Abstract
In recent years, there has been growing consideration of renewable energy especially photovoltaic devices. A silicon (Si) based solar cell is the most popularly and frequently considered among the photovoltaic devices, but its bulk thickness issue lowers the performance and hinders widespread application due to the material cost. Also, this thick nature causes difference in length between minority carrier diffusion and sufficient light absorption. To mitigate the issues there have been many recent studies on Si photovoltaic devices adopting nanostructuring strategies to enhance the performance. Therefore, we report two different approaches on recent nanostructuring techniques for photovoltaic devices; bottom-up and top-down processes, which are composed of vapor-liquid-solid, solution-liquid-solid, reactive ion etching with Langmuir Blodgett and metal assisted chemical etching. Those fabrication processes enable the fabrication of nanostructures with a highly ordered and alignment structures leading to enhance the light absorption and have an appropriate thickness of Si substrate regressing Auger recombination. The fabricated nanowire and nanocone array structures outperform existing results with light absorption exceeding 90%.
Article PDF
Similar content being viewed by others
References
Tsakalakos, L., “Nanostructures for Photovoltaics,” Mater. Sci. Eng. R., Vol. 62, No. 6, pp. 175–189, 2008.
Ji, S., Hwang, Y. S., Park, T., Lee, Y., Paek, J., and et al., “Graphite Foil Based Assembled Bipolar Plates for Polymer Electrolyte Fuel Cells,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 12, pp. 2183–2186, 2012.
Chang. I., Lee, M. H., Lee, J., Kim, Y., and Cha, S. W., “Air-Breathing Flexible Polydimethylsiloxane (PDMS)-Based Fuel Cell,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 3, pp. 501–504, 2013
Kim, T., Lee, J., Kim, D., and Park, H., “Ultra-Short Laser Patterning of Thin-Film CIGS Solar Cells through Glass Substrate,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 8, pp. 1287–1292, 2013
Kim, M., Chun, D., Choi, J., Lee, J., Kim, K., and et al., “Room Temperature Deposition of TiO2 using Nano Particle Deposition System (NPDS): Application to Dye-Sensitized Solar Cell (DSSC),” Int. J. Precis. Eng. Manuf., Vol. 12, No. 4, pp. 749–752, 2011
Becquerel, E., “La lumi_ere: Ses Causes et Ses E_ets,” tome second, Paper No. 122, 1867.
Chapin, D. M., Fuller, C. S., and Pearson, G. L., “A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power,” J. Appl. Phys., Vol. 25, No. 5, pp. 676–677, 1954.
Shockley, W. and Queisser, H. J., “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys., Vol. 32, No. 3, pp. 510–519, 1961.
Catalano, A., “Polycrystalline Thin-Film Technologies: Status and Prospects,” Sol. Energy Mat. Sol. C., Vol. 41–42, pp. 205–217, 1996.
Shah, A. V., Platz, R., and Keppner, H., “Thin-Film Silicon Solar Cells: A Review and Selected Trends,” Sol. Energy Mat. Sol. C., Vol. 38, No. 1–4, pp. 501–520, 1995.
Herzinger, C. M., Johs, B., McGahan, W. A., Woollam, J. A., and Paulson, W., “Ellipsometric Determination of Optical Constants for Silicon and Thermally Grown Silicon Dioxide via a Multi-Sample, Multi-Wavelength, Multi-Angle Investigation,” J. Appl. Phys., Vol. 83, No. 6, pp. 3323–3336, 1998.
Werner, J. H., Bergmann, R., and Brendel, R., “The Challenge of Crystalline Thin Film Silicon Solar Cells,” in: Festkörperprobleme 34, Helbig, R. (Eds.), Springer Berlin Heidelberg, pp. 115–146, 1994.
Han, S. E. and Chen, G., “Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics,” Nano Lett., Vol. 10, No. 3, pp. 1012–1015, 2010.
Chopra, K. L., Paulson, P. D., and Dutta, V., “Thin-Film Solar Cells: an Overview,” Progress in Photovoltaics: Research and Applications, Vol. 12, No. 2–3, pp. 69–92, 2004.
Okano, T., “A New Multi-Electrode Evaporator for Refractory Metals and Its Application to Getter Pumps,” Jpn. J. Appl. Phys., Vol. 20, pp. 213–219, 1981.
