Hypoxia-Inducible Factors and Cancer

Abstract

Purpose of Review

Hypoxia-inducible factors (HIFs) mediate the transcription of hundreds of genes that allow cells to adapt to hypoxic environments. In this review, we summarize the current state of knowledge about mechanisms of HIF activation in cancer, as well as downstream cancer-promoting consequences such as altered substrate metabolism, angiogenesis, and cell differentiation. In addition, we examine the proposed relationship between respiratory-related hypoxia, HIFs, and cancer.

Recent Findings

HIFs are increased in many forms of cancer and portend a poor prognosis and response to therapy.

Summary

HIFs play a critical role in various stages of carcinogenesis. HIF and its transcription targets may be useful as biomarkers of disease and therapeutic targets for cancer.

This is a preview of subscription content, access via your institution.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.

    Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE. Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc Natl Acad Sci U S A. 1991;88(13):5680–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992;12(12):5447–54.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Liu W, Shen S-M, Zhao X-Y, Chen G-Q. Targeted genes and interacting proteins of hypoxia inducible factor-1. Int J Biochem Mol Biol. 2012;3(2):165–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92(12):5510–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Wang V, Davis DA, Haque M, Huang LE, Yarchoan R. Differential gene up-regulation by hypoxia-inducible factor-1alpha and hypoxia-inducible factor-2alpha in HEK293T cells. Cancer Res. 2005;65(8):3299–306.

    CAS  PubMed  Google Scholar 

  6. 6.

    Heikkilä M, Pasanen A, Kivirikko KI, Myllyharju J. Roles of the human hypoxia-inducible factor (HIF)-3α variants in the hypoxia response. Cell Mol Life Sci. 2011;68(23):3885–901.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Maxwell PH, Wiesener MS, Chang GW, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271–5.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Mahon PC, Hirota K, Semenza GL. FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 2001;15(20):2675–86.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Jiang BH, Rue E, Wang GL, Roe R, Semenza GL. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem. 1996;271(30):17771–8.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    He Q, Gao Z, Yin J, Zhang J, Yun Z, Ye J. Regulation of HIF-1{alpha} activity in adipose tissue by obesity-associated factors: adipogenesis, insulin, and hypoxia. Am J Physiol Endocrinol Metab. 2011;300(5):E877–85.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Dery MA, Michaud MD, Richard DE. Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int J Biochem Cell Biol. 2005;37(3):535–40.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Stasinopoulos I, O’Brien DR, Bhujwalla ZM. Inflammation, but not hypoxia, mediated HIF-1α activation depends on COX-2. Cancer Biol Ther. 2009;8(1):31–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    • Hubbi ME, Gilkes DM, Hu H, Kshitiz, Ahmed I, Semenza GL. Cyclin-dependent kinases regulate lysosomal degradation of hypoxia-inducible factor 1alpha to promote cell-cycle progression. Proc Natl Acad Sci U S A. 2014;111(32):E3325–34. This study shows that Cdk 1 and 2 physically and functionally interact with HIF-1α, inhibiting or promoting its degradation by lysosomes.

  14. 14.

    Herzog J, Ehrlich SM, Pfitzer L, et al. Cyclin-dependent kinase 5 stabilizes hypoxia-inducible factor-1alpha: a novel approach for inhibiting angiogenesis in hepatocellular carcinoma. Oncotarget. 2016;7(19):27108–21.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Liu M, Wang D, Li N. MicroRNA-20b downregulates HIF-1alpha and inhibits the proliferation and invasion of osteosarcoma cells. Oncol Res. 2016;23(5):257–66.

    PubMed  Article  Google Scholar 

  16. 16.

