Skip to main content

Advertisement

Log in

Sleep Disturbance and Cancer—Animal Models

  • Sleep and Cancer (D Gozal, Section Editor)
  • Published:
Current Sleep Medicine Reports Aims and scope Submit manuscript

Abstract

Sleep-disordered breathing (SDB) has been linked to wide range of adverse physiologic and pathologic features, from cognitive impairments to increased risk of cancer. In this current review, we will discuss some of the emerging evidence connecting sleep disruption with cancer, by exploring different models of sleep disorders and how they appear to affect cancer. Then, we will summarize our current understanding of the underlying mechanisms, and finally, we will discuss the impact of sleep on one of the frequent and advanced cancer therapies, namely bone marrow transplantation (BMT). Experiments in animal models provide supportive findings, whereby each of the major components of SDB has begun to unravel their potential and complex effects on cancer biology, most likely via alterations in oxidative stress, angiogenesis, immune function, and sympathetic outflow. Future research is undoubtedly needed to better understand the pathophysiologic mechanisms of SDB-related effects on cancer in general, and more specifically on cancer prevention, treatment (chemotherapy, radiation, BMT), and outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Nieto FJ, Peppard PE, Young T, Finn L, Hla KM, Farré R. Sleep-disordered breathing and cancer mortality: results from the Wisconsin Sleep Cohort Study. Am J Respir Crit Care Med. 2012;186(2):190–4. doi:10.1164/rccm.201201-0130OC.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Marshall NS, Wong KKH, Cullen SRJ, Knuiman MW, Grunstein RR. Sleep apnea and 20-year follow-up for all-cause mortality, stroke, and cancer incidence and mortality in the Busselton Health Study cohort. J Clin Sleep Med. 2014;10(4):355–62. doi:10.5664/jcsm.3600.

    PubMed  PubMed Central  Google Scholar 

  3. Campos-Rodriguez F, Martinez-Garcia MA, Martinez M, et al. Association between obstructive sleep apnea and cancer incidence in a large multicenter Spanish cohort. Am J Respir Crit Care Med. 2013;187(1):99–105. doi:10.1164/rccm.201209-1671OC.

    Article  PubMed  Google Scholar 

  4. Owens RL, Gold KA, Gozal D, et al. Sleep and breathing … and cancer? Cancer Prev Res (Phila). 2016;9(11):821–7. doi:10.1158/1940-6207.CAPR-16-0092.

    Article  Google Scholar 

  5. Gozal D, Ham SA, Mokhlesi B. Sleep apnea and cancer: analysis of a nationwide population sample. Sleep. 2016;39(8):1493–500. doi:10.5665/sleep.6004.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dal Molin M, Brant A, Blackford AL, et al. Obstructive sleep apnea and pathological characteristics of resected pancreatic ductal adenocarcinoma. Real FX, ed. PLoS One. 2016;11(10):e0164195. doi:10.1371/journal.pone.0164195.

  7. Lee S, Kim BG, Kim JW, et al. Obstructive sleep apnea is associated with an increased risk of colorectal neoplasia. Gastrointest Endosc. 2016;85(3):568–573.e1. doi:10.1016/j.gie.2016.07.061.

    Article  PubMed  Google Scholar 

  8. Haus EL, Smolensky MH. Shift work and cancer risk: potential mechanistic roles of circadian disruption, light at night, and sleep deprivation. Sleep Med Rev. 2013;17(4):273–84. doi:10.1016/j.smrv.2012.08.003.

    Article  PubMed  Google Scholar 

  9. Lin X, Chen W, Wei F, Ying M, Wei W, Xie X. Night-shift work increases morbidity of breast cancer and all-cause mortality: a meta-analysis of 16 prospective cohort studies. Sleep Med. 2015;16(11):1381–7. doi:10.1016/j.sleep.2015.02.543.

    Article  PubMed  Google Scholar 

  10. Rao D, Yu H, Bai Y, Zheng X, Xie L. Does night-shift work increase the risk of prostate cancer? A systematic review and meta-analysis. Onco Targets Ther. 2015;8:2817–26. doi:10.2147/OTT.S89769.

    PubMed  PubMed Central  Google Scholar 

  11. Wang X, Ji A, Zhu Y, et al. A meta-analysis including dose-response relationship between night shift work and the risk of colorectal cancer. Oncotarget. 2015;6(28):25046–60. doi:10.18632/oncotarget.4502.

