Skip to main content
Log in

Role of Napping for Learning Across the Lifespan

  • Sleep and Learning (M Scullin, Section Editor)
  • Published:
Current Sleep Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Napping is a common behavior across age groups. While studies have shown a benefit of overnight sleep on memory consolidation, given differences in nap frequency, composition, and intent, it is important to consider whether naps serve a memory function across development and aging.

Recent Findings

We review studies of the role of naps in declarative, emotional, and motor procedural memory consolidation across age groups. Recent findings in both developmental and aging populations find that naps benefit learning of many tasks but may require additional learning or sleep bouts compared to young adult populations. These studies have also identified variations in nap physiology based on the purpose of the nap, timing of the nap, or age.

Summary

These studies lend to our understanding of the function of sleep, and the potential for naps as an intervention for those with reduced nighttime sleep or learning impairments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

NA

References

  1. Galland BC, Taylor BJ, Elder DE, Herbison P. Normal sleep patterns in infants and children: a systematic review of observational studies. Sleep Med Rev. 2012;16:213–22. https://doi.org/10.1016/j.smrv.2011.06.001.

    Article  PubMed  Google Scholar 

  2. Weissbluth M. Naps in children: 6 months-7 years. Sleep. 1995;18:82–7.

    Article  CAS  Google Scholar 

  3. Iglowstein I, Jenni OG, Molinari L, Largo RH. Sleep duration from infancy to adolescence: reference values and generational trends. Pediatrics. 2003;111:302–7.

    Article  Google Scholar 

  4. Foley DJ, Vitiello MV, Bliwise DL, Ancoli-Israel S, Monjan AA, Walsh JK. Frequent napping is associated with excessive daytime sleepiness, depression, pain, and nocturia in older adults: findings from the national sleep foundation 2003 sleep in America poll. Am J Geriatr Psychiatry. 2007;15:344–50. https://doi.org/10.1097/01.JGP.0000249385.50101.67.

    Article  PubMed  Google Scholar 

  5. Duggan KA, McDevitt EA, Whitehurst LN, Mednick SC. To nap, perchance to DREAM: a factor analysis of college students’ self-reported reasons for napping. Behav Sleep Med. 2018;16:135–53. https://doi.org/10.1080/15402002.2016.1178115.

    Article  PubMed  Google Scholar 

  6. Pilcher JJ, Michalowski KR, Carrigan RD. The prevalence of daytime napping and its relationship to nighttime sleep. Behav Med. 2010;27:71–6. https://doi.org/10.1080/08964280109595773.

    Article  Google Scholar 

  7. Mantua J, Spencer RMC. Exploring the nap paradox: are mid-day sleep bouts a friend or foe? Sleep Med. 2017;37:88–97. https://doi.org/10.1016/j.sleep.2017.01.019.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Danker-Hopfe H, Schafer M, Dorn H, Anderer P, Saletu B, Gruber G, et al. Percentile reference charts for selected sleep parameters for 20- to 80-year-old healthy subjects from the SIESTA database. Somnologie. 2005;9:3–14. https://doi.org/10.1111/j.1439-054X.2004.00038.x.

    Article  Google Scholar 

  9. Ohayon MM, Carskadon MA, Guilleminault C, Vitiello MV. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep. 2004;27:1255–73.

    Article  Google Scholar 

  10. Carskadon MA, Dement WC. Normal human sleep: an overview. In: Kryger MH, Roth T, Dement WC, editors. Princ. Pract. Sleep Med. St. Louis: Elsevier; 2011. p. 16–26.

    Chapter  Google Scholar 

  11. Milner CE, Cote KA. A dose-response investigation of the benefits of napping in healthy young, middle-aged and older adults. Sleep Biol Rhythms. 2008;6:2–15. https://doi.org/10.1111/j.1479-8425.2007.00328.x.

    Article  Google Scholar 

  12. Tietzel AJ, Lack LC. The benefits of brief and long naps, vol. 24; 2001.

    Google Scholar 

  13. Milner CE, Cote KA. Benefits of napping in healthy adults: impact of nap length, time of day, age, and experience with napping. J Sleep Res. 2009;18:272–81. https://doi.org/10.1111/j.1365-2869.2008.00718.x.