    Wang W, Zhang E, Lin C. MicroRNAs in tumor angiogenesis. Life Sci. 2015;136:28–35.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Kulshreshtha R, Ferracin M, Wojcik SE, et al. A microRNA signature of hypoxia. Mol Cell Biol. 2007;27(5):1859–67.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Movafagh S, Crook S, Vo K. Regulation of hypoxia-inducible factor-1a by reactive oxygen species: new developments in an old debate. J Cell Biochem. 2015;116(5):696–703.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Lee YS, Kim JW, Osborne O, et al. Increased adipocyte O2 consumption triggers HIF-1alpha, causing inflammation and insulin resistance in obesity. Cell. 2014;157(6):1339–52.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Wang GL, Jiang BH, Semenza GL. Effect of protein kinase and phosphatase inhibitors on expression of hypoxia-inducible factor 1. Biochem Biophys Res Commun. 1995;216(2):669–75.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Helmlinger G, Yuan F, Dellian M, Jain RK. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med. 1997;3(2):177–82.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Zhao M, Zhang Y, Zhang H, et al. Hypoxia-induced cell stemness leads to drug resistance and poor prognosis in lung adenocarcinoma. Lung Cancer. 2015;87(2):98–106.

    PubMed  Article  Google Scholar 

  23. 23.

    Luo D, Wang Z, Wu J, Jiang C, Wu J. The role of hypoxia inducible factor-1 in hepatocellular carcinoma. Biomed Res Int. 2014;2014:409272.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Parks SK, Cormerais Y, Marchiq I, Pouyssegur J. Hypoxia optimises tumour growth by controlling nutrient import and acidic metabolite export. Mol Asp Med. 2016;47–48:3–14.

    Article  CAS  Google Scholar 

  25. 25.

    • Xie J, Xiao Y, Zhu XY, Ning ZY, Xu HF, Wu HM. Hypoxia regulates stemness of breast cancer MDA-MB-231 cells. Med Oncol. 2016;33(5):42. This study shows effects of hypoxia on stemness transformation in MDA-MB-231 cells in breast cancer.

  26. 26.

    Nagaraju GP, Bramhachari PV, Raghu G, El-Rayes BF. Hypoxia inducible factor-1alpha: its role in colorectal carcinogenesis and metastasis. Cancer Lett. 2015;366(1):11–8.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Krieg M, Haas R, Brauch H, Acker T, Flamme I, Plate KH. Up-regulation of hypoxia-inducible factors HIF-1alpha and HIF-2alpha under normoxic conditions in renal carcinoma cells by von Hippel-Lindau tumor suppressor gene loss of function. Oncogene. 2000;19(48):5435–43.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Latif F, Tory K, Gnarra J, et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science. 1993;260(5112):1317–20.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001;411(6835):342–8.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Zhong H, De Marzo AM, Laughner E, et al. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 1999;59(22):5830–5.

    CAS  PubMed  Google Scholar 

  31. 31.

    Zhong H, Agani F, Baccala AA, et al. Increased expression of hypoxia inducible factor-1alpha in rat and human prostate cancer. Cancer Res. 1998;58(23):5280–4.

    CAS  PubMed  Google Scholar 

  32. 32.

    Chen L, Shi Y, Yuan J, et al. HIF-1 alpha overexpression correlates with poor overall survival and disease-free survival in gastric cancer patients post-gastrectomy. PLoS One. 2014;9(3), e90678.

    PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Zheng SS, Chen XH, Yin X, Zhang BH. Prognostic significance of HIF-1alpha expression in hepatocellular carcinoma: a meta-analysis. PLoS One. 2013;8(6), e65753.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Amellem O, Pettersen EO. Cell inactivation and cell cycle inhibition as induced by extreme hypoxia: the possible role of cell cycle arrest as a protection against hypoxia-induced lethal damage. Cell Prolif. 1991;24(2):127–41.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Goda N, Ryan HE, Khadivi B, McNulty W, Rickert RC, Johnson RS. Hypoxia-inducible factor 1alpha is essential for cell cycle arrest during hypoxia. Mol Cell Biol. 2003;23(1):359–69.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Gardner LB, Li Q, Park MS, Flanagan WM, Semenza GL, Dang CV. Hypoxia inhibits G1/S transition through regulation of p27 expression. J Biol Chem. 2001;276(11):7919–26.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Krtolica A, Krucher NA, Ludlow JW. Hypoxia-induced pRB hypophosphorylation results from downregulation of CDK and upregulation of PP1 activities. Oncogene. 1998;17(18):2295–304.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Hubbi ME, Kshitiz, Gilkes DM, et al. A nontranscriptional role for HIF-1alpha as a direct inhibitor of DNA replication. Sci Signal. 2013;6(262):ra10.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  39. 39.

