Skip to main content
Log in

Non-Pharmacological Management of Insomnia Through Electrical Vestibular Stimulation (VeNS)

  • REVIEW
  • Published:
Current Sleep Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Insomnia is a pathology characterized by the difficulty in initiating and maintaining sleep. It is a very prevalent disease affecting 10–15% of the population and is associated with significant impairment to normal daytime functioning, mood, and cognitive function. Insomnia can be experienced independently or comorbidly with other metabolic and psychiatric indications such as anxiety and depression — in a bidirectional relationship where one pathology contributes to severity and onset of the other. This review details the current understanding of insomnia pathology and its connection to the vestibular system in addition to current studies focusing on safety and efficacy of VeNS as a therapeutic measure.

Recent Findings

Pathophysiology of insomnia is not fully clear but there is evidence it involves numerous neurobiological abnormalities such as disorder of hyperarousal, or increased somatic, cognitive, and cortical activation. Due to the complex and eclectic nature of the pathophysiology, it warrants deeper consideration of non-pharmacological options. Vestibular system is a complex set of structures and neuronal pathways involved in modulation of visuomotor, balance, and equilibrium but also sleep. The distinct neuronal vestibular projections are processed by the brainstem before proceeding to other ‘downstream’ autonomic nuclei of the brain, hypothalamus, and broader cortical regions of the brain. Electric vestibular stimulation (VeNS) has been shown to be an effective and safe method of treating insomnia but also associated comorbidities like anxiety and depression effectively targeting the bidirectional relationship.

Summary

Electric vestibular stimulation (VeNS) has been proposed as a novel, safe, and effective way of treating insomnia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

VeNS:

Electrical vestibular nerve stimulation

ITT:

Intention-to-treat

RCT:

Randomized controlled trial

GAD-7:

Generalised Anxiety Disorder Assessment

ISI:

Insomnia Severity Index

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Levenson JC, Kay DB, Buysse DJ. The pathophysiology of insomnia. Chest. 2015;147(4):1179. https://doi.org/10.1378/CHEST.14-1617.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pearson O, Uglik-Marucha N, Miskowiak KW, et al. The relationship between sleep disturbance and cognitive impairment in mood disorders: aA systematic review. J Affect Disord. 2023;327:207–16. https://doi.org/10.1016/J.JAD.2023.01.114.

    Article  PubMed  Google Scholar 

  3. Roth T. Insomnia: definition, prevalence, etiology, and consequences. J Clin Sleep Med. 2007;3(5 SUPPL.). https://doi.org/10.5664/JCSM.26929.

  4. Rosenberg R, Citrome L, Drake CL. Advances in the treatment of chronic insomnia: a narrative review of new nonpharmacologic and pharmacologic therapies. Neuropsychiatr Dis Treat. 2021;17:2549. https://doi.org/10.2147/NDT.S297504.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Roth T. Insomnia: definition, prevalence, etiology, and consequences. J Clin Sleep Med. 2007;3(5 Suppl):S7. https://doi.org/10.5664/jcsm.26929.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Duo L, Yu X, Hu R, Duan X, Zhou J, Wang K. Sleep disorders in chronic pain and its neurochemical mechanisms: a narrative review. Front Psychiatry. 2023;14:1157790. https://doi.org/10.3389/FPSYT.2023.1157790/BIBTEX.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wu JQ, Appleman ER, Salazar RD, Ong JC. Cognitive behavioral therapy for insomnia comorbid with psychiatric and medical conditions: a meta-analysis. JAMA Intern Med. 2015;175(9):1461–72. https://doi.org/10.1001/JAMAINTERNMED.2015.3006.

    Article  PubMed  Google Scholar 

  8. Mao X, Zhang F, Wei C, et al. The impact of insomnia on anxiety and depression: a longitudinal study of non-clinical young Chinese adult males. BMC Psychiatry. 2023;23(1). https://doi.org/10.1186/S12888-023-04873-Y.