    Article  PubMed  Google Scholar 

  14. Squire LR. Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem. 2004;82:171–7. https://doi.org/10.1016/j.nlm.2004.06.005.

    Article  PubMed  Google Scholar 

  15. Friedrich M, Wilhelm I, Born J, Friederici AD. Generalization of word meanings during infant sleep. Nat Commun. 2015;6:1–9.

    Article  Google Scholar 

  16. Friedrich M, Mölle M, Friederici AD, Born J. Sleep-dependent memory consolidation in infants protects new episodic memories from existing semantic memories. Nat Commun. 2020;11:1–9.

    Article  Google Scholar 

  17. Horváth K, Myers K, Foster R, Plunkett K. Napping facilitates word learning in early lexical development. J Sleep Res. 2015;24:503–9. https://doi.org/10.1111/jsr.12306.

    Article  PubMed  Google Scholar 

  18. Seehagen S, Konrad C, Herbert JS, Schneider S. Timely sleep facilitates declarative memory consolidation in infants. Proc Natl Acad Sci U S A. 2015;112:1625–9. https://doi.org/10.1073/pnas.1414000112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lokhandwala S, Spencer RMC. Slow wave sleep in naps supports episodic memories in early childhood. In: Development Science; 2020.

    Google Scholar 

  20. Kurdziel LBF, Duclos K, Spencer RMC. Sleep spindles in midday naps enhance learning in preschool children. Proc Natl Acad Sci. 2013;110:17267–72.

    Article  CAS  Google Scholar 

  21. Williams SE, Horst JS. Goodnight book: sleep consolidation improves word learning via storybooks. Front Psychol. 2014;5:184. https://doi.org/10.3389/fpsyg.2014.00184.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Spanò G, Gómez RL, Demara BI, Alt M, Cowen SL, Edgin JO. REM sleep in naps differentially relates to memory consolidation in typical preschoolers and children with Down syndrome. Proc Natl Acad Sci. 2018;115:11844–9.

    Article  Google Scholar 

  23. Henderson LM, Weighall AR, Brown H, Gaskell MG. Consolidation of vocabulary is associated with sleep in children. Dev Sci. 2012;15:674–87. https://doi.org/10.1111/j.1467-7687.2012.01172.x.

    Article  PubMed  Google Scholar 

  24. Lau EYY, McAteer S, Leung CNW, Tucker MA, Li C. Beneficial effects of a daytime nap on verbal memory in adolescents. J Adolesc. 2018;67:77–84. https://doi.org/10.1016/j.adolescence.2018.06.004.

    Article  PubMed  Google Scholar 

  25. Tucker MA, Hirota Y, Wamsley EJ, Lau H, Chaklader A, Fishbein W. A daytime nap containing solely non-REM sleep enhances declarative but not procedural memory. Neurobiol Learn Mem. 2006;86:241–7.

    Article  Google Scholar 

  26. Gorfine T, Yeshurun Y, Zisapel N. Nap and melatonin-induced changes in hippocampal activation and their role in verbal memory consolidation. J Pineal Res. 2007;43:336–42. https://doi.org/10.1111/j.1600-079X.2007.00482.x.

    Article  CAS  PubMed  Google Scholar 

  27. Tucker MA, Fishbein W. Enhancement of declarative memory performance following a daytime nap is contingent on strength of initial task acquisition. Sleep. 2008;31:197–203. https://doi.org/10.1093/sleep/31.2.197.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lahl O, Wispel C, Willgens B, Pietrosky R. An ultra short episode of sleep is sufficient to promote declarative memory performance. J Sleep Res. 2008;17:3–10. https://doi.org/10.1111/j.1365-2869.2008.00622.x.

    Article  PubMed  Google Scholar 

  29. Mednick SC, Cai DJ, Kanady J, Drummond SPA. Comparing the benefits of caffeine, naps and placebo on verbal, motor and perceptual memory. Behav Brain Res. 2008;193:79–86. https://doi.org/10.1016/j.bbr.2008.04.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wamsley EJ, Tucker MA, Payne JD, Stickgold R. A brief nap is beneficial for human route-learning: the role of navigation experience and EEG spectral power. Learn Mem. 2010;17:332–6. https://doi.org/10.1101/lm.1828310.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lau H, Tucker MA, Fishbein W. Daytime napping: effects on human direct associative and relational memory. Neurobiol Learn Mem. 2010;93:554–60. https://doi.org/10.1016/j.nlm.2010.02.003.

