Skip to main content

Hybrid manufacturing in micro/nano scale: A Review

Abstract

In this paper, a total of 57 micro and nano scale hybrid manufacturing processes are reviewed. These processes are categorized in terms of process timing and process type. Process timing is one of the most important aspects of manufacturing, and three different process schemes — concurrent, main/assistive (M/S) separate, and main/main (M/M) separate — are considered. The process type is categorized as either geometrically additive or subtractive, and all hybrid processes are categorized into combinations of additive, subtractive, and assistive process. Features and advantages are described for each of these classifications. Machining is found to be the most common process for both micro and nano-scale hybrid manufacturing. Of micro scale hybrid manufacturing schemes, 74.4% use assistive processes as a secondary process because the main purpose of most micro scale hybrid manufacturing is to improve the quality of the process. In nano scale manufacturing, 61.5% of hybrid manufacturing schemes employ assistive processes, since these processes typically focus on the fabrication of parts that are difficult to fabricate using a single, existing process. Based on a summary of published work, future trends in hybrid manufacturing at the micro and nano scale are suggested.

References

  1. 1.

    Kalpakjian, S. and Schmid, S. “Manufacturing Engineering and Technology,” 6th ed., Prentice Hall Professional Technical Ref., 2009.

    Google Scholar 

  2. 2.

    Agarwala, M. K., Jamalabad, V. R., Langrana, N. A., Safari, A., Whalen, P. J., and Danforth, S. C., “Structural Quality of Parts Processed by Fused Deposition,” Rapid Prototyping Journal, Vol. 2, No. 4, pp. 4–19, 1996.

    Google Scholar 

  3. 3.

    Karunakaran, K. P., Suryakumar, S., Pushpa, V., and Akula, S., “Low Cost Integration of Additive and Subtractive Processes for Hybrid Layered Manufacturing,” Robotics and Computer-Integrated Manufacturing, Vol. 26, No. 5, pp. 490–499, 2010.

    Google Scholar 

  4. 4.

    Zhu, Z., Dhokia, V. G., Nassehi, A., and Newman, S. T., “A Review of Hybrid Manufacturing Processes — State of the Art and Future Perspectives,” International Journal of Computer Integrated Manufacturing, Vol. 26, No. 7, pp. 596–615, 2013.

    Google Scholar 

  5. 5.

    Swift, K. and Booker, J., “Process Selection: From Design to Manufacture,” 2nd ed., Oxford: Butterworth-Heinemann, pp. 1–13, 2003.

    Google Scholar 

  6. 6.

    Nassehi, A., Newman, S., Dhokia, V., Zhu, Z., and Asrai, R., “Using formal Methods to Model Hybrid Manufacturing Processes,” in: Enabling Manufacturing Competitiveness and Economic Sustainability, ElMaraghy, H. A. (Eds.), Springer Berlin Heidelberg, pp. 52–56, 2012.

    Google Scholar 

  7. 7.

    Kozak, J. and Rajurkar, K. P. “Hybrid Machining Process Evaluation and Eevelopment,” in: Proc. of 2nd International conference on machining and measurements of sculptured surfaces, pp. 20–22, 2000.

    Google Scholar 

  8. 8.

    Menzies, I. and Koshy, P., “Assessment of Aabrasion-assisted Material Removal in Wire EDM,” CIRP Annals — Manufacturing Technology, Vol. 57, No. 1, pp. 195–198, 2008.

    Google Scholar 

  9. 9.

    Rivette, M., Hacoet, J. Y., and Mognot, P., “A Graph-based Methodology for Hybrid Rapid Design,” Proc. of the Institution of Mechanical Engineers, Part B — Journal of Engineering Manufacture, Vol. 221, No. 4, pp. 685–697, 2007.

    Google Scholar 

  10. 10.

    Dandekar, C. R., Shin, Y. C., and Barnes, J., “Machinability Improvement of Titanium Alloy (Ti-6Al-4V) via LAM and Hybrid Machining,” International Journal of Machine Tools and Manufacture, Vol. 50, No. 2, pp. 174–182, 2010.

    Google Scholar 

  11. 11.

    Molian, R., Neumann, C., Shrotriya, P., and Molian, P., “Novel Laser/Water-Jet Hybrid Manufacturing Process for Cutting Ceramics,” Journal of manufacturing science and engineering, Vol. 130, No. 3, pp. 1008.1–1008.11, 2008.

    Google Scholar 

  12. 12.

    Araghi, B. T., Manco, G. L., Bambach, M., and Hirt, G., “Investigation into a New Hybrid Forming Process: Incremental Sheet Forming Combined with Stretch Forming,” CIRP Annals — Manufacturing Technology, Vol. 58, No. 1, pp. 225–228, 2009.

    Google Scholar 

  13. 13.

