Point Tracking Algorithms for Stand-Alone Photovoltaic Systems,” Solar Energy Materials and Solar Cells, Vol. 90, No. 11, pp. 1555–1578, 2006.

    Article  Google Scholar 

  84. 84.

    Esram, T. and Chapman, P. L., “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques,” IEEE Transactions on Energy Conversion, Vol. 22, No. 2, pp. 439–449, 2007.

    Article  Google Scholar 

  85. 85.

    Karabacak, K. and Cetin, N., “Artificial Neural Networks for Controlling Wind-PV Power Systems: A review,” Renewable and Sustainable Energy Reviews, Vol. 29, pp. 804–827, 2014.

    Article  Google Scholar 

  86. 86.

    Altas, I. H. and Sharaf, A. M., “A Novel Maximum Power Fuzzy Logic Controller for Photovoltaic Solar Energy Systems,” Renewable Energy, Vol. 33, No. 3, pp. 388–399, 2008.

    Article  Google Scholar 

  87. 87.

    Duryea, S., Islam, S., and Lawrance, W., “A Battery Management System for Stand-alone Photovoltaic Energy Systems,” IEEE Industry Applications Magazine, Vol. 7, No. 3, pp. 67–72, 2001.

    Article  Google Scholar 

  88. 88.

    Jongerden, M. R. and Haverkort, B. R., “Which Battery Model to use?” Proc. 25th U.K. Perform. Eng. Workshop, pp. 76–88, 2008.

    Google Scholar 

  89. 89.

    Dürr, M., Cruden, A., Gair, S., and McDonald, J. R., “Dynamic Model of a Lead Acid Battery for Use in a Domestic Fuel Cell System,” Journal of Power Sources, Vol. 161, No. 2, pp. 1400–1411, 2006.

    Article  Google Scholar 

  90. 90.

    Diaf, S., Belhamelb, M., Haddadic, M., and Louchea, A., “Technical and Economic Assessment of Hybrid Photovoltaic/Wind System with Battery Storage in Corsica Island,” Energy Policy, Vol. 36, No. 2, pp. 743–754, 2008.

    Article  Google Scholar 

  91. 91.

    Bin, A., Hongxing, A., Hui, S., and Xianbo, L., “Computer Aided Design for Pv/Wind Hybrid System,” Proc. of the 3rd World Conference on Photovoltaic Energy Conversion, Vol. 3, pp. 2411–2414, 2003.

    Google Scholar 

  92. 92.

    Borowy, B. S. and Salameh, Z. M., “Methodology for Optimally Sizing the Combination of a Battery Bank and PV Array in a Wind/PV Hybrid System,” IEEE Transactions on Energy Conversion, Vol. 11, No. 2, pp. 367–375, 1996.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sung-Hoon Ahn.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bhandari, B., Poudel, S.R., Lee, KT. et al. Mathematical modeling of hybrid renewable energy system: A review on small hydro-solar-wind power generation. Int. J. of Precis. Eng. and Manuf.-Green Tech. 1, 157–173 (2014). https://doi.org/10.1007/s40684-014-0021-4

Download citation

Keywords

  • Mathematical modeling
  • Maximum power point tracking (MPPT)
  • Photovoltaic (PV)
  • Wind
  • Hydro
  • Hybrid
  • Renewable energy