Benington JH, Heller HC. Restoration of brain energy metabolism as the function of sleep. Prog Neurobiol. 1995;45:347–60.
CAS
PubMed
Google Scholar
Scharf MT, Naidoo N, Zimmerman JE, Pack AI. The energy hypothesis of sleep revisited. Prog Neurobiol. 2008;86:264–80.
PubMed Central
PubMed
Google Scholar
Petit J-M, Burlet-Godinot S, Magistretti PJ, Allaman I. Glycogen metabolism and the homeostatic regulation of sleep. Metab Brain Dis 2014:1–17.
Landolt H-P. Sleep homeostasis: a role for adenosine in humans? Biochem Pharmacol. 2008;75:2070–9.
CAS
PubMed
Google Scholar
Porkka-Heiskanen T, Kalinchuk AV. Adenosine, energy metabolism and sleep homeostasis. Sleep Med Rev. 2011;15:123–35.
PubMed
Google Scholar
Borbély AA. A two process model of sleep regulation. Hum Neurobiol. 1982;1:195–204.
PubMed
Google Scholar
Cajochen C, Chellappa S, Schmidt C. What keeps us awake?—the role of clocks and hourglasses, light, and melatonin. Int Rev Neurobiol. 2010;93:57–90. doi: 10.1016/S0074-7742(10)93003-1.
Dijk DJ, Czeisler CA. Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans. Neurosci Lett. 1994;166:63–8.
CAS
PubMed
Google Scholar
Dijk DJ, Czeisler CA. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci. 1995;15:3526–38.
CAS
PubMed
Google Scholar
Muheim C, Brown SA. Adenosine and other purinergic products in circadian timing. In: Masino S, Masino S, Boison D, editors. Adenosine. New York, NY: Springer New York; 2012. p. 213–32.
Google Scholar
Wall M, Dale N. Activity-dependent release of adenosine: a critical re-evaluation of mechanism. Curr Neuropharmacol. 2008;6:329–37.
PubMed Central
CAS
PubMed
Google Scholar
Klyuch BP, Dale N, Wall MJ. Deletion of ecto-5′-nucleotidase (CD73) reveals direct action potential-dependent adenosine release. J Neurosci. 2012;32:3842–7.
CAS
PubMed
Google Scholar
Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 1999;51:83–133.
CAS
PubMed
Google Scholar
Sebastião AM, Cristóvão-Ferreira S, Ribeiro JA. Downstream pathways of adenosine. In: Masino S, Masino S, Boison D, editors. Adenosine. New York, NY: Springer New York; 2012.
Google Scholar
Brundege JM, Dunwiddie TV. Metabolic regulation of endogenous adenosine release from single neurons. Neuroreport. 1998;9:3007–11.
CAS
PubMed
Google Scholar
Zimmermann H. Biochemistry, localization and functional roles of ecto-nucleotidases in the nervous system. Prog Neurobiol. 1996;49:589–618.
CAS
PubMed
Google Scholar
Burnstock G. Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev. 2007;87:659–797.
CAS
PubMed
Google Scholar
Krueger JM, Huang YH, Rector DM, Buysse DJ. Sleep: a synchrony of cell activity-driven small network states. Eur J Neurosci. 2013;38:2199–209.
PubMed Central
PubMed
Google Scholar
Langer D, Hammer K, Koszalka P, Schrader J, Robson S, Zimmermann H. Distribution of ectonucleotidases in the rodent brain revisited. Cell Tissue Res. 2008;334:199–217.
CAS
PubMed
Google Scholar
Qiu M-H, Liu W, Qu W-M, Urade Y, Lu J, Huang Z-L. The role of nucleus accumbens core/shell in sleep–wake regulation and their involvement in modafinil-induced arousal. PLoS ONE. 2012;7:e45471.
PubMed Central
CAS
PubMed
Google Scholar
Lazarus M, Huang Z-L, Lu J, Urade Y, Chen J-F. How do the basal ganglia regulate sleep–wake behavior? Trends Neurosci. 2012;35:723–32.