    She, C. H. and Hung, C. W., “Development of Multi-axis Numerical Control Program for Mill-turn Machine,” Proc. of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 222, No. 6, pp. 741–745, 2008.

    Google Scholar 

  14. 14.

    Roderburg, A., Gerhardt, K., Hinke, C., Hong-Seok, P., Buchholz, S., and Klocke, F. “Design Methodology for Innovative Hybrid Manufacturing Technologies,” Proc. of 17th International Conference on Concurrent Enterprising (ICE), pp. 1–9, 2011.

    Google Scholar 

  15. 15.

    Holtkamp, J., Roesner, A., and Gillner, A., “Advances in Hybrid Laser Joining,” The International Journal of Advanced Manufacturing Technology, Vol. 47, No. 9–12, pp. 923–930, 2010.

    Google Scholar 

  16. 16.

    Rajurkar, K. P., Zhu, D., McGeough, J. A., Kozak, J., and De Silva, A., “New Developments in Electro-Chemical Machining,” CIRP Annals — Manufacturing Technology, Vol. 48, No. 2, pp. 567–579, 1999.

    Google Scholar 

  17. 17.

    Curtis, D. T., Soo, S. L., Aspinwall, D. K., and Sage, C., “Electrochemical Superabrasive Machining of a Nickel-based Aeroengine Alloy Using Mounted Grinding Points,” CIRP Annals — Manufacturing Technology, Vol. 58, No. 1, pp. 173–176, 2009.

    Google Scholar 

  18. 18.

    Nau, B., Roderburg, A., and Klocke, F., “Ramp-up of Hybrid Manufacturing Technologies,” CIRP Journal of Manufacturing Science and Technology, Vol. 4, No. 3, pp. 313–316, 2011.

    Google Scholar 

  19. 19.

    Lauwers, B., Klocke, F., and Klink, A., “Advanced Manufacturing through the Implementation of Hybrid and Media Assisted Processes,” International Chemnitz Manufacturing Colloquium, Vol. 54, pp. 205–220, 2010.

    Google Scholar 

  20. 20.

    Klocke, F., Roderburg, A., and Zeppenfeld, C., “Design Methodology for Hybrid Production Processes,” Procedia Engineering, Vol. 9, pp. 417–430, 2011.

    Google Scholar 

  21. 21.

    Chung, J., Ko, S., Grigoropoulos, C. P., Bieri, N. R., Dockendorf, C., and Poulikakos, D., “Damage-free Low Temperature Pulsed Laser Printing of Gold Nanoinks on Polymers,” Journal of Heat Transfer-Transactions of the Asme, Vol. 127, No. 7, pp. 724–732, 2005.

    Google Scholar 

  22. 22.

    Ko, S. H., Chung, J., Pan, H., Grigoropoulos, C. P., and Poulikakos, D., “Fabrication of Multilayer Passive and Active Electric Components on Polymer using Inkjet Printing and Low Temperature Laser Processing,” Sensors and Actuators a-Physical, Vol. 134, No. 1, pp. 161–168, 2007.

    Google Scholar 

  23. 23.

    Bieri, N., Chung, J., Poulikakos, D., and Grigoropoulos, C., “An Experimental Investigation of Microresistor Laser Printing with Gold Nanoparticle-Laden Inks,” Applied Physics A, Vol. 80, No. 7, pp. 1485–1495, 2005.

    Google Scholar 

  24. 24.

    Ko, S. H., Pan, H., Grigoropoulos, C. P., Luscombe, C. K., Fréchet, J. M., and Poulikakos, D., “All-Inkjet-Printed Flexible Electronics Fabrication on a Polymer Substrate by Low-Temperature High-Resolution Selective Laser Sintering of Metal Nanoparticles,” Nanotechnology, Vol. 18, No. 34, Paper No. 345202, 2007.

    Google Scholar 

  25. 25.

    Ko, S. H., Pan, H., Hwang, D. J., Chung, J., Ryu, S., Grigoropoulos, C. P., and Poulikakos, D., “High Resolution Selective Multilayer Laser Processing by Nanosecond Laser Ablation of Metal Nanoparticle Films,” Journal of Applied Physics, Vol. 102, No. 9, pp. 3102–3102-9, 2007.

    Google Scholar 

  26. 26.

    Kang, B., Han, S., Kim, J., Ko, S., and Yang, M., “One-Step Fabrication of Copper Electrode by Laser-Induced Direct Local Reduction and Agglomeration of Copper Oxide Nanoparticle,” The Journal of Physical Chemistry C, Vol. 115, No. 48, pp. 23664–23670, 2011.

    Google Scholar 

  27. 27.

    Ahn, S. H., Choi, J. O., Kim, C. S., Lee, G. Y., Lee, H. T., and et al., “Laser-Assisted Nano Particle Deposition System and Its Application for Dye Sensitized Solar Cell Fabrication,” CIRP Annals — Manufacturing Technology, Vol. 61, No. 1, pp. 575–578, 2012.