    Article  CAS  PubMed  Google Scholar 

  32. Alger SE, Lau H, Fishbein W. Delayed onset of a daytime nap facilitates retention of declarative memory. PLoS One. 2010;5:e12131. https://doi.org/10.1371/journal.pone.0012131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van der Helm E, Gujar N, Nishida M, Walker MP. Sleep-dependent facilitation of episodic memory details. PLoS One. 2011;6:e27421. https://doi.org/10.1371/journal.pone.0027421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Studte S, Bridger E, Mecklinger A. Nap sleep preserves associative but not item memory performance. Neurobiol Learn Mem. 2015;120:84–93. https://doi.org/10.1016/j.nlm.2015.02.012.

    Article  PubMed  Google Scholar 

  35. Aly M, Moscovitch M. The effects of sleep on episodic memory in older and younger adults. Memory. 2010;18:327–34. https://doi.org/10.1080/09658211003601548.

    Article  PubMed  Google Scholar 

  36. Sonni A, Spencer RMC. Sleep protects memories from interference in older adults. Neurobiol Aging. 2015;36:2272–81. https://doi.org/10.1016/j.neurobiolaging.2015.03.010.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wilson JK, Baran B, Pace-Schott EF, Ivry RB, Spencer RMC. Sleep modulates word-pair learning but not motor sequence learning in healthy older adults. Neurobiol Aging. 2012;33:991–1000.

    Article  Google Scholar 

  38. Baran B, Mantua J, Spencer RMC. Age-related changes in the sleep-dependent reorganization of declarative memories. J Cogn Neurosci. 2016;28:792–802.

    Article  Google Scholar 

  39. Scullin MK, Fairley J, Decker MJ, Bliwise DL. The effects of an afternoon nap on episodic memory in young and older adults. Sleep. 2017;40:zsx035. https://doi.org/10.1093/sleep/zsx035.

    Article  PubMed Central  Google Scholar 

  40. Heim S, Klann J, Schattka KI, Bauhoff S, Borcherding G, Nosbüsch N, et al. A nap but not rest or activity consolidates language learning. Front Psychol. 2017;8:665. https://doi.org/10.3389/fpsyg.2017.00665.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Peigneux P, Laureys S, Fuchs S, Collette F, Perrin F, Reggers J, et al. Are spatial memories strengthened in the human hippocampus during slow wave sleep? Neuron. 2004;44:535–45.

    Article  CAS  Google Scholar 

  42. Rasch B, Büchel C, Gais S, Born J. Odor cues during slow-wave sleep prompt declarative memory consolidation. Sci. 2007;315:1426–9.

    Article  CAS  Google Scholar 

  43. Scullin MK. Sleep, memory, and aging: the link between slow-wave sleep and episodic memory changes from younger to older adults. Psychol Aging. 2013;28:105–14. https://doi.org/10.1037/a0028830.

    Article  PubMed  Google Scholar 

  44. Baran B, Wilson J, Spencer RMC. REM-dependent repair of competitive memory suppression. Exp Brain Res. 2010;203:471–7.

    Article  Google Scholar 

  45. Schabus M, Gruber G, Parapatics S, Sauter C, Klösch G, Anderer P, et al. Sleep spindles and their significance for declarative memory consolidation. Sleep. 2004;27:1479–85.

    Article  Google Scholar 

  46. Gruber G, Anderer P, Parapatics S, Saletu B, Schabus M, Klimesch W, et al. Involvement of sleep spindles in overnight declarative memory stabilization: effects of time of incidence and spindle type. Somnologie. 2015;19:30–7. https://doi.org/10.1007/s11818-015-0699-8.

    Article  Google Scholar 

  47. Clemens Z, Fabó D, Halász P. Overnight verbal memory retention correlates with the number of sleep spindles. Neuroscience. 2005;132:529–35. https://doi.org/10.1016/j.neuroscience.2005.01.011.

    Article  CAS  PubMed  Google Scholar 

  48. Horváth K, Hannon B, Ujma PP, Gombos F, Plunkett K. Memory in 3-month-old infants benefits from a short nap. Dev Sci. 2018;21:e12587. https://doi.org/10.1111/desc.12587.