    Koshiji M, Kageyama Y, Pete EA, Horikawa I, Barrett JC, Huang LE. HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. EMBO J. 2004;23(9):1949–56.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Box AH, Demetrick DJ. Cell cycle kinase inhibitor expression and hypoxia-induced cell cycle arrest in human cancer cell lines. Carcinogenesis. 2004;25(12):2325–35.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Franovic A, Gunaratnam L, Smith K, Robert I, Patten D, Lee S. Translational up-regulation of the EGFR by tumor hypoxia provides a nonmutational explanation for its overexpression in human cancer. Proc Natl Acad Sci U S A. 2007;104(32):13092–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407(6801):249–57.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Fang J, Yan L, Shing Y, Moses MA. HIF-1alpha-mediated up-regulation of vascular endothelial growth factor, independent of basic fibroblast growth factor, is important in the switch to the angiogenic phenotype during early tumorigenesis. Cancer Res. 2001;61(15):5731–5.

    CAS  PubMed  Google Scholar 

  44. 44.

    Tsuzuki Y, Fukumura D, Oosthuyse B, Koike C, Carmeliet P, Jain RK. Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1alpha--> hypoxia response element--> VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res. 2000;60(22):6248–52.

  45. 45.

    Jensen RL, Ragel BT, Whang K, Gillespie D. Inhibition of hypoxia inducible factor-1alpha (HIF-1alpha) decreases vascular endothelial growth factor (VEGF) secretion and tumor growth in malignant gliomas. J Neuro-Oncol. 2006;78(3):233–47.

    CAS  Article  Google Scholar 

  46. 46.

    Tang CM, Yu J. Hypoxia-inducible factor-1 as a therapeutic target in cancer. J Gastroenterol Hepatol. 2013;28(3):401–5.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Conley SJ, Gheordunescu E, Kakarala P, et al. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci U S A. 2012;109(8):2784–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Hayes DF. Bevacizumab treatment for solid tumors: boon or bust? JAMA. 2011;305(5):506–8.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 2008;8(8):592–603.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Woolard J, Wang WY, Bevan HS, et al. VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res. 2004;64(21):7822–35.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Pritchard-Jones RO, Dunn DB, Qiu Y, et al. Expression of VEGF(xxx)b, the inhibitory isoforms of VEGF, in malignant melanoma. Br J Cancer. 2007;97(2):223–30.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Raza A, Franklin MJ, Dudek AZ. Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am J Hematol. 2010;85(8):593–8.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Reinmuth N, Liu W, Jung YD, et al. Induction of VEGF in perivascular cells defines a potential paracrine mechanism for endothelial cell survival. FASEB J : Off Publ Fed Am Soc Exp Biol. 2001;15(7):1239–41.

    CAS  Google Scholar 

  54. 54.

    Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8(6):519–30.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Zhang H. HIF-1 suppresses lipid catabolism to promote cancer progression. Mol Cell Oncol. 2015;2(4), e980184.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  56. 56.

    Marchiq I, Pouyssegur J. Hypoxia, cancer metabolism and the therapeutic benefit of targeting lactate/H(+) symporters. J Mol Med. 2016;94(2):155–71.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Chen C, Pore N, Behrooz A, Ismail-Beigi F, Maity A. Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J Biol Chem. 2001;276(12):9519–25.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Liu Y, Li YM, Tian RF, et al. The expression and significance of HIF-1alpha and GLUT-3 in glioma. Brain Res. 2009;1304:149–54.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Semenza GL, Roth PH, Fang HM, Wang GL. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem. 1994;269(38):23757–63.