    Article  PubMed  PubMed Central  Google Scholar 

  12. • Gozal D, Farré R, Nieto FJ. Putative links between sleep apnea and cancer: from hypotheses to evolving evidence. Chest. 2015;148(5):1140–7. doi:10.1378/chest.15-0634. This paper opened many research areas in the field of sleep and cancer by proposing different pathophysiological aspects of this relationship.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Martínez-García MÁ, Campos-Rodríguez F, Almendros I, Farré R. Relationship between sleep apnea and cancer. Arch Bronconeumol. 2015;51(9):456–61. doi:10.1016/j.arbres.2015.02.002.

    Article  PubMed  Google Scholar 

  14. Cao J, Feng J, Li L, Chen B. Obstructive sleep apnea promotes cancer development and progression: a concise review. Sleep Breath. 2015;19(2):453–7. doi:10.1007/s11325-015-1126-x.

    Article  PubMed  Google Scholar 

  15. Abrams B. Cancer and sleep apnea—the hypoxia connection. Med Hypotheses. 2007;68(1):232. doi:10.1016/j.mehy.2006.06.037.

    Article  PubMed  Google Scholar 

  16. Rofstad EK, Gaustad J-V, Egeland TAM, Mathiesen B, Galappathi K. Tumors exposed to acute cyclic hypoxic stress show enhanced angiogenesis, perfusion and metastatic dissemination. Int J Cancer. 2010;127(7):1535–46. doi:10.1002/ijc.25176.

    Article  CAS  PubMed  Google Scholar 

  17. Almendros I, Montserrat JM, Ramírez J, Torres M, Duran-Cantolla J, Navajas DFR. Intermittent hypoxia enhances cancer progression in a mouse model of sleep apnoea. Eur Respir J. 2012;39(1):215–7. doi:10.1183/09031936.00021111.

    Article  CAS  PubMed  Google Scholar 

  18. Almendros I, Montserrat JM, Torres M, Bonsignore MR, Chimenti L, Navajas DFR. Obesity and intermittent hypoxia increase tumor growth in a mouse model of sleep apnea. Sleep Med. 2012;13(10):1254–60. doi:10.1016/j.sleep.2012.08.012.

    Article  PubMed  Google Scholar 

  19. •• Almendros I, Wang Y, Becker L, Lennon FE, Zheng J, Coats BR, Schoenfelt KS, Carreras A, Hakim F, Zhang SX, Farré RGD. Intermittent hypoxia-induced changes in tumor-associated macrophages and tumor malignancy in a mouse model of sleep apnea. Am J Respir Crit Care Med. 2014;189(5):593–601. doi:10.1164/rccm.201310-1830OC. This well-controlled study was the first to explore the impact of intermittent hypoxia on cancer progression from its immunological aspect.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Almendros I, Montserrat JM, Torres M, et al. Intermittent hypoxia increases melanoma metastasis to the lung in a mouse model of sleep apnea. Respir Physiol Neurobiol. 2013;186(3):303–7. doi:10.1016/j.resp.2013.03.001.

    Article  CAS  PubMed  Google Scholar 

  21. Eubank T, Sherwani S, Peters S, Gross A, Evans RMU. Intermittent hypoxia augments melanoma tumor metastases in a mouse model of sleep apnea. Am J Respir Crit Care Med. 2013;187:A2302. http://www.atsjournals.org/doi/abs/10.1164/ajrccm-conference.2013.187.1_MeetingAbstracts.A2302 . Accessed 3 Dec 2016