    Article  PubMed  Google Scholar 

  49. Piosczyk H, Holz J, Feige B, Spiegelhalder K, Weber F, Landmann N, et al. The effect of sleep-specific brain activity versus reduced stimulus interference on declarative memory consolidation. J Sleep Res. 2013;22:406–13.

    Article  Google Scholar 

  50. Schmidt C, Peigneux P, Muto V, Schenkel M, Knoblauch V, Münch M, et al. Encoding difficulty promotes postlearning changes in sleep spindle activity during napping. J Neurosci. 2006;26:8976–82. https://doi.org/10.1523/JNEUROSCI.2464-06.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mednick SC, Mcdevitt EA, Walsh JK, Wamsley E, Paulus M, Kanady JC, et al. The critical role of sleep spindles in hippocampal-dependent memory: a pharmacology study. J Neurosci. 2013;33:4494–504. https://doi.org/10.1523/JNEUROSCI.3127-12.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cox R, Hofman WF, Talamini LM. Involvement of spindles in memory consolidation is slow wave sleep-specific. Learn Mem. 2012;19:264–7. https://doi.org/10.1101/lm.026252.112.

    Article  PubMed  Google Scholar 

  53. Ruch S, Markes O, Duss SB, Oppliger D, Reber TP, Koenig T, et al. Sleep stage II contributes to the consolidation of declarative memories. Neuropsychologia. 2012;50:2389–96. https://doi.org/10.1016/j.neuropsychologia.2012.06.008.

    Article  PubMed  Google Scholar 

  54. Takashima A, Petersson KM, Rutters F, Tendolkar I, Jensen O, Zwarts MJ, et al. Declarative memory consolidation in humans: a prospective functional magnetic resonance imaging study, vol. 103; 2006.

    Google Scholar 

  55. Alger SE, Lau H, Fishbein W. Slow wave sleep during a daytime nap is necessary for protection from subsequent interference and long-term retention. Neurobiol Learn Mem. 2012;98:188–96. https://doi.org/10.1016/j.nlm.2012.06.003.

    Article  PubMed  Google Scholar 

  56. Stickgold R. How do I remember? Let me count the ways. Sleep Med Rev. 2009;13:305–8. https://doi.org/10.1016/j.smrv.2009.05.004.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ladenbauer J, Külzow N, Passmann S, Antonenko D, Grittner U, Tamm S, et al. Brain stimulation during an afternoon nap boosts slow oscillatory activity and memory consolidation in older adults. Neuroimage. 2016;142:311–23. https://doi.org/10.1016/j.neuroimage.2016.06.057.

    Article  PubMed  Google Scholar 

  58. Westerberg CE, Florczak SM, Weintraub S, Mesulam MM, Marshall L, Zee PC, et al. Memory improvement via slow-oscillatory stimulation during sleep in older adults. Neurobiol Aging. 2015;36:2577–86. https://doi.org/10.1016/j.neurobiolaging.2015.05.014.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nishida M, Pearsall J, Buckner RL, Walker MP. REM sleep, prefrontal theta, and the consolidation of human emotional memory. Cereb Cortex. 2009;19:1158–66. https://doi.org/10.1093/cercor/bhn155.

    Article  PubMed  Google Scholar 

  60. Payne JD, Kensinger EA, Wamsley EJ, Spreng RN, Alger SE, Gibler K, et al. Napping and the selective consolidation of negative aspects of scenes. Emotion. 2015;15:176–86. https://doi.org/10.1037/a0038683.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sopp MR, Michael T, Mecklinger A. Effects of early morning nap sleep on associative memory for neutral and emotional stimuli. Brain Res. 1698;2018:29–42. https://doi.org/10.1016/j.brainres.2018.06.020.

    Article  CAS  Google Scholar 

  62. Cellini N, Torre J, Stegagno L, Sarlo M. Sleep before and after learning promotes the consolidation of both neutral and emotional information regardless of REM presence. Neurobiol Learn Mem. 2016;133:136–44. https://doi.org/10.1016/j.nlm.2016.06.015.

    Article  PubMed  Google Scholar 

  63. Kurdziel LBF, Kent J, Spencer RMC. Sleep-dependent enhancement of emotional memory in early childhood. Sci Rep. 2018;8:1–10. https://doi.org/10.1038/s41598-018-30980-y.