  9. Franzen PL, Buysse DJ. Sleep disturbances and depression: risk relationships for subsequent depression and therapeutic implications. Dialogues Clin Neurosci. 2008;10(4):473. https://doi.org/10.31887/DCNS.2008.10.4/PLFRANZEN.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Roane BM, Taylor DJ. Adolescent insomnia as a risk factor for early adult depression and substance abuse. Sleep. 2008;31(10):1351. https://doi.org/10.5665/sleep/31.10.1351.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Doghramji K. The epidemiology and diagnosis of insomnia. Am J Manag Care. 2006;12(8 Suppl):S214–20

    PubMed  Google Scholar 

  12. Finan PH, Goodin BR, Smith MT. The association of sleep and pain: an update and a path forward. J Pain. 2013;14(12):1539–52. https://doi.org/10.1016/J.JPAIN.2013.08.007.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Haack M, Simpson N, Sethna N, Kaur S, Mullington J. Sleep deficiency and chronic pain: potential underlying mechanisms and clinical implications. Neuropsychopharmacology. 2020;45(1):205. https://doi.org/10.1038/S41386-019-0439-Z.

    Article  PubMed  Google Scholar 

  14. Marcuzzi A, Skarpsno ES, Nilsen TIL, Mork PJ. The interplay between multisite pain and insomnia on the risk of anxiety and depression: the HUNT study. BMC Psychiatry. 2022;22(1):1–9. https://doi.org/10.1186/S12888-022-03762-0/TABLES/3.

    Article  Google Scholar 

  15. Bollu PC, Kaur H. Sleep medicine: insomnia and sleep. Mo Med. 2019;116(1):68–75.

  16. Patel D, Steinberg J, Patel P. Insomnia in the elderly: a review. J Clin Sleep Med. 2018;14(6):1017. https://doi.org/10.5664/JCSM.7172.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Brewster GS, Riegel B, Gehrman PR. Insomnia in the older adult. Sleep Med Clin. 2018;13(1):13. https://doi.org/10.1016/J.JSMC.2017.09.002.

    Article  PubMed  Google Scholar 

  18. Rosenberg RP, Benca R, Doghramji P, Roth T. A 2023 update on managing insomnia in primary care: insights from an expert consensus group. Prim Care Companion CNS Disord. 2023;25(1):45169. https://doi.org/10.4088/PCC.22NR03385.

    Article  Google Scholar 

  19. Wilson S, Anderson K, Baldwin D, et al. British Association for Psychopharmacology consensus statement on evidence-based treatment of insomnia, parasomnias and circadian rhythm disorders: aAn update. J Psychopharmacol. 2019;33(8):923–47. https://doi.org/10.1177/0269881119855343.

    Article  PubMed  Google Scholar 

  20. Darden M, Espie CA, Carl JR, et al. Cost-effectiveness of digital cognitive behavioral therapy (Sleepio) for insomnia: a Markov simulation model in the United States. Sleep. 2021;44(4). https://doi.org/10.1093/SLEEP/ZSAA223.

  21. Cheung T, Lam JYT, Fong KH, Cheng CP, Ho A, Sittlington J, Xiang YT, Li TMH. Evaluating the efficacy of electrical vestibular stimulation (VeNS) on insomnia adults: study protocol of a double-blinded, randomized, sham-controlled trial. Int J Environ Res Public Health. 2023;20(4):3577. https://doi.org/10.3390/ijerph20043577.

  22. Johnson DA, Billings ME, Hale L. Environmental determinants of insufficient sleep and sleep disorders: implications for population health. Curr Epidemiol Rep. 2018;5(2):61. https://doi.org/10.1007/S40471-018-0139-Y.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kalmbach DA, Cuamatzi-Castelan AS, Tonnu CV, et al. Hyperarousal and sleep reactivity in insomnia: current insights. Nat Sci Sleep. 2018;10:193. https://doi.org/10.2147/NSS.S138823.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Riemann D, Spiegelhalder K, Feige B, et al. The hyperarousal model of insomnia: a review of the concept and its evidence. Sleep Med Rev. 2010;14(1):19–31. https://doi.org/10.1016/J.SMRV.2009.04.002.