Müller, J., Rech, B., Springer, J., and Vanecek, M., “TCO and Light Trapping in Silicon Thin Film Solar Cells,” Solar Energy, Vol. 77, No. 6, pp. 917–930, 2004.
Zhu, J., Yu, Z., Burkhard, G. F., Hsu, C. M., Connor, S. T., and et al., “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett, Vol. 9, No. 1, pp. 279–282, 2009.
Kayes, B. M., Atwater, H. A., and Lewis, N. S., “Comparison of the Device Physics Principles of Planar and Radial P-N Junction Nanorod Solar Cells,” J. Appl. Phys., Vol. 97, No. 11, Paper No. 4302-11, 2005.
Li, J., Yu, H., Wong, S. M., Zhang, G., Sun, X., “Si Nanopillar Array Optimization on Si Thin Films for Solar Energy Harvesting,” Appl. Phys. Lett., Vol. 95, No. 3, Paper No. 3102, 2009.
Hu, L. and Chen, G., “Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications,” Nano Lett, Vol. 7, No. 11, pp. 3249–3252, 2007.
Wagner, R. S. and Ellis, W. C., “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett., Vol. 4, pp. 89–90, 1964.
Duan, X. and Lieber, C. M., “General Synthesis of Compound Semiconductor Nanowires,” Adv. Mater., Vol. 12, No. 4, pp. 298–302, 2000.
Wu, Y., Yan, H., and Yang, P., “Semiconductor Nanowire Array: Potential Substrates for Photocatalysis and Photovoltaics,” Top. Catal., Vol. 19, No. 2, pp. 197–202, 2002.
Lew, K. K., Pan, L., Dickey, E. C., and Redwing, J. M., “Vapor-Liquid-Solid Growth of Silicon-Germanium Nanowires,” Adv. Mater., Vol. 15, No. 24, pp. 2073–2076, 2003.
Mårtensson, T., Borgström, M., Seifert, W., Ohlsson, B. J., and Samuelson, L., “Fabrication of Individually Seeded Nanowire Arrays by Vapour-Liquid-Solid Growth,” Nanotechnology, Vol. 14, No. 12, pp. 1255–1258, 2003.
Sandulova, A. V., Bogoyavlenskii, P. S., and Dronyuk, M. I., “Preparation and Some Properties of Whisker and Needle-Shaped Single Crystals of Germanium, Silicon and Their Solid Solutions,” Sov. Phys. Sol. State, Vol. 5, pp. 1883, 1964.
Wagner, R. S., Ellis, W. C., Jackson, K. A., and Arnold, S. M., “Study of the Filamentary Growth of Silicon Crystals from the Vapor,” J. Appl. Phys., Vol. 35, No. 10, pp. 2993–3000, 1964.
Greiner, E. S., Gutowski, J. A., and Ellis, W. C., “Preparation of Silicon Ribbons,” J. Appl. Phys., Vol. 32, No. 11, pp. 2489–2490, 1961.
Zhang, Y. F., Tang, Y. H., Wang, N., Yu, D. P., Lee, C. S., and et al., “Silicon Nanowires Prepared by Laser Ablation at High Temperature,” Appl. Phys. Lett., Vol. 72, No. 15, pp. 1835–1837, 1998.
Zhou, G. W., Zhang, Z., Bai, Z. G., Feng, S. Q., and Yu, D. P., “Transmission Electron Microscopy Study of Si Nanowires,” Appl. Phys. Lett., Vol. 73, No. 5, pp. 677–679, 1998.
Pan, Z. W., Dai, Z. R., Xu, L., Lee, S. T., and Wang, Z. L., “Temperature-Controlled Growth of Silicon-Based Nanostructures by Thermal Evaporation of SiO Powders,” J. Phys. Chem. B, Vol. 105, No. 13, pp. 2507–2514, 2001.
Schmidt, V., Wittemann, J. V., Senz, S., and Gösele, U., “Silicon Nanowires: a Review on Aspects of their Growth and their Electrical Properties,” Adv. Mater., Vol. 21, No. 25–26, pp. 2681–2702, 2009.
Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., and et al., “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Adv. Mater., Vol. 15, No. 5, pp. 353–389, 2003.