    CAS  PubMed  Google Scholar 

  60. 60.

    Schonberger J, Ruschoff J, Grimm D, et al. Glucose transporter 1 gene expression is related to thyroid neoplasms with an unfavorable prognosis: an immunohistochemical study. Thyroid : Off J Am Thyroid Assoc. 2002;12(9):747–54.

    Article  Google Scholar 

  61. 61.

    Krzeslak A, Wojcik-Krowiranda K, Forma E, et al. Expression of GLUT1 and GLUT3 glucose transporters in endometrial and breast cancers. Pathol Oncol Res : POR. 2012;18(3):721–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Firth JD, Ebert BL, Pugh CW, Ratcliffe PJ. Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: similarities with the erythropoietin 3′ enhancer. Proc Natl Acad Sci U S A. 1994;91(14):6496–500.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3(3):177–85.

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Brand KA, Hermfisse U. Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. FASEB J : Off Publ Fed Am Soc Exp Biol. 1997;11(5):388–95.

    CAS  Google Scholar 

  65. 65.

    Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell. 2007;129(1):111–22.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Zhang H, Bosch-Marce M, Shimoda LA, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008;283(16):10892–903.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Firth JD, Ebert BL, Ratcliffe PJ. Hypoxic regulation of lactate dehydrogenase A. Interaction between hypoxia-inducible factor 1 and cAMP response elements. J Biol Chem. 1995;270(36):21021–7.

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Ullah MS, Davies AJ, Halestrap AP. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J Biol Chem. 2006;281(14):9030–7.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Shimoda LA, Fallon M, Pisarcik S, Wang J, Semenza GL. HIF-1 regulates hypoxic induction of NHE1 expression and alkalinization of intracellular pH in pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol. 2006;291(5):L941–9.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Meijer TW, Schuurbiers OC, Kaanders JH, et al. Differences in metabolism between adeno- and squamous cell non-small cell lung carcinomas: spatial distribution and prognostic value of GLUT1 and MCT4. Lung Cancer. 2012;76(3):316–23.

    PubMed  Article  Google Scholar 

  71. 71.

    Xia J, Huang N, Huang H, Sun L, Dong S, Su J, Zhang J, Wang L, Lin L, Shi M, et al. Voltage-gated sodium channel Nav 1.7 promotes gastric cancer progression through MACC1-mediated upregulation of NHE1. Int J Cancer. 2016.

  72. 72.

    Ivanov SV, Kuzmin I, Wei MH, et al. Down-regulation of transmembrane carbonic anhydrases in renal cell carcinoma cell lines by wild-type von Hippel-Lindau transgenes. Proc Natl Acad Sci U S A. 1998;95(21):12596–601.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Wykoff CC, Beasley NJ, Watson PH, et al. Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res. 2000;60(24):7075–83.

    CAS  PubMed  Google Scholar 

  74. 74.

    Courtnay R, Ngo DC, Malik N, Ververis K, Tortorella SM, Karagiannis TC. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K. Mol Biol Rep. 2015;42(4):841–51.

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Tisdale MJ. Mechanisms of cancer cachexia. Physiol Rev. 2009;89(2):381–410.

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Ryan HE, Lo J, Johnson RS. HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J. 1998;17(11):3005–15.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Chen Y, Zhang Z, Luo C, Chen Z, Zhou J. MicroRNA-18b inhibits the growth of malignant melanoma via inhibition of HIF-1alpha-mediated glycolysis. Oncol Rep. 2016;36(1):471–9.

    PubMed  Google Scholar 

  78. 78.