    Google Scholar 

  28. 28.

    De Silva, A. K. M., Pajak, P. T., Harrison, D. K., and McGeough, J. A., “Modelling and Experimental Investigation of Laser Assisted Jet Electrochemical Machining,” CIRP Annals — Manufacturing Technology, Vol. 53, No. 1, pp. 179–182, 2004.

    Google Scholar 

  29. 29.

    Pajak, P. T., Desilva, A. K. M., Harrison, D. K., and Mcgeough, J. A., “Precision and Efficiency of Laser Assisted Jet Electrochemical Machining,” Precision Engineering, Vol. 30, No. 3, pp. 288–298, 2006.

    Google Scholar 

  30. 30.

    De Silva, A. K. M., Pajak, P. T., McGeough, J. A., and Harrison, D. K., “Thermal Effects in Laser Assisted Jet Electrochemical Machining,” CIRP Annals — Manufacturing Technology, Vol. 60, No. 1, pp. 243–246, 2011.

    Google Scholar 

  31. 31.

    Zhang, H., Xu, J. W., and Wang, J. M., “Investigation of a Novel Hybrid Process of Laser Drilling Assisted with Jet Electrochemical Machining,” Optics and Lasers in Engineering, Vol. 47, No. 11, pp. 1242–1249, 2009.

    MathSciNet  Google Scholar 

  32. 32.

    Li, L. and Achara, C., “Chemical Assisted Laser Machining for the Minimisation of Recast and Heat Affected Zone,” CIRP Annals — Manufacturing Technology, Vol. 53, No. 1, pp. 175–178, 2004.

    Google Scholar 

  33. 33.

    Schopf, M., Beltrami, I., Boccadoro, M., and Kramer, D., “ECDM (Electro Chemical Discharge Machining), A New Method for Trueing and Dressing of Metal-Bonded Diamond Grinding Tools,” CIRP Annals — Manufacturing Technology, Vol. 50, No. 1, pp. 125–128, 2001.

    Google Scholar 

  34. 34.

    Melkote, S., Kumar, M., Hashimoto, F., and Lahoti, G., “Laser Assisted Micro-Milling of Hard-to-Machine Materials,” CIRP Annals — Manufacturing Technology, Vol. 58, No. 1, pp. 45–48, 2009.

    Google Scholar 

  35. 35.

    Anderson, M. C. and Shin, Y. C., “Laser-assisted Machining of An Austenitic Stainless Steel: P550,” Proc. of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 220, No. 12, pp. 2055–2067, 2006.

    Google Scholar 

  36. 36.

    Sundaram, M. M., Pavalarajan, G. B., and Rajurkar, K. P., “A Study on Process Parameters of Ultrasonic Assisted Micro EDM based on Taguchi Method,” Journal of Materials Engineering and Performance, Vol. 17, No. 2, pp. 210–215, 2008.

    Google Scholar 

  37. 37.

    Park, J. K., Yoon, J. W., and Cho, S. H., “Vibration Assisted Femtosecond Laser Machining on Metal,” Optics and Lasers in Engineering, Vol. 50, No. 6, pp. 833–837, 2012.

    Google Scholar 

  38. 38.

    Kang, B., Kim, G. W., Yang, M., Cho, S. H., and Park, J. K., “A Study on the Effect of Ultrasonic Vibration in Nanosecond Laser Machining,” Optics and Lasers in Engineering, Vol. 50, No. 12, pp. 1817–1822, 2012.

    Google Scholar 

  39. 39.

    Park, J. K., Yoon, J. W., Kang, M. C., and Cho, S. H., “Surface Effects of Hybrid Vibration-Assisted Femtosecond Laser System for Micro-Hole Drilling of Copper Substrate,” Transactions of Nonferrous Metals Society of China, Vol. 22,Supplement 3, pp. S801–S807, 2012.

    Google Scholar 

  40. 40.

    Yang, I., Park, M. and Chu, C., “Micro ECM with Ultrasonic Vibrations using a Semi-Cylindrical Tool,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 2, pp. 5–10, 2009.

    MATH  Google Scholar 

  41. 41.

    Gao, C. and Liu, Z., “A Study of Ultrasonically Aided Micro-Electrical-Discharge Machining by the Application of Workpiece Vibration,” Journal of Materials Processing Technology, Vol. 139, No. 1–3, pp. 226–228, 2003.

    Google Scholar 

  42. 42.

    Han, M. S., Min, B. K., and Lee, S. J., “Geometric Improvement of Electrochemical Discharge Micro-Drilling Using an Ultrasonic-Vibrated Electrolyte,” Journal of Micromechanics and Microengineering, Vol. 19, No. 6, Paper No. 065004, 2009.

    Google Scholar 

  43. 43.