Huang, Y., Duan, X., Wei, Q., and Lieber, C. M., “Directed Assembly of One-Dimensional Nanostructures into Functional Networks,” Science, Vol. 291, No. 5504, pp. 630–633, 2001.
He, R., Gao, D., Fan, R., Hochbaum, A. I., Carraro, C., Maboudian, R., and Yang, P., “Si Nanowire Bridges in Microtrenches: Integration of Growth into Device Fabrication,” Adv. Mater., Vol. 17, No. 17, pp. 2098–2102, 2005.
Zhu, J., Peng, H., Chan, C. K., Jarausch, K., Zhang, X. F., and Cui, Y., “Hyperbranched Lead Selenide Nanowire Networks,” Nano Lett, Vol. 7, No. 4, pp. 1095–1099, 2007.
Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D. C., and Leiber, C. M., “Growth of Nanowire Superlattice Structures for Nanoscale Photonics and Electronics,” Nature, Vol. 415, No. 6872, pp. 617–620, 2002.
Lauhon, L. J., Gudiksen, M. S., Wang, D., and Lieber, C. M., “Epitaxial Core-Shell and Core-Multishell Nanowire Heterostructures,” Nature, Vol. 420, No. 6911, pp. 57–61, 2002.
Cui, Y., Lauhon, L. J., Gudiksen, M. S., Wang, J., and Lieber, C. M., “Diameter-Controlled Synthesis of Single-Crystal Silicon Nanowires,” Appl. Phys. Lett., Vol. 78, No. 15, pp. 2214–2216, 2001.
Lee, J. H. and Geer, R. E., “Templated Si-Based Nanowires via Solid-Liquidsolid (SLS) and Vapor-Liquid-Solid (VLS) Growth: Novel Growth Mode, Synthesis, Morphology Control, Characteristics, and Electrical Transport,” in: Cutting Edge Nanotechnology, Vasileska, D., (Ed.), InTech, 2010.
Trentler, T. J., Hickman, K. M., Goel, S. C., Viano, A. M., Gibbons, P. C., and Buhro, W. E., “Solution-Liquid-SolidGrowth of Crystalline Ill–V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth,” Science, Vol. 270, No. 5243, pp. 1791–1794, 1995.
Holmes, J. D., Johnston, K. P., Doty, R. C., and Korgel, B. A., “Control of Thickness and Orientation of Solution-Grown Silicon Nanowires,” Science, Vol. 287, No. 5457, pp. 1471–1473, 2000.
Seeger, K., and Palmer, R. E., “Fabrication of Ordered Arrays of Silicon Nanopillars,” J. Phys. D: Applied Physics, Vol. 32, No. 24, pp. 129–132, 1999.
Peng, K., Zhang, M., Lu, A., Wong, N. B., Zhang, R., and Lee, S. T., “Ordered Silicon Nanowire Arrays via Nanosphere Lithography and Metal-Induced Etching,” Appl. Phys. Lett., Vol. 90, No. 16, Paper No. 163123-3, 2007.
Winters, H. F., “The Role of Chemisorption in Plasma Etching,” J. Appl. Phys., Vol. 49, No. 10, pp. 5165–5170, 1978.
Lo, T. C. and Huang, H. C., “Anisotropic Etching of Deep Trench for Silicon Monolithic Microwave Integrated Circuit,” Electron. Lett., Vol. 29, No. 25, pp. 2202–2203, 1993.
Hsu, C. M., Connor, S. T., Tang, M. X., and Cui, Y., “Wafer-Scale Silicon Nanopillars and Nanocones by Langmuir-Blodgett Assembly and Etching,” Appl. Phys. Lett., Vol. 93, No. 13, Paper No. 3109, 2008.
Li, X. and Bohn, P. W., “Metal-Assisted Chemical Etching in HF/H2O2 Produces Porous Silicon,” Appl. Phys. Lett., Vol. 77, No. 16, pp. 2572–2574, 2000.
Huang, Z., Geyer, N., Werner, P., de Boor, J., and Gösele, U., “Metal-Assisted Chemical Etching of Silicon: A Review,” Adv. Mater., Vol. 23, No. 2, pp. 285–308, 2011.
Li, X., “Metal Assisted Chemical Etching for High Aspect Ratio Nanostructures: A Review of Characteristics and Applications in Photovoltaics,” Curr. Opin. Solid. St. M., Vol. 16, No. 2, pp. 71–81, 2012.