CAS
PubMed
Google Scholar
Haydon PG, Carmignoto G. Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev. 2006;86:1009–31.
CAS
PubMed
Google Scholar
Lovatt D, Xu Q, Liu W, Takano T, Smith NA, Schnermann J, et al. Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity. Proc Natl Acad Sci U S A. 2012;109:6265–70. This study highlights the importance of astrocytes in the regulation of synaptic adenosine. It reveals how the reduction in adenosine observed following prolonged neuronal activity is not solely dependent on astrocytic ATP release, but rather on the level and duration of previous excitatory transmission. This highlights how adenosine may be able to provide activity dependent feedback signals on neuronal networks.
PubMed Central
CAS
PubMed
Google Scholar
Halassa MM, Florian C, Fellin T, Munoz JR, Lee S-Y, Abel T, et al. Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron. 2009;61:213–9.
PubMed Central
CAS
PubMed
Google Scholar
Florian C, Vecsey CG, Halassa MM, Haydon PG, Abel T. Astrocyte-derived adenosine and a1 receptor activity contribute to sleep loss-induced deficits in hippocampal synaptic plasticity and memory in mice. J Neurosci. 2011;31:6956–62.
PubMed Central
CAS
PubMed
Google Scholar
Schmitt LI, Sims RE, Dale N, Haydon PG. Wakefulness affects synaptic and network activity by increasing extracellular astrocyte-derived adenosine. J Neurosci. 2012;32:4417–25.
PubMed Central
CAS
PubMed
Google Scholar
Fredholm BB, Chen J-F, Cunha RA, Svenningsson P, Vaugeois J-M. Adenosine and brain function. Int Rev Neurobiol. 2005;63:191–270.
CAS
PubMed
Google Scholar
Ciruela F, Saura C, Canela EI, Mallol J, Lluis C, Franco R. Adenosine deaminase affects ligand-induced signalling by interacting with cell surface adenosine receptors. FEBS Lett. 1996;380:219–23.
CAS
PubMed
Google Scholar
Sebastião AM, Ribeiro JA. Adenosine receptors and the central nervous system. Handb Exp Pharmacol 2009:471–534.
Chen J-F, Eltzschig HK, Fredholm BB. Adenosine receptors as drug targets—what are the challenges? Nat Rev Drug Discov. 2013;12:265–86.
PubMed Central
CAS
PubMed
Google Scholar
Elmenhorst D, Meyer PT, Winz OH, Matusch A, Ermert J, Coenen HH, et al. Sleep deprivation increases A1 adenosine receptor binding in the human brain: a positron emission tomography study. J Neurosci. 2007;27:2410–5.
CAS
PubMed
Google Scholar
Oishi Y, Huang Z-L, Fredholm BB, Urade Y, Hayaishi O. Adenosine in the tuberomammillary nucleus inhibits the histaminergic system via A1 receptors and promotes non-rapid eye movement sleep. Proc Natl Acad Sci U S A. 2008;105:19992–7.
PubMed Central
CAS
PubMed
Google Scholar
Johansson SM, Yang JN, Lindgren E, Fredholm BB. Eliminating the antilipolytic adenosine A1 receptor does not lead to compensatory changes in the antilipolytic actions of PGE2 and nicotinic acid. Acta Physiol. 2007;190:87–96.
CAS
Google Scholar
Yang JN, Tiselius C, Daré E, Johansson B, Valen G, Fredholm BB. Sex differences in mouse heart rate and body temperature and in their regulation by adenosine A1 receptors. Acta Physiol (Oxf). 2007;190:63–75.
CAS
Google Scholar
Sun D, Samuelson LC, Yang T, Huang Y, Paliege A, Saunders T, et al. Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors. Proc Natl Acad Sci U S A. 2001;98:9983–8.