    Wang, W., Liu, Z. D., Tian, Z. J., Huang, Y. H., and Liu, Z. X., “High Efficiency Slicing of Low Resistance Silicon Ingot by Wire Electrolytic-Spark Hybrid Machining,” Journal of Materials Processing Technology, Vol. 209, No. 7, pp. 3149–3155, 2009.

    Google Scholar 

  44. 44.

    Lee, J. M., Sung, I. H., and Kim, D. E., “Process Development of Precision Surface Micro-Machining using Mechanical Abrasion and Chemical Etching,” Microsystem Technologies, Vol. 8, No. 6, pp. 419–426, 2002.

    Google Scholar 

  45. 45.

    Liu, H. S., Yan, B. H., Chen, C. L., and Huang, F. Y., “Application of Micro-EDM Combined with High-Frequency Dither Grinding to Micro-Hole Machining,” International Journal of Machine Tools and Manufacture, Vol. 46, No. 1, pp. 80–87, 2006.

    Google Scholar 

  46. 46.

    Chiolerio, A., Maccioni, G., Martino, P., Cotto, M., Pandolfi, P., and et al., “Inkjet Printing and Low Power Laser Annealing of Dilver Nanoparticle Traces for the Realization of Low Resistivity Lines for Flexible Electronics,” Microelectronic Engineering, Vol. 88, No. 8, pp. 2481–2483, 2011.

    Google Scholar 

  47. 47.

    Kim, M. K., Kang, H., Kang, K., Lee, S. H., Hwang, J. Y., Moon, Y., and Moon, S. J., “Laser Sintering of Inkjet-Printed Silver Nanoparticles on Glass and PET Substrates,” Proc. of 10th IEEE International Conference on Nanotechonology, pp. 520–524, 2010.

    Google Scholar 

  48. 48.

    Kuo, C. L., Huang, J. D., and Liang, H. Y., “Fabrication of 3D Metal Microstructures using a Hybrid Process of Micro-EDM and Laser Assembly,” International Journal of Advanced Manufacturing Technology, Vol. 21, No. 10–11, pp. 796–800, 2003.

    Google Scholar 

  49. 49.

    Park, J. M., Jeong, S. C., Lee, H. W., Jeong, H. D., and Lee, E. S., “A study on the Chemical Mechanical Micro-machining (C3M) Process and Its Application,” Journal of Materials Processing Technology, Vol. 130–131, pp. 390–395, 2002.

    Google Scholar 

  50. 50.

    Yeo, S. H. and Tan, L. K., “Effects of Ultrasonic Vibrations in Micro Electro-Discharge Machining of Microholes,” Journal of Micromechanics and Microengineering, Vol. 9, No. 4, pp. 345–352, 1999.

    Google Scholar 

  51. 51.

    Yu, Z. Y., Zhang, Y., Li, J., Luan, J., Zhao, F., and Guo, D., “High Aspect Ratio Micro-Hole Drilling Aided with Ultrasonic Vibration and Planetary Movement of Electrode by Micro-EDM,” CIRP Annals — Manufacturing Technology, Vol. 58, No. 1, pp. 213–216, 2009.

    Google Scholar 

  52. 52.

    Jia, X. H., Zhang, J. H., and Ai, X., “Study on a New Kind of Combined Machining Technology of Ultrasonic Machining and Electrical Discharge Machining,” International Journal of Machine Tools and Manufacture, Vol. 37, No. 2, pp. 193–199, 1997.

    Google Scholar 

  53. 53.

    Zhao, W. S., Wang, Z. L., Di, S. C., Chi, G. X., and Wei, H. Y., “Ultrasonic and Electric Discharge Machining to Deep and Small Hole on Titanium Alloy,” Journal of Materials Processing Technology, Vol. 120, No. 1–3, pp. 101–106, 2002.

    Google Scholar 

  54. 54.

    Huang, H., Zhang, H., Zhou, L., and Zheng, H. Y., “Ultrasonic Vibration Assisted Electro-Discharge Machining of Microholes in Nitinol,” Journal of Micromechanics and Microengineering, Vol. 13, No. 5, pp. 693–700, 2003.

    Google Scholar 

  55. 55.

    Yan, B. H., Wang, A. C., Huang, C. Y., and Huang, F. Y., “Study of Precision Micro-Holes in Borosilicate Glass Using Micro EDM Combined with Micro Ultrasonic Vibration Machining,” International Journal of Machine Tools and Manufacture, Vol. 42, No. 10, pp. 1105–1112, 2002.

    Google Scholar 

  56. 56.

    Hu, M., Li, Y., Zhu, X., and Tong, H., “Influence of Side-Insulation Film on Hybrid Process of Micro EDM and ECM for 3D Micro Structures,” Advanced Materials Research, Vol. 230–232, pp. 517–521, 2011.