    Article  PubMed  Google Scholar 

  25. Moore PT. Infra-low frequency neurofeedback and insomnia as a model of CNS dysregulation. Front Hum Neurosci. 2022;16: 959491. https://doi.org/10.3389/FNHUM.2022.959491/BIBTEX.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ma C, Zhou N, Ma K, et al. Neural pathways from hypothalamic orexin neurons to the ventrolateral preoptic area mediate sleep impairments induced by conditioned fear. Front Neurosci. 2023;17:1122803. https://doi.org/10.3389/FNINS.2023.1122803.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Riemann D, Dressle RJ, Benz F, Palagini L, Feige B. The psychoneurobiology of insomnia: hyperarousal and REM sleep instability. Clin Translat Neurosci. 2023, Vol 7, Page 30. 2023;7(4):30. https://doi.org/10.3390/CTN7040030.

  28. Han SK, Chong W, Li LH, Lee IS, Murase K, Ryu PD. Noradrenaline excites and inhibits GABAergic transmission in parvocellular neurons of rat hypothalamic paraventricular nucleus. J Neurophysiol. 2002;87(5):2287–96. https://doi.org/10.1152/JN.2002.87.5.2287.

    Article  CAS  PubMed  Google Scholar 

  29. Roser P, Kawohl W, Juckel G. The loudness dependence of auditory evoked potentials as an electrophysiological marker of central serotonergic neurotransmission: implications for clinical psychiatry and psychopharmacotherapy. Handb Behav Neurosci. 2020;31:361–74. https://doi.org/10.1016/B978-0-444-64125-0.00020-7.

    Article  Google Scholar 

  30. Wilson H, Giordano B, Turkheimer FE, Chaudhuri KR, Politis M. Serotonergic dysregulation is linked to sleep problems in Parkinson’s disease. Neuroimage Clin. 2018;18:630. https://doi.org/10.1016/J.NICL.2018.03.001.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Aghajanian G, Liu RJ. Serotonin (5-hydroxytryptamine; 5-HT): CNS pathways and neurophysiology. Encyclopedia of Neuroscience. Published online January 1, 2009:715–722. https://doi.org/10.1016/B978-008045046-9.01159-1.

  32. Casale J, Browne T, Murray IV, Gupta G. Physiology, vestibular system. J Learn Disabil. 2023;7(2):41–2. https://doi.org/10.1177/002221947400700208.

    Article  Google Scholar 

  33. Akay T, Murray AJ. Relative contribution of proprioceptive and vestibular sensory systems to locomotion: opportunities for discovery in the age of molecular science. Int J Mol Sci. 2021;22(3):1–18. https://doi.org/10.3390/IJMS22031467.

    Article  Google Scholar 

  34. Jacob A, Tward DJ, Resnick S, et al. Vestibular function and cortical and sub-cortical alterations in an aging population. Heliyon. 2020;6(8): e04728. https://doi.org/10.1016/J.HELIYON.2020.E04728.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Evaluation of vestibular function in sleep disorders. Accessed January 31, 2024. https://e-jsm.org/journal/view.php?doi=https://doi.org/10.13078/jsm.220011.

  36. Yuan Q, Yu L, Shi D, Ke X, Zhang H. Anxiety and depression among patients with different types of vestibular peripheral vertigo. Medicine. 2015;94(5): e453. https://doi.org/10.1097/MD.0000000000000453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Feng S, Zang J. The effect of accompanying anxiety and depression on patients with different vestibular syndromes. Front Aging Neurosci. 2023;15:1208392. https://doi.org/10.3389/FNAGI.2023.1208392/BIBTEX.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Thompson TL, Amedee R. Vertigo: a review of common peripheral and central vestibular disorders. Ochsner J. 2009;9(1):20–6.

  39. Altena E, Buguet E, Higginson C, et al. Vestibular symptoms are related to the proportion of REM sleep in people with sleep complaints: aA preliminary report. J Vestib Res. 2023;33(3):165. https://doi.org/10.3233/VES-220113.

  40. Benz F, Riemann D, Feige B. Dreaming and insomnia: link between physiological REM parameters and mentation characteristics. Brain Sci. 2020;10(6):1–14. https://doi.org/10.3390/BRAINSCI10060378.