PubMed Central
CAS
PubMed
Google Scholar
Elmenhorst D, Meyer PT, Matusch A, Winz OH, Bauer A. Caffeine occupancy of human cerebral A1 adenosine receptors: in vivo quantification with 18F-CPFPX and PET. J Nucl Med. 2012;53:1723–9. Human PET study investigating the displacement of 18F-CPFPX, a selective and competitive ligand for A
1
receptors, by caffeine. Estimating a half-life of 5 hours for caffeine in the human brain, the study suggests that roughly 4.5 cups of coffee per day will occupy up to 50% of cerebellar A
1
receptors.
Brooks DJ, Doder M, Osman S, Luthra SK, Hirani E, Hume S, et al. Positron emission tomography analysis of [11C]KW-6002 binding to human and rat adenosine A2A receptors in the brain. Synapse. 2008;62:671–81.
CAS
PubMed
Google Scholar
Zhang J-P, Xu Q, Yuan X-S, Cherasse Y, Schiffmann SN, De Kerchove d’Exaerde A, et al. Projections of nucleus accumbens adenosine A2A receptor neurons in the mouse brain and their implications in mediating sleep–wake regulation. Front Neuroanat. 2013;43. By specifically staining NAc A
2A
receptor expressing neurons with a green fluorescent protein, the authors were able to accurately map their cerebral projections.
Lazarus M, Shen H-Y, Cherasse Y, Qu W-M, Huang Z-L, Bass CE, et al. Arousal effect of caffeine depends on adenosine A2A receptors in the shell of the nucleus accumbens. J Neurosci. 2011;31:10067–75. Selective and NAc specific deletion of the A
2A
receptor gene in mice, reveal that A
2A
receptors specifically in the shell region of the NAc are essential for the wakefulness-promoting effects of caffeine.
Yu C, Gupta J, Chen J-F, Yin HH. Genetic deletion of A2A adenosine receptors in the striatum selectively impairs habit formation. J Neurosci. 2009;29:15100–3.
PubMed Central
CAS
PubMed
Google Scholar
Huang Z-L, Qu W-M, Eguchi N, Chen J-F, Schwarzschild MA, Fredholm BB, et al. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nature Neurosci. 2005;8:858–9.
CAS
PubMed
Google Scholar
Ledent C, Vaugeois JM, Schiffmann SN, Pedrazzini T, El Yacoubi M, Vanderhaeghen JJ, et al. Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature. 1997;388:674–8.
CAS
PubMed
Google Scholar
Ohta A, Sitkovsky M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature. 2001;414:916–20.
CAS
PubMed
Google Scholar
Lappas CM, Rieger JM, Linden J. A2A adenosine receptor induction inhibits IFN-γ production in murine CD4+ T cells. J Immunol. 2005;174:1073–80.
CAS
PubMed
Google Scholar
Eckle T, Faigle M, Grenz A, Laucher S, Thompson LF, Eltzschig HK. A2B adenosine receptor dampens hypoxia-induced vascular leak. Blood. 2008;111:2024–35.
PubMed Central
CAS
PubMed
Google Scholar
Rosenberger P, Schwab JM, Mirakaj V, Masekowsky E, Mager A, Morote-Garcia JC, et al. Hypoxia-inducible factor-dependent induction of netrin-1 dampens inflammation caused by hypoxia. Nat Immunol. 2009;10:195–202.
CAS
PubMed
Google Scholar
Grenz A, Bauerle JD, Dalton JH, Ridyard D, Badulak A, Tak E, et al. Equilibrative nucleoside transporter 1 (ENT1) regulates postischemic blood flow during acute kidney injury in mice. J Clin Invest. 2012;122:693–710.
PubMed Central
CAS
PubMed
Google Scholar
Eckle T, Hartmann K, Bonney S, Reithel S, Mittelbronn M, Walker LA, et al. Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia. Nat Med. 2012;18:774–82.