    Google Scholar 

  57. 57.

    Kim, S., Kim, B. H., Chung, D. K., Shin, H. S., and Chu, C. N., “Hybrid Micromachining using a Nanosecond Pulsed Laser and Micro EDM,” Journal of Micromechanics and Microengineering, Vol. 20, No. 1, Paper No. 015037, 2010.

    Google Scholar 

  58. 58.

    Cao, X., Kim, B., and Chu, C., “Hybrid Micromachining of Glass using ECDM and Micro Grinding,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 1, pp. 5–10, 2013.

    Google Scholar 

  59. 59.

    Fessler, J. R., Merz, R., Nickel, A. H., Prinz, F. B. and Weiss, L. E. “Laser Deposition of Metals for Shape Deposition Manufacturing,” Proc. of the Solid Freeform Fabrication Symposium, pp. 117–124, 1996.

    Google Scholar 

  60. 60.

    Lanzetta, M. and Cutkosky, M. R., “Shape Deposition Manufacturing of Biologically Inspired Hierarchical Microstructures,” CIRP Annals — Manufacturing Technology, Vol. 57, No. 1, pp. 231–234, 2008.

    Google Scholar 

  61. 61.

    Chu, W. S., Kim, S. G., Ung, W. K., Kim, H., and Ahn, S. H., “Fabrication of Micro Parts using Nano Composite Deposition System,” Rapid Prototyping Journal, Vol. 13, No. 5, pp. 276–283, 2007.

    Google Scholar 

  62. 62.

    Hur, J. H., Lee, K., Zhu, h, and Kim, J., “Hybrid Rapid Prototyping System using Machining and Deposition,” Computer-Aided Design, Vol. 34, No. 10, pp. 741–754, 2002.

    Google Scholar 

  63. 63.

    Seet, H. L., Li, X. P., Hong, M. H., Lee, K. S., Teh, K. H., and Teo, H. H., “Electrodeposition of Ni-Fe Micro-Pillars using Laser Drilled Templates,” Journal of Materials Processing Technology, Vol. 192–193, pp. 346–349, 2007.

    Google Scholar 

  64. 64.

    Dirk Biermann, M. H., “Analysis of the Laser Drilling Process for the Combination with a Single-Lip Deep Hole Drilling Process with Small Diameters,” Physics Procedia, Vol. 12,Part B, pp. 308–316, 2011.

    Google Scholar 

  65. 65.

    Okasha, M. M., Mativenga, P. T., Driver, N., and Li, L., “Sequential Laser and Mechanical Micro-Drilling of Ni Superalloy for Aerospace Application,” CIRP Annals — Manufacturing Technology, Vol. 59, No. 1, pp. 199–202, 2010.

    Google Scholar 

  66. 66.

    Li, L., Diver, C., Atkinson, J., Giedl-Wagner, R., and Helml, H. J., “Sequential Laser and EDM Micro-drilling for Next Generation Fuel Injection Nozzle Manufacture,” CIRP Annals — Manufacturing Technology, Vol. 55, No. 1, pp. 179–182, 2006.

    Google Scholar 

  67. 67.

    Hwang, Y. L., Kuo, C. L., and Hwang, S. F., “Fabrication of a Micro-pin Array with High Density and High Hardness by Combining Mechanical Peck-Drilling and Reverse-EDM,” Journal of Materials Processing Technology, Vol. 210, No. 9, pp. 1103–1130, 2010.

    Google Scholar 

  68. 68.

    Funatsu, J., Thompson, C. V., Melngailis, J., and Walpole, J. N., “Laser Assisted Focused-Ion-Beam-Induced Deposition of Copper,” Journal of Vacuum Science & Technology B, Vol. 14, No. 1, pp. 179–180, 1996.

    Google Scholar 

  69. 69.

    Kang, B., Ko, S., Kim, J., and Yang, M., “Microelectrode Fabrication by Laser Direct Curing of Tiny Nanoparticle Self-Generated from Organometallic Ink,” Optics Express, Vol. 19, No. 3, pp. 2573–2579, 2011.

    Google Scholar 

  70. 70.

    Ko, S. H., Chung, J., Choi, Y., Hwang, D. J., and Grigoropoulos, C. P. “Subtractive Laser Processing of Low Temperature Inkjet Printed Micro Electric Components of Functional Nano-Ink for Flexible Electronics,” Proc. IPACK2005 ASME Inter PACK’ 05, Paper No. 73186, 2005.

    Google Scholar 

  71. 71.

    Chimmalgi, A., Choi, T. Y., Grigoropoulos, C. P., and Komvopoulos, K., “Femtosecond Laser Aperturless Near-Field Nanomachining of Metals Assisted by Scanning Probe Microscopy,” Aplied Physics Letters, Vol. 82, pp. 1146–1148, 2003.

    Google Scholar 

  72. 72.