    Article  CAS  Google Scholar 

  64. Alger SE, Kensinger EA, Payne JD. Preferential consolidation of emotionally salient information during a nap is preserved in middle age. Neurobiol Aging. 2018;68:34–47. https://doi.org/10.1016/j.neurobiolaging.2018.03.030.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mather M, Carstensen LL. Aging and motivated cognition: the positivity effect in attention and memory. Trends Cogn Sci. 2005;9:496–502. https://doi.org/10.1016/j.tics.2005.08.005.

    Article  PubMed  Google Scholar 

  66. Huan SY, Liu KP, Lei X, Yu J. Age-related emotional bias in associative memory consolidation: the role of sleep. Neurobiol Learn Mem. 2020;171:107204. https://doi.org/10.1016/j.nlm.2020.107204.

    Article  PubMed  Google Scholar 

  67. Jones BJ, Schultz KS, Adams S, Baran B, Spencer RMC. Emotional bias of sleep-dependent processing shifts from negative to positive with aging. Neurobiol Aging. 2016;45:178–89. https://doi.org/10.1016/j.neurobiolaging.2016.05.019.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Alger SE, Chen S, Payne JD. Do different salience cues compete for dominance in memory over a daytime nap? Neurobiol Learn Mem. 2019;160:48–57. https://doi.org/10.1016/j.nlm.2018.06.005.

    Article  PubMed  Google Scholar 

  69. Jones BJ, Spencer RMC. Sleep preserves subjective and sympathetic emotional response of memories. Neurobiol Learn Mem. 2019;166:107096. https://doi.org/10.1016/j.nlm.2019.107096.

    Article  PubMed  Google Scholar 

  70. Igloi K, Gaggioni G, Sterpenich V, Schwartz S. A nap to recap or how reward regulates hippocampal-prefrontal memory networks during daytime sleep in humans. Elife. 2015;4:e07903. https://doi.org/10.7554/eLife.07903.001.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Studte S, Bridger E, Mecklinger A. Sleep spindles during a nap correlate with post sleep memory performance for highly rewarded word-pairs. Brain Lang. 2017;167:28–35. https://doi.org/10.1016/j.bandl.2016.03.003.

    Article  PubMed  Google Scholar 

  72. Gilson M, Deliens G, Leproult R, Bodart A, Nonclercq A, Ercek R, et al. REM-enriched naps are associated with memory consolidation for sad stories and enhance mood-related reactivity. Brain Sci. 2015;6:1. https://doi.org/10.3390/brainsci6010001.

    Article  PubMed Central  Google Scholar 

  73. Genzel L, Spoormaker VI, Konrad BN, Dresler M. The role of rapid eye movement sleep for amygdala-related memory processing. Neurobiol Learn Mem. 2015;122:110–21. https://doi.org/10.1016/j.nlm.2015.01.008.

    Article  CAS  PubMed  Google Scholar 

  74. Albouy G, Fogel S, Pottiez H, Nguyen VA, Ray L, Lungu O, et al. Daytime sleep enhances consolidation of the spatial but not motoric representation of motor sequence memory. PLoS One. 2013;8:e52805. https://doi.org/10.1371/journal.pone.0052805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Korman M, Doyon J, Doljansky J, Carrier J, Dagan Y, Karni A. Daytime sleep condenses the time course of motor memory consolidation. Nat Neurosci. 2007;10:1206–13. https://doi.org/10.1038/nn1959.

    Article  CAS  PubMed  Google Scholar 

  76. Nishida M, Walker MP. Daytime naps, motor memory consolidation and regionally specific sleep spindles. PLoS One. 2007;2:e341. https://doi.org/10.1371/journal.pone.0000341.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Backhaus J, Junghanns K. Daytime naps improve procedural motor memory. Sleep Med. 2006;7:508–12. https://doi.org/10.1016/j.sleep.2006.04.002.

    Article  PubMed  Google Scholar 

  78. Morita Y, Ogawa K, Uchida S. Napping after complex motor learning enhances juggling performance. Sleep Sci. 2016;9:112–6. https://doi.org/10.1016/j.slsci.2016.04.002.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Debarnot U, Castellani E, Valenza G, Sebastiani L, Guillot A. Daytime naps improve motor imagery learning. Cogn Affect Behav Neurosci. 2011;11:541–50. https://doi.org/10.3758/s13415-011-0052-z.