PubMed Central
CAS
PubMed
Google Scholar
Johnston-Cox H, Koupenova M, Yang D, Corkey B, Gokce N, Farb MG, et al. The A2b adenosine receptor modulates glucose homeostasis and obesity. PLoS ONE. 2012;7:e40584.
PubMed Central
CAS
PubMed
Google Scholar
Koupenova M, Johnston-Cox H, Vezeridis A, Gavras H, Yang D, Zannis V, et al. A2b adenosine receptor regulates hyperlipidemia and atherosclerosis. Circulation. 2012;125:354–63.
PubMed Central
CAS
PubMed
Google Scholar
Björklund O, Halldner-Henriksson L, Yang J, Eriksson TM, Jacobson MA, Daré E, et al. Decreased behavioral activation following caffeine, amphetamine and darkness in A3 adenosine receptor knock-out mice. Physiol Behav. 2008;95:668–76.
PubMed
Google Scholar
Achermann P, Borbély AA. Sleep homeostasis and models of sleep regulation. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. 5th ed. St. Louis: Saunders; 2011. p. 431–44.
Google Scholar
Huston JP, Haas HL, Boix F, Pfister M, Decking U, Schrader J, et al. Extracellular adenosine levels in neostriatum and hippocampus during rest and activity periods of rats. Neuroscience. 1996;73:99–107.
CAS
PubMed
Google Scholar
Basheer R, Porkka-Heiskanen T, Stenberg D, McCarley RW. Adenosine and behavioral state control: adenosine increases c-Fos protein and AP1 binding in basal forebrain of rats. Brain Res Mol Brain Res. 1999;73:1–10.
CAS
PubMed
Google Scholar
Murillo-Rodriguez E, Blanco-Centurion C, Gerashchenko D, Salin-Pascual RJ, Shiromani PJ. The diurnal rhythm of adenosine levels in the basal forebrain of young and old rats. Neuroscience. 2004;123:361–70.
CAS
PubMed
Google Scholar
Krueger JM, Rector DM, Roy S, Van Dongen HPA, Belenky G, Panksepp J. Sleep as a fundamental property of neuronal assemblies. Nat Rev Neurosci. 2008;9:910–9.
PubMed Central
CAS
PubMed
Google Scholar
Virus RM, Djuricic-Nedelson M, Radulovacki M, Green RD. The effects of adenosine and 2′-deoxycoformycin on sleep and wakefulness in rats. Neuropharmacology. 1983;22:1401–4.
CAS
PubMed
Google Scholar
Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science. 1997;276:1265–8.
PubMed Central
CAS
PubMed
Google Scholar
Porkka-Heiskanen T, Strecker RE, McCarley RW. Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience. 2000;99:507–17.
CAS
PubMed
Google Scholar
Sims RE, Wu HHT, Dale N. Sleep–wake sensitive mechanisms of adenosine release in the basal forebrain of rodents: an in vitro study. PLoS ONE. 2013;8:e53814.
PubMed Central
CAS
PubMed
Google Scholar
Yang C, Franciosi S, Brown RE. Adenosine inhibits the excitatory synaptic inputs to basal forebrain cholinergic, GABAergic, and parvalbumin neurons in mice. Front Neurol. 2013;4:77.
PubMed Central
CAS
PubMed
Google Scholar
Blanco-Centurion C, Shiromani PJ. Adenosine and sleep homeostasis in the basal forebrain. Sleep. 2006;26:8092–8100.
Franks NP. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci. 2008;9:370–86.
CAS
PubMed
Google Scholar
Palchykova S, Winsky-Sommerer R, Shen H-Y, Boison D, Gerling A, Tobler I. Manipulation of adenosine kinase affects sleep regulation in mice. J Neurosci. 2010;30:13157–65.
PubMed Central
CAS
PubMed
Google Scholar
Franken P, Chollet D, Tafti M. The homeostatic regulation of sleep need is under genetic control. J Neurosci. 2001;21:2610–21.