    Kuhajda FP, Jenner K, Wood FD, et al. Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proc Natl Acad Sci U S A. 1994;91(14):6379–83.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Furuta E, Pai SK, Zhan R, et al. Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Res. 2008;68(4):1003–11.

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Sun RC, Denko NC. Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab. 2014;19(2):285–92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Metallo CM, Gameiro PA, Bell EL, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 2011;481(7381):380–4.

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Bensaad K, Favaro E, Lewis CA, et al. Fatty acid uptake and lipid storage induced by HIF-1alpha contribute to cell growth and survival after hypoxia-reoxygenation. Cell Rep. 2014;9(1):349–65.

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Huang D, Li T, Li X, et al. HIF-1-mediated suppression of acyl-CoA dehydrogenases and fatty acid oxidation is critical for cancer progression. Cell Rep. 2014;8(6):1930–42.

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Soh H, Wasa M, Fukuzawa M. Hypoxia upregulates amino acid transport in a human neuroblastoma cell line. J Pediatr Surg. 2007;42(4):608–12.

    PubMed  Article  Google Scholar 

  85. 85.

    • Hu H, Takano N, Xiang L, Gilkes DM, Luo W, Semenza GL. Hypoxia-inducible factors enhance glutamate signaling in cancer cells. Oncotarget. 2014;5(19):8853–68. This study demonstrates that HIFs regulate glutamate receptors and transporters, which can activate key signal transduction pathways that promote cancer progression.

  86. 86.

    Mullen AR, Wheaton WW, Jin ES, et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature. 2011;481(7381):385–8.

    PubMed  PubMed Central  Google Scholar 

  87. 87.

    Kelly FJ. Effect of hyperoxic exposure on protein synthesis in the rat. Biochem J. 1988;249(2):609–12.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Guan G, Zhang Y, Lu Y, et al. The HIF-1α/CXCR4 pathway supports hypoxia-induced metastasis of human osteosarcoma cells. Cancer Lett. 2015;357(1):254–64.

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med. 2006;355(12):1253–61.

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Clarke MF. Self-renewal and solid-tumor stem cells. Biol Blood Marrow Transplant : J Am Soc Blood Marrow Transplant. 2005;11(2 Suppl 2):14–6.

    Article  Google Scholar 

  91. 91.

    Ajdukovic J. HIF-1—a big chapter in the cancer tale. Exp Oncol. 2016;38(1):9–12.

    CAS  PubMed  Google Scholar 

  92. 92.

    Hoffmeyer K, Raggioli A, Rudloff S, et al. Wnt/beta-catenin signaling regulates telomerase in stem cells and cancer cells. Science. 2012;336(6088):1549–54.

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Bourguignon LY, Earle C, Wong G, Spevak CC, Krueger K. Stem cell marker (Nanog) and Stat-3 signaling promote MicroRNA-21 expression and chemoresistance in hyaluronan/CD44-activated head and neck squamous cell carcinoma cells. Oncogene. 2012;31(2):149–60.

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Espinoza I, Pochampally R, Xing F, Watabe K, Miele L. Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition. OncoTargets Ther. 2013;6:1249–59.

    Google Scholar 

  95. 95.

    Ajani JA, Song S, Hochster HS, Steinberg IB. Cancer stem cells: the promise and the potential. Semin Oncol. 2015;42 Suppl 1:S3–17.

    CAS  PubMed  Article  Google Scholar 

  96. 96.

    Deshmukh A, Deshpande K, Arfuso F, Newsholme P, Dharmarajan A. Cancer stem cell metabolism: a potential target for cancer therapy. Mol Cancer. 2016;15(1):69.

    PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Erler JT, Cawthorne CJ, Williams KJ, et al. Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor 1-dependent and -independent mechanisms and contributes to drug resistance. Mol Cell Biol. 2004;24(7):2875–89.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Giannoni E, Bianchini F, Calorini L, Chiarugi P. Cancer associated fibroblasts exploit reactive oxygen species through a proinflammatory signature leading to epithelial mesenchymal transition and stemness. Antioxid Redox Signal. 2011;14(12):2361–71.