    Article  PubMed  Google Scholar 

  80. Schalkwijk FJ, Sauter C, Hoedlmoser K, Heib DPJ, Klösch G, Moser D, et al. The effect of daytime napping and full-night sleep on the consolidation of declarative and procedural information. J Sleep Res. 2019;28:e12649. https://doi.org/10.1111/jsr.12649.

    Article  PubMed  Google Scholar 

  81. Wilhelm I, Metzkow-Mészàros M, Knapp S, Born J. Sleep-dependent consolidation of procedural motor memories in children and adults: the pre-sleep level of performance matters. Dev Sci. 2012;15:506–15.

    Article  Google Scholar 

  82. Doyon J, Bellec P, Amsel R, Penhune V, Monchi O, Carrier J, et al. Contributions of the basal ganglia and functionally related brain structures to motor learning. Behav Brain Res. 2009;199:61–75. https://doi.org/10.1016/j.bbr.2008.11.012.

    Article  PubMed  Google Scholar 

  83. Albouy G, Sterpenich V, Vandewalle G, Darsaud A, Gais S, Rauchs G, et al. Interaction between hippocampal and striatal systems predicts subsequent consolidation of motor sequence memory. PLoS One. 2013;8:e59490. https://doi.org/10.1371/journal.pone.0059490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Desrochers PC, Kurdziel LBF, Spencer RMC. Delayed benefit of naps on motor learning in preschool children. Exp Brain Res. 2016;234:763–72.

    Article  Google Scholar 

  85. Fogel SM, Albouy G, Vien C, Popovicci R, King BR, Hoge R, et al. fMRI and sleep correlates of the age-related impairment in motor memory consolidation. Hum Brain Mapp. 2014;35:3625–45. https://doi.org/10.1002/hbm.22426.

    Article  PubMed  Google Scholar 

  86. Backhaus W, Braass H, Renné T, Gerloff C, Hummel FC. Motor performance is not enhanced by daytime naps in older adults. Front Aging Neurosci. 2016;8:125. https://doi.org/10.3389/fnagi.2016.00125.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Korman M, Dagan Y, Karni A. Nap it or leave it in the elderly: a nap after practice relaxes age-related limitations in procedural memory consolidation. Neurosci Lett. 2015;606:173–6. https://doi.org/10.1016/j.neulet.2015.08.051.

    Article  CAS  PubMed  Google Scholar 

  88. King BR, Saucier P, Albouy G, Fogel SM, Rumpf JJ, Klann J, et al. Cerebral activation during initial motor learning forecasts subsequent sleep-facilitated memory consolidation in older adults. Cereb Cortex. 2017;27:1588–601. https://doi.org/10.1093/cercor/bhv347.

    Article  PubMed  Google Scholar 

  89. Vien C, Boré A, Boutin A, Pinsard B, Carrier J, Doyon J, et al. Thalamo-cortical white matter underlies motor memory consolidation via modulation of sleep spindles in young and older adults. Neuroscience. 2019;402:104–15. https://doi.org/10.1016/j.neuroscience.2018.12.049.

    Article  CAS  PubMed  Google Scholar 

  90. Broughton RJ, Dinges DF. Napping: a ubiquitous enigma. Sleep Alertness Chronobiol. Behav. Med. Asp. Napping. New York: Raven Press; 1989. p. 1–7.

    Google Scholar 

  91. Kapás L, Bohnet SG, Traynor TR, Majde JA, Szentirmai É, Magrath P, et al. Spontaneous and influenza virus-induced sleep are altered in TNF-α double-receptor deficient mice. J Appl Physiol. 2008;105:1187–98. https://doi.org/10.1152/japplphysiol.90388.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Besedovsky L, Born J, Lange T. Blockade of mineralocorticoid receptors enhances naïve T-helper cell counts during early sleep in humans. Brain Behav Immun. 2012;26:1116–21. https://doi.org/10.1016/j.bbi.2012.07.016.