    Google Scholar 

  22. Nair D, Zhang SXL, Ramesh V, et al. Sleep fragmentation induces cognitive deficits via nicotinamide adenine dinucleotide phosphate oxidase-dependent pathways in mouse. Am J Respir Crit Care Med. 2011;184(11):1305–12. doi:10.1164/rccm.201107-1173OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ramesh V, Nair D, Zhang SXL, et al. Disrupted sleep without sleep curtailment induces sleepiness and cognitive dysfunction via the tumor necrosis factor-α pathway. J Neuroinflammation. 2012;9:91.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. •• Hakim F, Wang Y, Zhang SXL, et al. Fragmented sleep accelerates tumor growth and progression through recruitment of tumor-associated macrophages and TLR4 signaling. Cancer Res. 2014;74:1329–37. doi:10.1158/0008-5472.CAN-13-3014. With this paper the authors showed for the first time that Tumor Associated Macrophages via a TLR 4 pathway, are involved in the effect of fragmented sleep on tumor growth and its aggressive behavior.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zheng J, Almendros I, Wang Y, et al. Reduced NADPH oxidase type 2 activity mediates sleep fragmentation-induced effects on TC1 tumors in mice. Oncoimmunology. 2015;4(2):e976057. doi:10.4161/2162402X.2014.976057.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Khalyfa A, Almendros I, Gileles-Hillel A, et al. Circulating exosomes potentiate tumor malignant properties in a mouse model of chronic sleep fragmentation. Oncotarget. 2016; doi:10.18632/oncotarget.10578.

    PubMed  PubMed Central  Google Scholar 

  27. Almendros I, Khalyfa A, Trzepizur W, et al. Tumor cell malignant properties are enhanced by circulating exosomes in sleep apnea. Chest. 2016;150(5):1030–41. doi:10.1016/j.chest.2016.08.1438.

    Article  PubMed  Google Scholar 

  28. Akbarpour M, Khalyfa A, Qiao Z, et al. Altered CD8+ T-Cell lymphocyte function and TC1 cell stemness contribute to enhanced malignant tumor properties in murine models of sleep apnea. Sleep. 2016.

  29. Zielinski MR, Davis JM, Fadel JR, Youngstedt SD. Influence of chronic moderate sleep restriction and exercise on inflammation and carcinogenesis in mice. Brain Behav Immun. 2012;26(4):672–9. doi:10.1016/j.bbi.2012.03.002.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Maragno-Correa JMR, Patti CL, Zanin KA, et al. Sleep deprivation increases mortality in female mice bearing Ehrlich ascitic tumor. Neuroimmunomodulation. 2013;20(3):134–40. doi:10.1159/000346201.

    Article  CAS  PubMed  Google Scholar 

  31. De Lorenzo BHP, de Oliveira ML, Greco CR, Suchecki D. Sleep-deprivation reduces NK cell number and function mediated by β-adrenergic signalling. Psychoneuroendocrinology. 2015;57:134–43. doi:10.1016/j.psyneuen.2015.04.006.

    Article  CAS  PubMed  Google Scholar 

  32. Coelho M, Soares-Silva C, Brandão D, Marino F, Cosentino M, Ribeiro L. β-adrenergic modulation of cancer cell proliferation: available evidence and clinical perspectives. J Cancer Res Clin Oncol. 2017;143(2):275–91. doi:10.1007/s00432-016-2278-1.

    Article  CAS  PubMed  Google Scholar 

  33. He R-H, He Y-J, Tang Y-J, Zhou H-H, McLeod HL, Liu J. The potential anticancer effect of beta-blockers and the genetic variations involved in the interindividual difference. Pharmacogenomics. 2016;17(1):74–9. doi:10.2217/pgs.15.152.

    Article  PubMed  Google Scholar 

  34. Childers WK, Hollenbeak CS, Cheriyath P. β-blockers reduce breast cancer recurrence and breast cancer death: a meta-analysis. Clin Breast Cancer. 2015;15(6):426–31. doi:10.1016/j.clbc.2015.07.001.

    Article  CAS  PubMed  Google Scholar 

  35. Colucci R, Moretti S. The role of stress and beta-adrenergic system in melanoma: current knowledge and possible therapeutic options. J Cancer Res Clin Oncol. 2016;142(5):1021–9. doi:10.1007/s00432-015-2078-z.

    Article  CAS  PubMed  Google Scholar 

  36. Golombek DA, Casiraghi LP, Agostino PV, et al. The times they’re a-changing: effects of circadian desynchronization on physiology and disease. J Physiol Paris. 2013;107(4):310–22. doi:10.1016/j.jphysparis.2013.03.007.

    Article  PubMed  Google Scholar 

  37. Filipski E, Lévi F. Circadian disruption in experimental cancer processes. Integr Cancer Ther. 2009;8(4):298–302. doi:10.1177/1534735409352085.