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721–32.

    CAS  PubMed  Article  Google Scholar 

  100. 100.

    Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 2010;29(5):625–34.

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Bos R, van der Groep P, Greijer AE, et al. Levels of hypoxia-inducible factor-1α independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer. 2003;97(6):1573–81.

    PubMed  Article  Google Scholar 

  102. 102.

    Schindl M, Schoppmann SF, Samonigg H, et al. Overexpression of hypoxia-inducible factor 1α is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clin Cancer Res. 2002;8(6):1831–7.

    CAS  PubMed  Google Scholar 

  103. 103.

    Charpin C, Secq V, Giusiano S, et al. A signature predictive of disease outcome in breast carcinomas, identified by quantitative immunocytochemical assays. Int J Cancer. 2009;124(9):2124–34.

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Charpin C, Tavassoli F, Secq V, et al. Validation of an immunohistochemical signature predictive of 8-year outcome for patients with breast carcinoma. Int J Cancer. 2012;131(3):E236–43.

    CAS  PubMed  Article  Google Scholar 

  105. 105.

    Helczynska K, Larsson AM, Holmquist Mengelbier L, et al. Hypoxia-inducible factor-2α correlates to distant recurrence and poor outcome in invasive breast cancer. Cancer Res. 2008;68(22):9212–20.

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Giatromanolaki A, Koukourakis MI, Simopoulos C, et al. c-erbB-2 related aggressiveness in breast cancer is hypoxia inducible factor-1α dependent. Clin Cancer Res. 2004;10(23):7972–7.

    CAS  PubMed  Article  Google Scholar 

  107. 107.

    Dales JP, Garcia S, Meunier-Carpentier S, et al. Overexpression of hypoxia-inducible factor HIF-1α predicts early relapse in breast cancer: retrospective study in a series of 745 patients. Int J Cancer. 2005;116(5):734–9.

    CAS  PubMed  Article  Google Scholar 

  108. 108.

    Vleugel MM, Greijer AE, Shvarts A, et al. Differential prognostic impact of hypoxia induced and diffuse HIF-1α expression in invasive breast cancer. J Clin Pathol. 2005;58(2):172–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. 109.

    Generali D, Berruti A, Brizzi MP, et al. Hypoxia-inducible factor-1α expression predicts a poor response to primary chemoendocrine therapy and disease-free survival in primary human breast cancer. Clin Cancer Res. 2006;12(15):4562–8.

    CAS  PubMed  Article  Google Scholar 

  110. 110.

    Kronblad A, Jirstrom K, Ryden L, Nordenskjold B, Landberg G. Hypoxia inducible factor-1α is a prognostic marker in premenopausal patients with intermediate to highly differentiated breast cancer but not a predictive marker for tamoxifen response. Int J Cancer. 2006;118(10):2609–16.

    CAS  PubMed  Article  Google Scholar 

  111. 111.

    Trastour C, Benizri E, Ettore F, et al. HIF-1α and CA IX staining in invasive breast carcinomas: prognosis and treatment outcome. Int J Cancer. 2007;120(7):1451–8.

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    Yamamoto Y, Ibusuki M, Okumura Y, et al. Hypoxia-inducible factor 1α is closely linked to an aggressive phenotype in breast cancer. Breast Cancer Res Treat. 2008;110(3):465–75.

    CAS  PubMed  Article  Google Scholar 

  113. 113.

    • Xiang L, Gilkes DM, Chaturvedi P, et al. Ganetespib blocks HIF-1 activity and inhibits tumor growth, vascularization, stem cell maintenance, invasion, and metastasis in orthotopic mouse models of triple-negative breast cancer. J Mol Med. 2014;92(2):151–64. This study shows that Ganetespib inhibited tumor growth and metastasis in mouse model of triple negative breast cancer by blocking HIF-1 activity.

