Coordinating dissent as an alternative to consensus classification: insights from systematics for bio-ontologies

Abstract

The collection and classification of data into meaningful categories is a key step in the process of knowledge making. In the life sciences, the design of data discovery and integration tools has relied on the premise that a formal classificatory system for expressing a body of data should be grounded in consensus definitions for classifications. On this approach, exemplified by the realist program of the Open Biomedical Ontologies Foundry, progress is maximized by grounding the representation and aggregation of data on settled knowledge. We argue that historical practices in systematic biology provide an important and overlooked alternative approach to classifying and disseminating data, based on a principle of coordinative rather than definitional consensus. Systematists have developed a robust system for referring to taxonomic entities that can deliver high quality data discovery and integration without invoking consensus about reality or “settled” science.

This is a preview of subscription content, access via your institution.

Fig. 1

Notes

  1. 1.

    Our notion of a big data trajectory is distinct from Sabina Leonelli’s concept of data journeys, although they are connected in important ways. Briefly, Leonelli uses data journeys to evoke how data travel across time and place from their original situations of production to new situations of use. In contrast, the idea of a big data trajectory is meant to describe the progress a scientific community makes as a function of increasing the amount of data available for a problem.

  2. 2.

    We use terminology common to OWL here since it is the easiest to grasp intuitively, but researchers in the first-order logic and description logic communities use different terms for operationally equivalent ideas.

  3. 3.

    Smith and Ceusters give different general characterizations of universals and particulars in different places, though see Merrill (2010a). For example, in Smith (2003), universals are multiply located entities that exist in particulars, while particulars are entities with only one location in space at a time. Things that can have predicates thus include universals as well as particulars. Smith also adds a further logical primitive, the instantiation relation, and stipulates that only particulars can instantiate universals (Smith 2003).

  4. 4.

    Systematized Nomenclature of Medicine.

  5. 5.

    Note that we are not mentioning a design like this to endorse it. As Minelli (2017, this issue) has adroitly pointed out, there are major worries over the quality and durability of these and other name-based aggregators that include ‘grey’ non-Linnaean names. In the next section we will return to taxonomic names and consider different design solutions.

  6. 6.

    This empiricist concern about the theory-dependence of anatomical data has parallels to the earlier disputes between pheneticists, cladists, and evolutionary systematists about the best methodology for inferring classifications (Hull 1988; Sterner and Lidgard 2018), and would be a fruitful point of contact between philosophical analyses of homology and scientific practice.

  7. 7.

    If the circumscription includes two or more type specimens, the name associated with the most senior type specimen is the valid/correct name for the species and the other names become (junior) synonyms.

References

  1. Agar, J. (2006). What difference did computers make? Social Studies of Science,36(6), 869–907.

    Article  Google Scholar 

  2. Anonymous. (2018). Foundational model of anatomy. The National Center for Biomedical Ontology. Bioportal.bioontology.org. Retrieved December 18 from https://bioportal.bioontology.org/ontologies/FMA.

  3. Arp, R., Smith, B., & Spear, A. D. (2015). Building ontologies with basic formal ontology. Cambridge, MA: MIT Press.

    Book  Google Scholar 

  4. Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et al. (2000). Gene ontology: Tool for the unification of biology. Nature Genetics,25(1), 25–29.

    Article  Google Scholar 

  5. Berendsohn, W. G., & Geoffroy, M. (2007). Networking taxonomic concepts—Uniting without ‘unitary-ism. In G. Curry & C. Humphries (Eds.), Biodiversity databases—Techniques, politics, and applications. Systematics association special volume (Vol. 73, pp. 13–22). Baton Rouge: CRC Taylor & Francis.

    Chapter  Google Scholar 

  6. Bertone, M. A., Mikó, I., Yoder, M. J., Seltmann, K. C., Balhoff, J. P., & Deans, A. R. (2013). Matching arthropod anatomy ontologies to the Hymenoptera anatomy ontology: Results from a manual alignment. Database,2013, bas057. https://doi.org/10.1093/database/bas057.

    Article  Google Scholar 

  7. Blomquist, H. L. (1948). The grasses of North Carolina. Durham: Duke University Press.

    Google Scholar 

  8. Bowker, G. C. (2000). Biodiversity datadiversity. Social Studies of Science,30(5), 643–683.

    Article  Google Scholar 

  9. Ceusters, W., Smith, B., & Goldberg, L. J. (2005). A terminological and ontological analysis of the NCI thesaurus. Methods of Information in Medicine,44(4), 498–507.

    Article  Google Scholar 

  10. Conix, S. (2018). Integrative taxonomy and the operationalization of evolutionary independence. European Journal for Philosophy of Science,154(2), 1–17.

    Google Scholar 

  11. Cook, O. F. (1898). The method of types. Science, 8(198), 513–516.

    Article  Google Scholar 

  12. Costa, M., Reeve, S., Grumbling, G., & Osumi-Sutherland, D. (2013). The Drosophila anatomy ontology. Journal of Biomedical Semantics,4(1), 32.

    Article  Google Scholar 

  13. Costello, M. J., Bouchet, P., Boxshall, G., Fauchald, K., Gordon, D., Hoeksema, B. W., et al. (2013). Global coordination and standardisation in marine biodiversity through the World Register of Marine Species (WoRMS) and related databases. PLoS ONE,8(1), e51629. https://doi.org/10.1371/journal.pone.0051629.