    Article  CAS  PubMed  Google Scholar 

  38. Hill SM, Frasch T, Xiang S, Yuan L, Duplessis T, Mao L. Molecular mechanisms of melatonin anticancer effects. Integr Cancer Ther. 2009;8(4):337–46. http://www.ncbi.nlm.nih.gov/pubmed/20050373 . Accessed 3 Dec. 2016

    Article  CAS  PubMed  Google Scholar 

  39. Iwamoto A, Kawai M, Furuse M, Yasuo S. Effects of chronic jet lag on the central and peripheral circadian clocks in CBA/N mice. Chronobiol Int. 2014;31(2):189–98. doi:10.3109/07420528.2013.837478.

    Article  CAS  PubMed  Google Scholar 

  40. Wood PA, Yang X, Hrushesky WJM. Clock genes and cancer. Integr Cancer Ther. 2009;8(4):303–8. doi:10.1177/1534735409355292.

    Article  CAS  PubMed  Google Scholar 

  41. Magnone MC, Langmesser S, Bezdek AC, Tallone T, Rusconi S, Albrecht U. The mammalian circadian clock gene per2 modulates cell death in response to oxidative stress. Front Neurol. 2014;5:289. doi:10.3389/fneur.2014.00289.

    PubMed  Google Scholar 

  42. Mteyrek A, Filipski E, Guettier C, Okyar A, Lévi F. Clock gene Per2 as a controller of liver carcinogenesis. Oncotarget. 2016; doi:10.18632/oncotarget.11037.

    PubMed  PubMed Central  Google Scholar 

  43. Papagiannakopoulos T, Bauer MR, Davidson SM, et al. Circadian rhythm disruption promotes lung tumorigenesis. Cell Metab. 2016;24(2):324–31. doi:10.1016/j.cmet.2016.07.001.

    Article  CAS  PubMed  Google Scholar 

  44. Van Dycke KCG, Rodenburg W, van Oostrom CTM, et al. Chronically alternating light cycles increase breast cancer risk in mice. Curr Biol. 2015;25(14):1932–7. doi:10.1016/j.cub.2015.06.012.

    Article  CAS  PubMed  Google Scholar 

  45. Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. 2013;13(11):800–12. doi:10.1038/nrc3610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Poroyko VA, Carreras A, Khalyfa A, et al. Chronic sleep disruption alters gut microbiota, induces systemic and adipose tissue inflammation and insulin resistance in mice. Sci Rep. 2016;6:35405. doi:10.1038/srep35405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Moreno-Indias I, Torres M, Sanchez-Alcoholado L, et al. Normoxic recovery mimicking treatment of sleep apnea does not reverse intermittent hypoxia-induced bacterial dysbiosis and low-grade endotoxemia in mice. Sleep. 2016;39(10):1891–7. doi:10.5665/sleep.6176.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Moreno-Indias I, Torres M, Montserrat JM, et al. Intermittent hypoxia alters gut microbiota diversity in a mouse model of sleep apnoea. Eur Respir J. 2015;45(4):1055–65. doi:10.1183/09031936.00184314.

    Article  PubMed  Google Scholar 

  49. Gozal D, Gileles-Hillel A, Cortese R, et al. Visceral white adipose tissue following chronic intermittent and sustained hypoxia in mice. Am J Respir Cell Mol Biol. 2017; doi:10.1165/rcmb.2016-0243OC.

    PubMed  Google Scholar 

  50. Almendros I, Wang Y, Gozal D. The polymorphic and contradictory aspects of intermittent hypoxia. Am J Physiol Lung Cell MOl Physiol. 2014;307(2):L129–40. doi:10.1152/ajplung.00089.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Toffoli S, Michiels C. Intermittent hypoxia is a key regulator of cancer cell and endothelial cell interplay in tumours. FEBS J. 2008;275:2991–3002. doi:10.1111/j.1742-4658.2008.06454.x.

    Article  CAS  PubMed  Google Scholar 

  52. Greer SN, Metcalf JL, Wang Y, Ohh M. The updated biology of hypoxia-inducible factor. EMBO J. 2012;31(11):2448–60. doi:10.1038/emboj.2012.125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci. 2012;33(4):207–14. doi:10.1016/j.tips.2012.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ahluwalia A, Tarnawski AS. Critical role of hypoxia sensor—HIF-1α in VEGF gene activation. Implications for angiogenesis and tissue injury healing. Curr Med Chem. 2012;19(1):90–7. http://www.ncbi.nlm.nih.gov/pubmed/22300081

    Article  CAS  PubMed  Google Scholar 

  55. Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C. Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cance. 2007;121(11):2381–6. doi:10.1002/ijc.23192.