CAS
PubMed
Google Scholar
Rétey JV, Adam M, Honegger E, Khatami R, Luhmann UFO, Jung HH, et al. A functional genetic variation of adenosine deaminase affects the duration and intensity of deep sleep in humans. Proc Natl Acad Sci U S A. 2005;102:15676–81.
PubMed Central
PubMed
Google Scholar
Bachmann V, Klaus F, Bodenmann S, Schäfer N, Brugger P, Huber S, et al. Functional ADA polymorphism increases sleep depth and reduces vigilant attention in humans. Cereb Cortex. 2012;22:962–70. A controlled human sleep deprivation study which shows that a genetic reduction in ADA enzymatic activity (G/A-carriers) is associated with elevated sleep pressure, measured by enhanced EEG delta activity, as well as increased sleepiness and reduced cognitive performance.
PubMed
Google Scholar
Reichert CF, Maire M, Gabel V, Viola AU, Kolodyazhniy V, Strobel W, et al. Insights into behavioral vulnerability to differential sleep pressure and circadian phase from a functional ADA polymorphism. J Biol Rhythms. 2014;29:119–30.
CAS
PubMed
Google Scholar
Mazzotti DR, Guindalini C, de Souza AAL, Sato JR, Santos-Silva R, Bittencourt LRA, et al. Adenosine deaminase polymorphism affects sleep EEG spectral power in a large epidemiological sample. PLoS ONE. 2012;7:e44154. A large epidemiological study including 958 individuals genotyped for the ADA polymorphism and underwent polysomnographic recordings in a sleep laboratory. Their data confirmed the association between the low activity ADA variant (G/A-carriers) and enhanced EEG delta activity, supporting the association between adenosine and human sleep–wake regulation.
PubMed Central
CAS
PubMed
Google Scholar
Wu MN, Ho K, Crocker A, Yue Z, Koh K, Sehgal A. The effects of caffeine on sleep in Drosophila require PKA activity, but not the adenosine receptor. J Neurosci. 2009;29:11029–37.
PubMed Central
CAS
PubMed
Google Scholar
Stenberg D, Litonius E, Halldner L, Johansson B, Fredholm BB, Porkka-Heiskanen T. Sleep and its homeostatic regulation in mice lacking the adenosine A1 receptor. J Sleep Res. 2003;12:283–90.
PubMed
Google Scholar
Bjorness TE, Kelly CL, Gao T, Poffenberger V, Greene RW. Control and function of the homeostatic sleep response by adenosine A1 receptors. J Neurosci. 2009;29:1267–76.
PubMed Central
CAS
PubMed
Google Scholar
Urade Y, Eguchi N, Qu WM, Sakata M, Huang ZL. Minireview: Sleep regulation in adenosine A2A receptor-deficient mice. Neurology. 2003;61:s94–6.
CAS
PubMed
Google Scholar
Rétey JV, Adam M, Khatami R, Luhmann UFO, Jung HH, Berger W, et al. A genetic variation in the adenosine A2A receptor gene (ADORA2A) contributes to individual sensitivity to caffeine effects on sleep. Clin Pharmacol Ther. 2007;81:692–8.
PubMed
Google Scholar
Bodenmann S, Hohoff C, Freitag C, Deckert J, Rétey JV, Bachmann V, et al. Polymorphisms of ADORA2A modulate psychomotor vigilance and the effects of caffeine on neurobehavioural performance and sleep EEG after sleep deprivation. Brit J Pharmacol. 2012;165:1904–13. Study investigating the effects ADORA2A haplotypes, corroborating, with neurophysiological measures, that caffeine sensitivity is enhanced among C alleles carriers of the 1976T > C polymorphism of the in the ADORA2A gene.
Landolt H-P. “No thanks, coffee keeps me awake”: individual caffeine sensitivity depends on ADORA2A genotype. Sleep. 2012;35:899–900.
PubMed Central
PubMed
Google Scholar
Riksen NP, Franke B, van den Broek P, Naber M, Smits P, Rongen GA. The 22G > A polymorphism in the adenosine deaminase gene impairs catalytic function but does not affect reactive hyperaemia in humans in vivo. Pharmacogenet Genomics. 2008;18:843–6.