  114. 114.

    Wong CC, Zhang H, Gilkes DM, et al. Inhibitors of hypoxia-inducible factor 1 block breast cancer metastatic niche formation and lung metastasis. J Mol Med. 2012;90(7):803–15.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Lopez-Lazaro M. Digoxin, HIF-1, and cancer. Proc Natl Acad Sci U S A. 2009;106(9), E26. author reply E27.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  116. 116.

    Zhang H, Qian DZ, Tan YS, et al. Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth. Proc Natl Acad Sci U S A. 2008;105(50):19579–86.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Wei D, Peng JJ, Gao H, et al. Digoxin downregulates NDRG1 and VEGF through the inhibition of HIF-1alpha under hypoxic conditions in human lung adenocarcinoma A549 cells. Int J Mol Sci. 2013;14(4):7273–85.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Gayed BA, O’Malley KJ, Pilch J, Wang Z. Digoxin inhibits blood vessel density and HIF-1a expression in castration-resistant C4-2 xenograft prostate tumors. Clin Transl Sci. 2012;5(1):39–42.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  119. 119.

    • Ranasinghe WK, Sengupta S, Williams S, et al. The effects of nonspecific HIF1alpha inhibitors on development of castrate resistance and metastases in prostate cancer. Cancer Med. 2014;3(2):245–51. This retrospective study showed that patients with prostate cancer on androgen deprivation therapy who were concominantly taking non-specific HIF-1 inhibitors had a reduced risk of developing castrate-resistant prostate cancer.

  120. 120.

    Lin J, Zhan T, Duffy D, et al. A pilot phase II study of digoxin in patients with recurrent prostate cancer as evident by a rising PSA. Am J Cancer Ther Pharmacol. 2014;2(1):21–32.

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    Xia Y, Choi HK, Lee K. Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors. Eur J Med Chem. 2012;49:24–40.

    CAS  PubMed  Article  Google Scholar 

  122. 122.

    Masoud GN, Li W. HIF-1alpha pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 2015;5(5):378–89.

    PubMed  PubMed Central  Article  Google Scholar 

  123. 123.

    Zimna A, Kurpisz M. Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: applications and therapies. Biomed Res Int. 2015;2015:549412.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  124. 124.

    Levett DZ, Radford EJ, Menassa DA, et al. Acclimatization of skeletal muscle mitochondria to high-altitude hypoxia during an ascent of Everest. FASEB J : Off Publ Fed Am Soc Exp Biol. 2012;26(4):1431–41.

    CAS  Article  Google Scholar 

  125. 125.

    van Patot MC, Gassmann M. Hypoxia: adapting to high altitude by mutating EPAS-1, the gene encoding HIF-2alpha. High Alt Med Biol. 2011;12(2):157–67.

    PubMed  Article  CAS  Google Scholar 

  126. 126.

    Bigham AW, Lee FS. Human high-altitude adaptation: forward genetics meets the HIF pathway. Genes Dev. 2014;28(20):2189–204.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  127. 127.

    Youk AO, Buchanich JM, Fryzek J, Cunningham M, Marsh GM. An ecological study of cancer mortality rates in high altitude counties of the United States. High Alt Med Biol. 2012;13(2):98–104.

    PubMed  Article  Google Scholar 

  128. 128.

    Hart J: Cancer Mortality for a Single Race in Low Versus High Elevation Counties in the U.S. Dose-Response 2011, 9(3):348-355.

  129. 129.

    Amsel J, Waterbor JW, Oler J, Rosenwaike I, Marshall K. Relationship of site-specific cancer mortality rates to altitude. Carcinogenesis. 1982;3(5):461–5.

    CAS  PubMed  Article  Google Scholar 

  130. 130.