    Article  Google Scholar 

  41. Albathi M, Agrawal Y. Vestibular vertigo is associated with abnormal sleep duration. J Vestib Res. 2017;27(2–3):127–35. https://doi.org/10.3233/VES-170617.

    Article  PubMed  Google Scholar 

  42. Katzenberger B, Brosch F, Besnard S, Grill E. Chronic vestibular hypofunction is associated with impaired sleep: results from the DizzyReg patient registry. J Clin Med. 2023;12(18):5903. https://doi.org/10.3390/JCM12185903/S1.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Adamantidis A, de Lecea L. Hypocretin/orexin and MCH and receptors. Encyclopedia of Neuroscience. Published online January 1, 2009:51–56. https://doi.org/10.1016/B978-008045046-9.01443-1.

  44. Rajagopalan A, Jinu KV, Sailesh KS, Mishra S, Reddy UK, Mukkadan JK. Understanding the links between vestibular and limbic systems regulating emotions. J Nat Sci Biol Med. 2017;8(1):11. https://doi.org/10.4103/0976-9668.198350.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kukkonen JP. Physiology of the orexinergic/hypocretinergic system: aA revisit in 2012. Am J Physiol Cell Physiol. 2013;304(1):2–32. https://doi.org/10.1152/AJPCELL.00227.2012/ASSET/IMAGES/LARGE/ZH00241271100008.JPEG.

    Article  Google Scholar 

  46. Vgontzas AN, Bixler EO, Lin HM, et al. Chronic insomnia is associated with nyctohemeral activation of the hypothalamic-pituitary-adrenal axis: clinical implications. J Clin Endocrinol Metab. 2001;86(8):3787–94. https://doi.org/10.1210/JCEM.86.8.7778.

    Article  CAS  PubMed  Google Scholar 

  47. Fakhoury M, Salman I, Najjar W, Merhej G, Lawand N. The lateral hypothalamus: an uncharted territory for processing peripheral neurogenic inflammation. Front Neurosci. 2020;14: 501703. https://doi.org/10.3389/FNINS.2020.00101/BIBTEX.

    Article  Google Scholar 

  48. Owens-French J, Li S Bin, Francois M, et al. Lateral hypothalamic galanin neurons are activated by stress and blunt anxiety-like behavior in mice. Behavioural Brain Res. 2022;423. https://doi.org/10.1016/J.BBR.2022.113773The study further elucidates potential mechanisms of vestibular system and how it can influence stress and insomnia.

  49. El Khiati R, Tighilet B, Besnard S, Chabbert C. Vestibular disorders and hormonal dysregulations: state of the art and clinical perspectives. Cells. 2023;12(4). https://doi.org/10.3390/CELLS12040656.

  50. Hirotsu C, Tufik S, Andersen ML. Interactions between sleep, stress, and metabolism: fFrom physiological to pathological conditions. Sleep Science. 2015;8(3):143–52. https://doi.org/10.1016/J.SLSCI.2015.09.002.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kumar Goothy SS, McKeown J. Anxiolytic effects of vestibular stimulation: an update. J Basic Clin Physiol Pharmacol. 2023;34(4):445–9. https://doi.org/10.1515/JBCPP-2023-0022. Study highlights that vestibular stimulation is due to inhibition of cortical and subcortical structures which further explains mode of action vestibular stimulation.

    Article  PubMed  Google Scholar 

  52. Wadsworth ME, Broderick AV, Loughlin-Presnal JE, et al. Co-activation of SAM and HPA responses to acute stress: a review of the literature and test of differential associations with preadolescents’ internalizing and externalizing. Dev Psychobiol. 2019;61(7):1079. https://doi.org/10.1002/DEV.21866.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Murphy KA, Anilkumar AC. Caloric tTesting. Arch Otolaryngol. 2023;94(3):284. https://doi.org/10.1001/archotol.1971.00770070278021.

    Article  Google Scholar 

  54. Aranda-Moreno C, Jáuregui-Renaud K, Reyes-Espinosa J, Andrade-Galicia A, Bastida-Segura AE, González Carrazco LG. Stimulation of the semicircular canals or the utricles by clinical tests can modify the intensity of phantom limb pain. Front Neurol. 2019;10(FEB):117. https://doi.org/10.3389/FNEUR.2019.00117.