    Article  CAS  PubMed  Google Scholar 

  93. Borbély AA, Baumann F, Brandeis D, Strauch I, Lehmann D. Sleep deprivation: effect on sleep stages and EEG power density in man. Electroencephalogr Clin Neurophysiol. 1981;51:483–93. https://doi.org/10.1016/0013-4694(81)90225-X.

    Article  PubMed  Google Scholar 

  94. Riggins T, Spencer RMC. Habitual sleep is associated with both source memory and hippocampal subfield volume during early childhood. Sci Rep. 2020;10:15304.

    Article  CAS  Google Scholar 

  95. McDevitt EA, Alaynick WA, Mednick SC. The effect of nap frequency on daytime sleep architecture. Physiol Behav. 2012;107:40–4. https://doi.org/10.1016/j.physbeh.2012.05.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Milner CE, Fogel SM, Cote KA. Habitual napping moderates motor performance improvements following a short daytime nap. Biol Psychol. 2006;73:141–56. https://doi.org/10.1016/j.biopsycho.2006.01.015.

    Article  PubMed  Google Scholar 

  97. Mantua J, Spencer RMC. The interactive effects of nocturnal sleep and daytime naps in relation to serum C-reactive protein. Sleep Med. 2015;16:1213–6. https://doi.org/10.1016/j.sleep.2015.06.014.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Basta M, Koutentaki E, Vgontzas A, Zaganas I, Vogiatzi E, Gouna G, et al. Objective daytime napping is associated with disease severity and inflammation in patients with mild to moderate Dementia1. J Alzheimers Dis. 2020;74:803–15. https://doi.org/10.3233/jad-190483.

    Article  CAS  PubMed  Google Scholar 

  99. Li J, Chang YP, Riegel B, Keenan BT, Varrasse M, Pack AI, et al. Intermediate, but not extended, afternoon naps may preserve cognition in Chinese older adults. J Gerontol - Ser A Biol Sci Med Sci. 2018;73:360–6. https://doi.org/10.1093/gerona/glx069.

    Article  Google Scholar 

  100. Owusu JT, Wennberg AMV, Holingue CB, Tzuang M, Abeson KD, Spira AP. Napping characteristics and cognitive performance in older adults. Int J Geriatr Psychiatry. 2019;34:87–96. https://doi.org/10.1002/gps.4991.

    Article  PubMed  Google Scholar 

  101. Campbell SS, Murphy PJ, Stauble TN. Effects of a nap on nighttime sleep and waking function in older subjects. J Am Geriatr Soc. 2005;53:48–53. https://doi.org/10.1111/j.1532-5415.2005.53009.x.

    Article  PubMed  Google Scholar 

  102. Gaudreau H, Carrier J, Montplaisir J. Age-related modifications of NREM sleep EEG: from childhood to middle age. J Sleep Res. 2001;10:165–72. https://doi.org/10.1046/j.1365-2869.2001.00252.x.

    Article  CAS  PubMed  Google Scholar 

  103. Mander BA, Rao V, Lu B, Saletin JM, Lindquist JR, Ancoli-Israel S, et al. Prefrontal atrophy, disrupted NREM slow waves and impaired hippocampal-dependent memory in aging. Nat Neurosci. 2013;16:357–64. https://doi.org/10.1038/nn.3324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors were funded in part by National Institutes of Health R01 AG040133 (RMCS), R01 HL111695 (BJJ, RMCS), R21 HD094758 (RMCS), and National Science Foundation BCS 1749280 (RMCS).

Code Availability

NA

Funding

National Institutes of Health R01 AG040133 (PI: Spencer), R01 HL111695 (PI: Spencer), R21 HD094758 (MPI: Spencer/Riggins), and National Science Foundation BCS 1749280 (MPI: Spencer/Riggins).

Author information

Authors and Affiliations

Authors

Contributions

BJJ and RMCS both contributed to the writing of this work.

Corresponding author

Correspondence to Rebecca M. C. Spencer.

Ethics declarations

Conflict of Interest

The authors have no relevant conflicts to declare.

Ethics Approval

NA

Consent to Participate

NA

Consent for Publication

NA

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subject performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Sleep and Learning

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, B.J., Spencer, R.M.C. Role of Napping for Learning Across the Lifespan. Curr Sleep Medicine Rep 6, 290–297 (2020). https://doi.org/10.1007/s40675-020-00193-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40675-020-00193-9

Keywords

Navigation