    Staude, I., Decker, M., Ventura, M. J., Jagadish, C., Neshev, D. N., and et al., “Hybrid High-Resolution Three-Dimensional Nanofabrication for Metamaterials and Nanoplasmonics,” Advanced Materials, Vol. 25, No. 9, pp. 1260–1264, 2013.

    Google Scholar 

  73. 73.

    Son, Y., Yeo, J., Moon, H., Lim, T. W., Hong, S., and et al., “Nanoscale Electronics: Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles,” Advenced Materials, Vol. 23, No. 28, pp. 3176–3181, 2011.

    Google Scholar 

  74. 74.

    Ahn, S. H., Chun, D. M., and Kim, C. S., “Nanoscale Hybrid Manufacturing Process by Nano Particle Deposition System (NPDS) and Focused Ion Beam (FIB),” CIRP Annals — Manufacturing Technology, Vol. 60, No. 1, pp. 583–586, 2011.

    Google Scholar 

  75. 75.

    Lim, T., Son, Y., Yang, D. -Y., Kong, H. J., and Lee, K. S., “Selective Ablation-Assisted Two-Photon Stereolithography for Effective Nano- and Microfabrication,” Applied Physics A, Vol. 103, No. 4, pp. 1111–1116, 2011.

    Google Scholar 

  76. 76.

    Fujii, T., Iwasaki, K., Munekane, M., Takeuchi, T., Hasuda, M., and et al., “A Nanofactory by Focused Ion Beam,” Journal of Micromechanics and Microengineering, Vol. 15, No. 10, pp. S286–S291, 2005.

    Google Scholar 

  77. 77.

    Igaki, J. y., Kometani, R., Nakamatsu, K. I., Kanda, K., and et al., “Three-Dimensional Rotor Fabrication by Focused-Ion-Beam Chemical-Vapor-Deposition,” Microelectronic Engineering, Vol. 83, No. 4–9, pp. 1221–1224, 2006.

    Google Scholar 

  78. 78.

    Fischer, A. C., Belova, L. M., Rikers, Y. G. M., Malm, B. G., Radamson, H. H., and et al., “3D Free-Form Patterning of Silicon by Ion Implantation, Silicon Deposition, and Selective Silicon Etching,” Advanced Functional Materials, Vol. 22, No. 19, pp. 4004–4008, 2012.

    Google Scholar 

  79. 79.

    Yoshida, Y., Masuzawa, T., Ikeda, H., Oguchi, K., Yamagishi, H., and Wakabayashi, Y., “Development of a Laser-Focused Ion Beam Combination Machine,” Review of Scientific Instruments, Vol. 81, No. 2, Paper No. 02B702, 2010.

    Google Scholar 

  80. 80.

    Salzer, R. and Stegmann, H., “Efficient and Precise Sample Preparation by Combination of Pulsed Laser Ablation and FIB Milling,” Microscopy and Microanalysis, Vol. 18, No. 2, pp. 636–637, 2012.

    Google Scholar 

  81. 81.

    Lee, J. W. Choi, J. O., Jeong, J. E., Yang, S., Ahn, S. H., and et al., “Energy Harvesting of Flexible and Translucent Dye-Sensitized Solar Cell Fabricated by Laser Assisted Nano Particle Deposition System,” Electrochimica Acta, Vol. 103, pp. 252–258, 2013.

    Google Scholar 

  82. 82.

    Pajak, P. T., De Silva, A. K. M., McGeough, J. A., and Harrison, D. K., “Modelling the Aspects of Precision and Efficiency in Laser-Assisted Jet Electrochemical Machining (LAJECM),” Journal of Materials Processing Technology, Vol. 149, No. 1–3, pp. 512–518, 2004.

    Google Scholar 

  83. 83.

    Hua, Z. and Jiawen, X., “Modeling and Experimental Investigation of Laser Drilling with Jet Electrochemical Machining,” Chinese Journal of Aeronautics, Vol. 23, No. 4, pp. 454–460, 2010.

    Google Scholar 

  84. 84.

    Kramer, D., Rehsteiner, F., and Schumacher, B., “ECD (Electrochemical In-process Controlled Dressing), a New Method for Grinding of Modern High-performance Cutting Materials of Highest Quality,” CIRP Annals — Manufacturing Technology, Vol. 48, No. 1, pp. 265–268, 1999.

    Google Scholar 

  85. 85.

    Kumar, M., Melkote, S., and Lahoti, G., “Laser-Assisted Microgrinding of Ceramics,” CIRP Annals — Manufacturing Technology, Vol. 60, No. 1, pp. 367–370, 2011.

    Google Scholar 

  86. 86.

    Tian, Y., Wu, B., Anderson, M., and Shin, Y. C., “Laser-Assisted Milling of Silicon Nitride Ceramics and Inconel 718,” Journal of manufacturing science and engineering, Vol. 130, No. 3, Paper No. 031013 2008.