  55. Truong DQ, Guillen A, Nooristani M, Maheu M, Champoux F, Datta A. Impact of galvanic vestibular stimulation electrode current density on brain current flow patterns: does electrode size matter? PLoS One. 2023;18(2). https://doi.org/10.1371/JOURNAL.PONE.0273883.

  56. McCulloch E, Kumar Goothy SS, McKeown J. Electrical vestibular nerve stimulation (VeNS): a follow-up safety assessment of long-term usage. J Basic Clin Physiol Pharmacol. 2022;33(5):645–8. https://doi.org/10.1515/JBCPP-2021-0395. The authors looked at the long-term safety of long-term and continuous VeNS usage which was the first study of this kind. This gives real-world evidence of benefit/risk observed during smaller CT.

    Article  PubMed  Google Scholar 

  57. Goothy SSK, McKeown J, McGeoch DP, et al. Electrical vestibular nerve stimulation as an adjunctive therapy in the management of type 2 diabetes. J Basic Clin Physiol Pharmacol. 2020;32(6):1075–82. https://doi.org/10.1515/JBCPP-2020-0210.

    Article  PubMed  Google Scholar 

  58. McGeoch PD, McKeown J. Anti-diabetic effect of vestibular stimulation is mediated via AMP-activated protein kinase. Med Hypotheses. 2020;144: 109996. https://doi.org/10.1016/J.MEHY.2020.109996.

    Article  CAS  PubMed  Google Scholar 

  59. Zink R, Bucher SF, Weiss A, Brandt T, Dieterich M. Effects of galvanic vestibular stimulation on otolithic and semicircular canal eye movements and perceived vertical. Electroencephalogr Clin Neurophysiol. 1998;107(3):200–5. https://doi.org/10.1016/S0013-4694(98)00056-X.

    Article  CAS  PubMed  Google Scholar 

  60. Cohen B, Yakushin SB, Holstein GR. What does galvanic vestibular stimulation actually activate: response. Front Neurol. 2012;OCT:36451. https://doi.org/10.3389/FNEUR.2012.00148/BIBTEX.

  61. Fitzpatrick RC, Day BL. Probing the human vestibular system with galvanic stimulation. J Appl Physiol (1985). 2004;96(6):2301–2316. https://doi.org/10.1152/JAPPLPHYSIOL.00008.2004.

  62. Ramos de Miguel A, Falcon Gonzalez JC, Ramos Macias A. Vestibular response to electrical stimulation of the otolith organs. Implications in the development of a vestibular implant for the improvement of the sensation of gravitoinertial accelerations. J Int Adv Otol. 2017;13(2):154–161. https://doi.org/10.5152/IAO.2017.4216.

  63. Brunyé TT, Patterson JE, Wooten T, Hussey EK. A critical review of cranial electrotherapy stimulation for neuromodulation in clinical and non-clinical samples. Front Hum Neurosci. 2021;15: 625321. https://doi.org/10.3389/FNHUM.2021.625321/BIBTEX.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Feusner JD, Madsen S, Moody TD, et al. Effects of cranial electrotherapy stimulation on resting state brain activity. Brain Behav. 2012;2(3):211. https://doi.org/10.1002/BRB3.45.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Curthoys IS. Concepts and physiological aspects of the otolith organ in relation to electrical stimulation. Audiology and Neurotology. 2020;25(1–2):25–34. https://doi.org/10.1159/000502712.

    Article  PubMed  Google Scholar 

  66. Galvanic vestibular – Soterix Medical. Accessed February 7, 2024. https://soterixmedical.com/research/vestibular.

  67. News – Neurovalens. Accessed February 7, 2024. https://neurovalens.com/blogs/news.

  68. Modest effects of low-frequency electrical stimulation on patients with chronic insomnia in an open trial. Accessed February 9, 2024. https://www.sleepmedres.org/journal/view.php?number=129.

  69. Kumar Goothy SS, McKeown J. Modulation of sleep using electrical vestibular nerve stimulation prior to sleep onset: aA pilot study. J Basic Clin Physiol Pharmacol. 2021;32(2):19–23. https://doi.org/10.1515/JBCPP-2020-0019/MACHINEREADABLECITATION/RIS.