CAS
PubMed
Google Scholar
Mang GM, Franken P. Genetic dissection of sleep homeostasis. Curr Top Behav Neurosci 2013. doi: 10.1007/7854_2013_270.
Landolt H-P, Rétey JV, Tönz K, Gottselig JM, Khatami R, Buckelmüller I, et al. Caffeine attenuates waking and sleep electroencephalographic markers of sleep homeostasis in humans. Neuropsychopharmacol. 2004;29:1933–9.
CAS
Google Scholar
Elmenhorst D, Basheer R, McCarley RW, Bauer A. Sleep deprivation increases A1 adenosine receptor density in the rat brain. Brain Res. 2009;1258:53–8.
PubMed Central
CAS
PubMed
Google Scholar
Kim Y, Bolortuya Y, Chen L, Basheer R, McCarley RW, Strecker RE. Decoupling of sleepiness from sleep time and intensity during chronic sleep restriction: evidence for a role of the adenosine system. Sleep. 2012;35:861–9.
PubMed Central
PubMed
Google Scholar
Deboer T, van Diepen HC, Ferrari MD, Van den Maagdenberg AMJM, Meijer JH. Reduced sleep and low adenosinergic sensitivity in cacna1a R192Q mutant mice. Sleep. 2013;36:127–36. This study shows that sleep induction and the responses to caffeine are modulated by a presynaptic calcium channel (the Ca(V)2.1 channel) known to be modulated by inhibitory G
i
-protein coupled receptors such as the A
1
receptor. Combined the data proposes a role for presynaptic calcium channels in modulating sleep–wake regulation, potentially in an A
1
receptor dependent manner.
Hayaishi O, Urade Y, Eguchi N, Huang ZL. Genes for prostaglandin d synthase and receptor as well as adenosine A2A receptor are involved in the homeostatic regulation of NREM sleep. Arch Ital Biol. 2004;142:533–9.
CAS
PubMed
Google Scholar
Scammell TE, Gerashchenko DY, Mochizuki T, McCarthy MT, Estabrooke IV, Sears CA, et al. An adenosine A2a agonist increases sleep and induces Fos in ventrolateral preoptic neurons. Neuroscience. 2001;107:653–63.
CAS
PubMed
Google Scholar
Coleman CG, Baghdoyan HA, Lydic R. Dialysis delivery of an adenosine A2A agonist into the pontine reticular formation of C57BL/6 J mouse increases pontine acetylcholine release and sleep. J Neurochem. 2006;96:1750–9.
CAS
PubMed
Google Scholar
Byrne EM, Johnson J, McRae AF, Nyholt DR, Medland SE, Gehrman PR, et al. A genome-wide association study of caffeine-related sleep disturbance: confirmation of a role for a common variant in the adenosine receptor. Sleep. 2012;35:967–75. A genome wide association study in 2,402 Australians confirms a role for the common 1976T>C polymorphism of the ADORA2A gene in modulating effects of caffeine and caffeine-related sleep disturbances.
PubMed Central
PubMed
Google Scholar
Hohoff C, Garibotto V, Elmenhorst D, Baffa A, Kroll T, Hoffmann A, et al. Association of adenosine receptor gene polymorphisms and in vivo adenosine A1 receptor binding in the human brain. Neuropsychopharmacol. 2014;39:2989–99. An important human imaging study revealing that the ADORA2A polymorphism modulates the availability of adenosine A
1
, but not A
2A
receptors in the human brain. Therefore, the data may suggest that the previous associations between this polymorphism and altered caffeine sensitivity and augmented responses to sleep deprivation are modulated by A
1
and not A
2A
receptor dependent signaling.
Bachmann V, Klein C, Bodenmann S, Schäfer N, Berger W, Brugger P, et al. The BDNF Val66Met polymorphism modulates sleep intensity: EEG frequency- and state-specificity. Sleep. 2012;35:335–44.