    Article  CAS  Google Scholar 

  56. Sethi G, Shanmugam MK, Ramachandran L, Kumar AP, Tergaonkar V. Multifaceted link between cancer and inflammation. Biosci Rep. 2012;32(1):1–15. doi:10.1042/BSR20100136.

    Article  CAS  PubMed  Google Scholar 

  57. Ruffell B, Affara NICL. Differential macrophage programming in the tumor microenvironment. Trends Immunol. 2012;33(3):119–26. doi:10.1016/j.it.2011.12.001.Differential.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gozal D, Almendros I, Hakim F. Sleep apnea awakens cancer: a unifying immunological hypothesis. Oncoimmunology. 2014;3:e28326. doi:10.4161/onci.28326.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Almendros I, Gileles-hillel A, Khalyfa A, et al. Adipose tissue macrophage polarization by intermittent hypoxia in a mouse model of OSA: effect of tumor microenvironment. Cancer Lett. 2015;361(2):233–9. doi:10.1016/j.canlet.2015.03.010.

    Article  CAS  PubMed  Google Scholar 

  60. Hakim F, Gozal D, Kheirandish-Gozal L. Sympathetic and catecholaminergic alterations in sleep apnea with particular emphasis on children. Front Neurol. 2012;3:7. doi:10.3389/fneur.2012.00007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cole SWSA. Molecular pathways: beta-adrenergic signaling in cancer. Clin Cancer Res. 2012;18(5):1201–6. doi:10.1158/1078-0432.CCR-11-0641.Molecular.

    Article  CAS  PubMed  Google Scholar 

  62. Almendros I, Khalyfa A, Gilelels-Hillel A, Qiao Z, Farre R, Gozal D. Intermittent hypoxia-induced adrenergic alterations modulate tumor proliferation in a mouse model of obstructive sleep apnea. Am J Respir Crit Care Med. 2015;191:A2699.

    Google Scholar 

  63. Méndez-Ferrer S, Chow A, Merad M, Frenette PS. Circadian rhythms influence hematopoietic stem cells. Curr Opin Hematol. 2009;16(4):235–42. doi:10.1097/MOH.0b013e32832bd0f5.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ieyasu A, Tajima Y, Shimba S, Nakauchi H, Yamazaki S. Clock gene Bmal1 is dispensable for intrinsic properties of murine hematopoietic stem cells. J Negat Results Biomed. 2014;13:4. doi:10.1186/1477-5751-13-4.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Guariniello LD, Vicari P, Lee KS, de Oliveira AC, Tufik S. Bone marrow and peripheral white blood cells number is affected by sleep deprivation in a murine experimental model. J Cell Physiol. 2012;227(1):361–6. doi:10.1002/jcp.22743.

    Article  CAS  PubMed  Google Scholar 

  66. Lungato L, Nogueira-Pedro A, Carvalho Dias C, Paredes-Gamero EJ, Tufik S, D’Almeida V. Effects of sleep deprivation on mice bone marrow and spleen B lymphopoiesis. J Cell Physiol. 2016;231(6):1313–20. doi:10.1002/jcp.25231.

    Article  CAS  PubMed  Google Scholar 

  67. • Rolls A, Pang WW, Ibarra I, et al. Sleep disruption impairs haematopoietic stem cell transplantation in mice. Nat Commun. 2015;6:8516. doi:10.1038/ncomms9516. This is a well controlled study that explores not only the impact of sleep disorders on tumor growth, but also its impact on one of its most important treatments, bone marrow transplantation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahed Hakim.

Ethics declarations

Conflict of Interest

Karin Yaacoby-Bianu and Fahed Hakim each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Sleep and Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaacoby-Bianu, K., Hakim, F. Sleep Disturbance and Cancer—Animal Models. Curr Sleep Medicine Rep 3, 31–37 (2017). https://doi.org/10.1007/s40675-017-0073-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40675-017-0073-4

Keywords

Navigation