    Google Scholar 

  87. 87.

    Ding, H. T. and Shin, Y. C., “Laser-Assisted Machining of Hardened Steel Parts with Surface Integrity Analysis,” International Journal of Machine Tools & Manufacture, Vol. 50, No. 1, pp. 106–114, 2010.

    Google Scholar 

  88. 88.

    Jonathan, A. S. and Yung, C. S., “Comparative Evaluation of Laser-Assisted Micro-Milling for AISI 316, AISI 422, TI-6AL-4V and Inconel 718 in a Side-Cutting Configuration,” Journal of Micromechanics and Microengineering, Vol. 20, No. 7, Paper No. 075012, 2010.

    Google Scholar 

  89. 89.

    Shelton, J. A. and Shin, Y. C., “Experimental Evaluation of Laser-Assisted Micromilling in a Slotting Configuration,” Journal of manufacturing science and engineering, Vol. 132, No. 2, Paper No. 021008, 2010.

    Google Scholar 

  90. 90.

    Dandekar, C. R. and Shin, Y. C., “Laser-Assisted Machining of a Fiber Reinforced Metal Matrix Composite,” Journal of manufacturing science and engineering, Vol. 132, No. 6, Paper No. 061004, 2010.

    Google Scholar 

  91. 91.

    Ding, H. and Shin, Y. C., “Improvement of Machinability of Waspaloy via Laser-Assisted Machining,” The International Journal of Advanced Manufacturing Technology, Vol. 64, No. 1–4, pp. 475–486, 2013.

    Google Scholar 

  92. 92.

    Liang, H. Y., Kuo, C. L., and Huang, J. D., “Precise Micro-Assembly Through an Integration of Micro-EDM and Nd-YAG,” The International Journal of Advanced Manufacturing Technology, Vol. 20, No. 6, pp. 454–458, 2002.

    Google Scholar 

  93. 93.

    Peng, W. Y. and Liao, Y. S., “Study of Electrical Discharge Machining Technology for Slicing Silicon Ingots,” Journal of Materials Processing Technology, Vol. 140, No. 1–3, pp. 274–279, 2003.

    Google Scholar 

  94. 94.

    Weiss, L., Prinz, F. B., and Siewiork, D. P. “A Framework for Thermal Spray Shape Deposition: The MD* System,” Proc. of Solid Freeform Fabrication Symposium, pp. 178–186, 1991.

    Google Scholar 

  95. 95.

    Fessler, J. R., Nickel, A. H., Link, G., Prinz, F. B., and Fussell, P. “Functional Gradient Metallic Prototypes through Shape Deposition Manufacturing,” Proc. of the Solid Freeform Fabrication Symposium, 1997.

    Google Scholar 

  96. 96.

    Kietzman, J., “Rapid Prototyping Polymer Parts via Shape Deposition Manufacturing,” Ph.D. Thesis, Department of mechenical engineering, Stanford University, 1999.

    Google Scholar 

  97. 97.

    Pinilla, J. M., “Retaining Flexibility in Process Planning: Applications to Shape Deposition Manufacturing,” Ph. D. Thesis, Department of mechenical engineering, Stanford University, May, 2001.

    Google Scholar 

  98. 98.

    Kim, S. G., Chu, W. S., Jung, W. K., and Ahn, S. H., “Evaluation of Mechanical and Electrical Properties of Nanocomposite Parts Fabricated by Nanocomposite Deposition System (NCDS),” Journal of Materials Processing Technology, Vol. 187–188, pp. 331–334, 2007.

    Google Scholar 

  99. 99.

    Chu, W. S., Jeong, S. Y., Kim, S. G., Ha, W. S., Chi, S. C., and Ahn, S. H., “Fabrication of Biodegradable Drug Delivery System with Controlled Release Made of PLGA/5-FU/hydroxyapatite,” Rapid Prototyping Journal, Vol. 14, No. 5, pp. 293–299 2008.

    Google Scholar 

  100. 100.

    Lee, J. H., Ha, W. S., Chu, W. S., Park, C. W., Ahn, S. H., and Chi, S. C., “Preparation of Micro-Fabricated Biodegradable Polymeric Structures using NCDS,” Archives of Pharmacal Research, Vol. 31, No. 1, pp. 125–132, 2008.

    Google Scholar 

  101. 101.

    Chu, W. S., Jeong, S. Y., Pandey, J. K., Ahn, S. H., Lee, J. H. and Chi, S. C., “Fabrication of Composite Drug Delivery System using Nano Composite Deposition System and in vivo Characterization,” Int. J. Precis. Eng. Manuf., Vol. 9, No. 2, pp. 81–83, 2008.

    Google Scholar 

  102. 102.