PubMed Central
PubMed
Google Scholar
Ciruela F, Casadó V, Rodrigues RJ, Lujan R, Burgueño J, Canals M, et al. Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J Neurosci. 2006;26:2080–7.
CAS
PubMed
Google Scholar
Ciruela F, Fernández-Dueñas V, Llorente J, Borroto-Escuela D, Cuffí ML, Carbonell L, et al. G protein-coupled receptor oligomerization and brain integration: focus on adenosinergic transmission. Brain Res. 2012;1476:86–95.
CAS
PubMed
Google Scholar
Ferraro L, Beggiato S, Tomasini MC, Fuxe K, Antonelli T, Tanganelli S. A2A/D2 receptor heteromerization in a model of Parkinson's disease. Focus on striatal aminoacidergic signaling. Brain Res. 2012;1476:96–107.
CAS
PubMed
Google Scholar
Calabresi P, Picconi B, Tozzi A, Ghiglieri V, Di Filippo M. Direct and indirect pathways of basal ganglia: a critical reappraisal. Nature Neurosci. 2014;17:1022–30.
CAS
PubMed
Google Scholar
Monti JM, Monti D. The involvement of dopamine in the modulation of sleep and waking. Sleep Med Rev. 2007;11:113–33.
PubMed
Google Scholar
Lazarus M, Chen J-F, Urade Y, Huang Z-L. Role of the basal ganglia in the control of sleep and wakefulness. Curr Opin Neurobiol. 2013;23:780–5.
PubMed Central
CAS
PubMed
Google Scholar
Léna I, Parrot S, Deschaux O, Muffat-Joly S, Sauvinet V, Renaud B, et al. Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep–wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. J Neurosci Res. 2005;81:891–9.
PubMed
Google Scholar
Qu W-M, Xu X-H, Yan M-M, Wang Y-Q, Urade Y, Huang Z-L. Essential role of dopamine D2 receptor in the maintenance of wakefulness, but not in homeostatic regulation of sleep, in mice. J Neurosci. 2010;30:4382–9.
CAS
PubMed
Google Scholar
Barik S, de Beaurepaire R. Dopamine D3 modulation of locomotor activity and sleep in the nucleus accumbens and in lobules 9 and 10 of the cerebellum in the rat. Prog Neuro-Psychoph. 2005;29:718–26.
CAS
Google Scholar
Wisor JP, Nishino S, Sora I, Uhl GH, Mignot E, Edgar DM. Dopaminergic role in stimulant-induced wakefulness. J Neurosci. 2001;21:1787–94.
CAS
PubMed
Google Scholar
Volkow ND, Tomasi D, Wang G-J, Telang F, Fowler JS, Wang RL, et al. Hyperstimulation of striatal D2 receptors with sleep deprivation: implications for cognitive impairment. Neuroimage. 2009;45:1232–40.
PubMed Central
PubMed
Google Scholar
Volkow ND, Tomasi D, Wang GJ, Telang F, Fowler JS, Logan J, et al. Evidence that sleep deprivation downregulates dopamine D2R in ventral striatum in the human brain. J Neurosci. 2012;32:6711–7.
PubMed Central
CAS
PubMed
Google Scholar
Holst SC, Bersagliere A, Bachmann V, Berger W, Achermann P, Landolt H-P. Dopaminergic role in regulating neurophysiological markers of sleep homeostasis in humans. J Neurosci. 2014;34:566–73. Human sleep deprivation study suggesting that a genetic reduction in human dopamine transporter expression (10 repeat homozygotes) is associated with an enhanced sleep propensity in response to sleep deprivation, as well as an enhanced sensitivity to caffeine. The data corroborates previous findings in mice and drosophila, and also supports the proposed link between dopaminergic and adenosinergic signaling in the basal ganglia and their involvement in sleep–wake regulation.