    Read LC, Ballard FJ, Francis GL, Baxter RC, Bagley CJ, Wallace JC. Comparative binding of bovine, human and rat insulin-like growth factors to membrane receptors and to antibodies against human insulin-like growth factor-1. Biochem J. 1986;233(1):215–21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Stroka DM, Burkhardt T, Desbaillets I, et al. HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB J : Off Publ Fed Am Soc Exp Biol. 2001;15(13):2445–53.

    CAS  Google Scholar 

  132. 132.

    • Martínez-García MA, Campos-Rodriguez F, Durán-Cantolla J, et al. Obstructive sleep apnea is associated with cancer mortality in younger patients. Sleep Med. 2014;15(7):742–8. This prospective cohort study showed that OSA is associated with increased incidence of cancer.

  133. 133.

    Gaoatswe G, Kent BD, Corrigan MA, et al. Invariant natural killer T cell deficiency and functional impairment in sleep apnea: links to cancer comorbidity. Sleep. 2015;38(10):1629–34.

    PubMed  PubMed Central  Article  Google Scholar 

  134. 134.

    • Kendzerska T, Leung RS, Hawker G, Tomlinson G, Gershon AS. Obstructive sleep apnea and the prevalence and incidence of cancer. CMAJ : Can Med Assoc J. 2014;186(13):985–92. This study showed that sleep fragmentation without hypoxia resulted in a shift of polarity within tumor associated macrophages towards a pro-tumoral phenotype.

  135. 135.

    Shelton LS, Pensiero MN, Jenkins FJ. Identification and characterization of the herpes simplex virus type 1 protein encoded by the UL37 open reading frame. J Virol. 1990;64(12):6101–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Drager LF, Yao Q, Hernandez KL, et al. Chronic intermittent hypoxia induces atherosclerosis via activation of adipose angiopoietin-like 4. Am J Respir Crit Care Med. 2013;188(2):240–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  137. 137.

    Almendros I, Montserrat JM, Ramirez J, et al. Intermittent hypoxia enhances cancer progression in a mouse model of sleep apnoea. Eur Respir J. 2012;39(1):215–7.

    CAS  PubMed  Article  Google Scholar 

  138. 138.

    Szablewski L. Expression of glucose transporters in cancers. Biochim Biophys Acta. 2013;1835(2):164–9.

    CAS  PubMed  Google Scholar 

  139. 139.

    Almendros I, Wang Y, Becker L, et al. Intermittent hypoxia-induced changes in tumor-associated macrophages and tumor malignancy in a mouse model of sleep apnea. Am J Respir Crit Care Med. 2014;189(5):593–601.

    PubMed  PubMed Central  Article  Google Scholar 

  140. 140.

    Zheng J, Almendros I, Wang Y, et al. Reduced NADPH oxidase type 2 activity mediates sleep fragmentation-induced effects on TC1 tumors in mice. Oncoimmunology. 2015;4(2):e976057.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references

Acknowledgements

Jonathan C. Jun is supported by the Nutrition Obesity Research Center (NORC) under NIH P30DK072488, American Academy of Sleep Medicine Foundation Junior Faculty Award 106-JF-14, and National Institutes of Health 1K08HL109475.

Vsevolod Y. Polotsky is supported by the NIH grants R01 HL128970, R01 HL133100, and P50 ES018176 and by the American Sleep Medicine Foundation grant 133-BS-15.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jonathan C. Jun.

Ethics declarations

Conflict of Interest

Vsevolod Y. Polotsky has received travel support from ResMed outside of the submitted work.

Jonathan C. Jun, Aman Rathore, Haris Younas and Daniele Gilkes declare that they have no conflict of interest

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Sleep and Cancer

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jun, J.C., Rathore, A., Younas, H. et al. Hypoxia-Inducible Factors and Cancer. Curr Sleep Medicine Rep 3, 1–10 (2017). https://doi.org/10.1007/s40675-017-0062-7

Download citation

Keywords

  • HIF
  • Hypoxia
  • Cancer
  • Metabolism
  • Sleep apnea
  • VEGF