Chartier, C., Bastide, S., and Lévy-Clément, C., “Metal-assisted Chemical Etching of Silicon in HF-H2O2,” Electrochim. Acta., Vol. 53, No. 17, pp. 5509–5516, 2008.
Huang, Z., Fang, H., and Zhu, J., “Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density,” Adv. Mater., Vol. 19, No. 5, pp. 744–748, 2007.
Huang, Z., Zhang, X., Reiche, M., Liu, L., Lee, W., Shimizu, T., Senz, S., and Gosele, U., “Extended Arrays of Vertically Aligned Sub-10 nm Diameter [100] Si Nanowires by Metal-Assisted Chemical Etching,” Nano Lett, Vol. 8, No. 9, pp. 3046–3051, 2008.
Perraud, S., Poncet, S., Noël, S., Levis, M., Faucherand, P., “Full Process for Integrating Silicon Nanowire Arrays into Solar Cells,” Sol. Energ. Mat. Sol. C., Vol. 93, No. 9, pp. 1568–1571, 2009.
Yung Kuo, C., Gau, C., and Tong Dai, B., “Photovoltaic Characteristics of Silicon Nanowire Arrays Synthesized by Vapor-Liquid-Solid Process,” Sol. Energ. Mat. Sol. C., Vol. 95, No. 1, pp. 154–157, 2011.
Gunawan, O. and Guha, S., “Characteristics of Vapor-Liquid-Solid Grown Silicon Nanowire Solar Cells,” Sol. Energ. Mat. Sol. C., Vol. 93, No. 8, pp. 1388–1393, 2009.
Kempa, T. J., Day, R. W., Kim, S. K., Park, H. G., and Lieber, C. M., “Semiconductor Nanowires: A Platform for Exploring Limits and Concepts for Nano-Enabled Solar Cells,” Energy Environ. Sci., Vol. 6, No. 3, pp. 719–733, 2013.
Yu, L., Rigutti, L., Tchernycheva, M., Misra, S., Foldyna, M., Picardi, G., and Roca i Cabarrocas, P., “Assessing Individual Radial Junction Solar Cells over Millions on VLS-Grown Silicon Nanowires,” Nanotechnology, Vol. 24, No. 27, Paper No. 275401, 2013.
Misra, S., Yu, L., Foldyna, M., and Roca i Cabarrocas, P., “High Efficiency and Stable Hydrogenated Amorphous Silicon Radial Junction Solar Cells Built on VLS-Grown Silicon Nanowires,” Sol. Energ. Mat. Sol. C., Vol. 118, pp. 90–95, 2013.
Eisenhawer, B., Sill, I., and Falk, F., “Radial Heteroemitter Solar Cells Based on VLS Grown Silicon Nanowires,” Phys. Stat. solidi (a), Vol. 210, No. 4, pp. 695–700, 2013.
Stelzner, T., Pietsch, M., Andrä, G., Falk, F., Ose, E., and Christiansen, S., “Silicon Nanowire-Based Solar Cells,” Nanotechnology, Vol. 19, No. 29, Paper No. 295203, 2008.
Lu, Y. and Lal, A., “High-Efficiency Ordered Silicon Nano-Conical-Frustum Array Solar Cells by Self-Powered Parallel Electron Lithography,” Nano Lett., Vol. 10, No. 11, pp. 4651–4656, 2010.
Najar, A., Charrier, J., Pirasteh, P., and Sougrat, R., “Ultra-Low Reflection Porous Silicon Nanowires for Solar Cell Applications,” Optics Express, Vol. 20, No. 15, pp. 16861–16870, 2012.
Zhang. M. L., Peng, K. Q., Fan, X., Jie, J. S., Zhang, R. Q., and et al., “Preparation of Lagre-Area Uniform Silicon Nanowires Arrays through Metal-Assisted Chemical Etching,” J. Phys. Chem., Vol. 112, No. 12, pp. 4444–4450, 2008
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hong, S., Bae, J., Koo, B. et al. Nanostructuring methods for enhancing light absorption rate of Si-based photovoltaic devices: A review. Int. J. of Precis. Eng. and Manuf.-Green Tech. 1, 67–74 (2014). https://doi.org/10.1007/s40684-014-0011-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40684-014-0011-6