CAS
PubMed
Google Scholar
Lu J, Jhou TC, Saper CB. Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J Neurosci. 2006;26:193–202.
CAS
PubMed
Google Scholar
Ueno T, Tomita J, Tanimoto H, Endo K, Ito K, Kume S, et al. Identification of a dopamine pathway that regulates sleep and arousal in Drosophila. Nature Neurosci. 2012;15:1516–23.
CAS
PubMed
Google Scholar
Popoli P, Pèzzola A, Torvinen M, Reggio R, Pintor A, Scarchilli L, et al. The selective mGlu5 receptor agonist CHPG inhibits quinpirole-induced turning in 6-hydroxydopamine-lesioned rats and modulates the binding characteristics of dopamine D2 receptors in the rat striatum. Neuropsychopharmacol. 2001;25:505–13.
CAS
Google Scholar
Hefti K, Holst SC, Sovago J, Bachmann V, Buck A, Ametamey SM, et al. Increased metabotropic glutamate receptor subtype 5 availability in human brain after one night without sleep. Biol Psychiat. 2013;73:161–8.
CAS
PubMed
Google Scholar
Koupenova M, Ravid K. Adenosine, adenosine receptors and their role in glucose homeostasis and lipid metabolism. J Cell Physiol 2013. doi: 10.1002/jcp.24352.
Jung CM, Melanson EL, Frydendall EJ, Perreault L, Eckel RH, Wright KP. Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans. J Physiol Lond. 2011;589:235–44.
PubMed Central
CAS
PubMed
Google Scholar
Dworak M, McCarley RW, Kim T, Kalinchuk AV, Basheer R. Sleep and brain energy levels: ATP changes during sleep. J Neurosci. 2010;30:9007–16.
PubMed Central
CAS
PubMed
Google Scholar
Beccuti G, Pannain S. Sleep and obesity. Curr Opin Clin Nutr Metab Care. 2011;14:402–12.
PubMed Central
PubMed
Google Scholar
Tsujino N, Sakurai T. Role of orexin in modulating arousal, feeding, and motivation. Front Behav Neurosci. 2013;7:28.
PubMed Central
CAS
PubMed
Google Scholar
Inutsuka A, Yamanaka A. The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions. Front Endocrinol (Lausanne). 2013;4:18.
Google Scholar
Thakkar MM, Engemann SC, Walsh KM, Sahota PK. Adenosine and the homeostatic control of sleep: effects of A1 receptor blockade in the perifornical lateral hypothalamus on sleep–wakefulness. Neuroscience. 2008;153:875–80.
CAS
PubMed
Google Scholar
Rai S, Kumar S, Alam MA, Szymusiak R, McGinty D, Alam MN. A1 receptor mediated adenosinergic regulation of perifornical-lateral hypothalamic area neurons in freely behaving rats. Neuroscience. 2010;167:40–8.
PubMed Central
CAS
PubMed
Google Scholar
Cun Y, Tang L, Yan J, He C, Li Y, Hu Z, et al. Orexin A attenuates the sleep-promoting effect of adenosine in the lateral hypothalamus of rats. Neurosci Bull. 2014;30:877–86.
CAS
PubMed
Google Scholar
Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG, et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab. 2001;86:5992–2.
CAS
PubMed
Google Scholar
Palmiter RD. Is dopamine a physiologically relevant mediator of feeding behavior? Trends Neurosci. 2007;30:375–81.
CAS
PubMed
Google Scholar
Racotta IS, Leblanc J, Richard D. The effect of caffeine on food intake in rats: involvement of corticotropin-releasing factor and the sympatho-adrenal system. Pharmacol Biochem Behav. 1994;48:887–92.
CAS
PubMed
Google Scholar
Pettenuzzo LF, Noschang C, Von Pozzer Toigo E, Fachin A, Vendite D, Dalmaz C. Effects of chronic administration of caffeine and stress on feeding behavior of rats. Physiol Behav. 2008;95:295–301.
CAS
PubMed
Google Scholar