    Article  Google Scholar 

  70. Macias S, Robinson R, McCulloch E, et al. 0396 Efficacy of electrical vestibular nerve stimulation for the management of insomnia: a randomized controlled trial. Sleep. 2023;46(Supplement_1):A175-A175. https://doi.org/10.1093/SLEEP/ZSAD077.0396. The study highlights the effectiveness of VeNS on the ISI score as well as QOL, depression, and anxiety using a device that can be implemented in a home setting, showing the true efficacy of VeNS in two different population. It further confirms results seen in previous CT.

  71. van Sluijs RM, Rondei QJ, Schluep D, et al. Effect of rocking movements on afternoon sleep. Front Neurosci. 2020;13: 497346. https://doi.org/10.3389/FNINS.2019.01446/BIBTEX.

    Article  Google Scholar 

  72. Long S, Ding R, Wang J, Yu Y, Lu J, Yao D. Sleep quality and electroencephalogram delta power. Front Neurosci. 2021;15. https://doi.org/10.3389/FNINS.2021.803507.

  73. Krystal AD, Zammit GK, Wyatt JK, et al. The effect of vestibular stimulation in a four-hour sleep phase advance model of transient insomnia. J Clin Sleep Med. 2010;6(4):315. https://doi.org/10.5664/jcsm.27871.

    Article  PubMed  PubMed Central  Google Scholar 

  74. McConnell K, Topley D, McKeown J, Kerr C. Acceptability and feasibility of a vestibular nerve stimulation headset protocol in children with cerebral palsy. BMC Pediatr. 2022;22(1):1–8. https://doi.org/10.1186/S12887-021-03093-1/FIGURES/2.

    Article  Google Scholar 

  75. Jeon S, Conley S, Hollenbeak C, et al. 0396 Efficacy of electrical vestibular nerve stimulation for the management of insomnia: a randomized controlled trial. Sleep. 2023;46(Supplement_1):A175-A175. https://doi.org/10.1093/SLEEP/ZSAD077.0396.

  76. Goothy SSK, Macias S, Robinson R, McCulloch E, Watson S, McKeown J. 0394 Effect of electrical vestibular nerve stimulation on sleep quality in young adults with insomnia: a randomized controlled trial. Sleep. 2023;46(Supplement_1):A174-A175. https://doi.org/10.1093/SLEEP/ZSAD077.0394. The study highlights the effectiveness of VeNS on the ISI score as well as QOL, depression, and anxiety using a device that can be implemented in a home setting, showing the true efficacy of VeNS in younger population.

  77. Watkins LR, Milligan ED, Maier SF. Glial activation: a driving force for pathological pain. Trends Neurosci. 2001;24(8):450–5. https://doi.org/10.1016/S0166-2236(00)01854-3.

    Article  CAS  PubMed  Google Scholar 

  78. Shivaswamy T, Souza RR, Engineer CT, McIntyre CK. Vagus nerve stimulation as a treatment for fear and anxiety in individuals with autism spectrum disorder. J Psychiatr Brain Sci. 2022;7(4). https://doi.org/10.20900/JPBS.20220007.

  79. Molloy A, Ellis DM, Su L, Anderson PL. Improving acceptability and uptake behavior for internet-based cognitive-behavioral therapy. Front Digit Health. 2021;3: 653686. https://doi.org/10.3389/FDGTH.2021.653686/FULL.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in the drafting, reading, revising critically, editing, and approving the final manuscript.

Corresponding author

Correspondence to Wiktoria Ratajczak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

WR and SW are employees of Neurovalens. JM is the co-founder of Neurovalens. None of the authors has anything to disclose.

Human and Animal Rights and Informed Consent

No animal or human subjects by the authors were used in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratajczak, W., Watson, S., Mckeown, J. et al. Non-Pharmacological Management of Insomnia Through Electrical Vestibular Stimulation (VeNS). Curr Sleep Medicine Rep (2024). https://doi.org/10.1007/s40675-024-00296-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40675-024-00296-7

Keywords

Navigation