    Kang, B., Kim, J., and Yang, M., “Solution-Based Adaptive Parallel Patterning by Laser-Induced Local Plasmonic Surface Defunctionalization,” Optics Express, Vol. 20, No. 27, pp. 29111–29120, 2012.

    Google Scholar 

  103. 103.

    Kim, C. S., “Nanoscale 3D Printing Process using Nano Particle Deposition System and Focused Ion Beam,” Ph. D. Thesis, Deparment of mechanical and aerospace engineering, Seoul National University, 2013.

    Google Scholar 

  104. 104.

    Chun, D. M., Kim, M. H., Lee, J. C., and Ahn, S. H., “TiO2 Coating on Metal and Polymer Substrates by Nano-Particle Deposition System (NPDS),” CIRP Annals — Manufacturing Technology, Vol. 57, No. 1, pp. 551–554, 2008.

    Google Scholar 

  105. 105.

    Jung, K., Song, W., Chun, D. M., Yeo, J. C., Kim, M. S., “Coating of Ni Powders through Micronozzle in a Nano Particle Deposition System,” Metals and Materials International, Vol. 16, No. 3, pp. 465–467, 2010.

    Google Scholar 

  106. 106.

    Song, W., Kim, Y. H., Kim, M. S., Ahn, S. H., and Lee, C. S., “Fine-Sized Etching of Flexible Substrates Using Nano Particle Deposition System (NPDS),” MATERIALS TRANSACTIONS, Vol. 51, No. 11, pp. 2099–2103, 2010.

    Google Scholar 

  107. 107.

    Kim, M. S., Chun, D. M., Choi, J. O., Lee, J. C., Kim, K. S., “Room Temperature Deposition of TiO2 using Nano Particle Deposition System (NPDS): Application to Dye-Sensitized Solar Cell (DSSC),” Int. J. Precis. Eng. Manuf., Vol. 12, No. 4, pp. 749–752, 2011.

    Google Scholar 

  108. 108.

    Kim, M. S., “Manufacturing of Flexible Dye-Sensitized Solar Cell (DSSC) using Nano Particle Deposition System (NPDS),” Ph. D. Thesis, Department of Mechanical and Aerospace Engineering, Seoul National University, 2011.

    Google Scholar 

  109. 109.

    Chun, D. M., “Development of Nano Particle Deposition System (NPDS) for Room Temperature Deposition of Metals and Ceramics and its Applications,” Ph. D. Thesis, Department of Mechanical and Aerospace Engineering, Seoul National Univesity, 2010.

    Google Scholar 

  110. 110.

    Kim, C. S., Park, J., Chu, W. S., Jang, D. Y., Kim, S. D., and Ahn, S. H., “Fabrication of Silicon Micro-mould for Polymer Replication using Focused Ion Beam,” Microelectronic Engineering, Vol. 86, No. 4–6, pp. 556–560, 2009.

    Google Scholar 

  111. 111.

    Kim, C. S., Ahn, S. H. and Jang, D. Y., “Nanoscale Effects in Carbon Structures Fabricated using Focused Ion Beam-Chemical Vapor Deposition,” Thin Solid Films, Vol. 518, No. 18, pp. 5177–5182, 2010.

    Google Scholar 

  112. 112.

    Kim, C. S., Kim, H. J., Ahn, S. H., and Jang, D. Y., “Morphological Influence of the Beam Overlap in Focused Ion Beam Induced Deposition using Raster Scan,” Microelectronic Engineering, Vol. 87, No. 5–8, pp. 972–976, 2010.

    Google Scholar 

  113. 113.

    Kim, C. S., Ahn, S. H., and Jang, D. Y., “Review: Developments in Micro/nanoscale Fabrication by Focused Ion Beams,” Vacuum, Vol. 86, No. 8, pp. 1014–1035, 2012.

    Google Scholar 

  114. 114.

    Yoshida, Y., Okazaki, W., and Uchida, T., “Laser and Focused Ion Beam Combined Machining for Micro Dies,” Review of Scientific Instruments, Vol. 83, No. 2, Paper No. 02B901, 2012.

    Google Scholar 

  115. 115.

    Stegmann, H., Domer, H., Cai, H., Rosenkranz, R. and Zschech, E. “Efficient Target Preparation by Combining Laser Ablation and FIB Milling in a Single Tool,” Proc. of Semiconductor Conference Dresden (SCD), pp. 1–4, 2011.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sung-Hoon Ahn.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chu, WS., Kim, CS., Lee, HT. et al. Hybrid manufacturing in micro/nano scale: A Review. Int. J. of Precis. Eng. and Manuf.-Green Tech. 1, 75–92 (2014). https://doi.org/10.1007/s40684-014-0012-5

Download citation

Keywords

  • Hybrid manufacturing
  • Micro scale
  • Nano scale
  • Process comparison
  • Additive
  • Subtractive
  • Assistive