    Article  Google Scholar 

  14. Day-Richter, J., Harris, M. A., Haendel, M., The Gene Ontology OBO-Edit Working Group, & Lewis, S. (2007). OBO-Edit—An ontology editor for biologists. Nucleic Acids Research,23(16), 2198–2200.

    Google Scholar 

  15. Dubois, A. (2005). Proposed rules for the incorporation of nomina of higher-ranked zoological taxa in the International Code of Zoological Nomenclature. Zoosystema,27(2), 365–426.

    Google Scholar 

  16. Edgecombe, G. D. (2008). Anatomical nomenclature: Homology, standardization and datasets. Zootaxa,1950, 87–95.

    Article  Google Scholar 

  17. Epstein, M. (2012). Nomenclature, terminology and language. Bionomina,5, 1–56.

    Article  Google Scholar 

  18. Federhen, S. (2012). The NCBI taxonomy database. Nucleic Acids Research,40, D136–D143.

    Article  Google Scholar 

  19. Fine, A. (2009). The shaky game: Einstein, realism, and the quantum theory. Chicago: University of Chicago Press.

    Google Scholar 

  20. Franz, N., Gilbert, E., Ludäscher, B., & Weakley, A. (2016a). Controlling the taxonomic variable: Taxonomic concept resolution for a Southeastern United States herbarium portal. Research Ideas and Outcomes,2, e10610.

    Article  Google Scholar 

  21. Franz, N. M., Chen, M., Kianmajd, P., Yu, S., Bowers, S., Weakley, A. S., et al. (2016b). Names are not good enough: Reasoning over taxonomic change in the Andropogon complex. Semantic Web,7(6), 645–667.

    Article  Google Scholar 

  22. Franz, N. M., Chen, M., Yu, S., Kianmajd, P., Bowers, S., & Ludäscher, B. (2015). Reasoning over taxonomic change: Exploring alignments for the Perelleschus use case. PLoS ONE,10(2), e0118247.

    Article  Google Scholar 

  23. Franz, N. M., & Goldstein, A. M. (2013). Phenotype ontologies: Are homology relations central enough? A reply to Deans Et Al. Trends in Ecology & Evolution,28(3), 131–132.

    Article  Google Scholar 

  24. Franz, N. M., & Peet, R. K. (2009). Perspectives: Towards a language for mapping relationships among taxonomic concepts. Systematics and Biodiversity,7(1), 5–20.

    Article  Google Scholar 

  25. Franz, N. M., Pier, N. M., Reeder, D. M., Chen, M., Yu, S., Kianmajd, P., et al. (2016c). Two influential primate classifications logically aligned. Systematic Biology,65(4), 561–582.

    Article  Google Scholar 

  26. Franz, N. M., & Sterner, B. W. (2018). To increase trust, change the social design behind aggregated biodiversity data. Database. https://doi.org/10.1093/database/bax100.

    Article  Google Scholar 

  27. Franz, N. M., & Thau, D. (2010). Biological taxonomy and ontology development: Scope and limitations. Biodiversity Informatics,7(1), 45–66.

    Google Scholar 

  28. Franz, N. M., Zhang, C., & Lee, J. (2017). A logic approach to modelling nomenclatural change. Cladistics,34(3), 336–357.

    Article  Google Scholar 

  29. Ghiselin, M. (1974). A radical solution to the species problem. Systematic Zoology,23, 536–544.

    Article  Google Scholar 

  30. Guala, G. F. (2016). The importance of species name synonyms in literature searches. PLoS ONE,11(9), e0162648.

    Article  Google Scholar 

  31. Hitchcock, A. S., & Chase, A. (1950). Manual of the grasses of the United States (2nd ed., Vol. 200). Washington, DC: US Department of Agriculture.

    Google Scholar 

  32. Hoehndorf, R., Dumontier, M., & Gkoutos, G. V. (2013). Evaluation of research in biomedical ontologies. Briefings in Bioinformatics,14(6), 696–712.

    Article  Google Scholar 

  33. Hull, D. L. (1976). Are species really individuals. Systematic Zoology,25, 174–191.

    Article  Google Scholar 

  34. Hull, D. L. (1988). Science as a process. Chicago: University of Chicago Press.

    Book  Google Scholar 

  35. iNaturalist. (2019). Taxon frameworks. iNaturalist.org. Retrieved March 29 from https://www.inaturalist.org/pages/taxon_frameworks.

  36. Kissling, W. D., Ahumada, J. A., Bowser, A., Fernandez, M., Fernandez, N., García, E. A., et al. (2017). Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biological Reviews,93(1), 600–625.

    Article  Google Scholar 

  37. Kuhn, T. S. (1996). The structure of scientific revolutions. Chicago: University of Chicago Press.

    Book  Google Scholar 

  38. Kumar, A., & Smith, B. (2003). The universal medical language system and the gene ontology: Some critical reflections. In KI 2003: Advances in artificial intelligence. Lecture notes in computer science (Vol. 2821, pp. 135–148). Berlin: Springer.

  39. Leonelli, S. (2010). Documenting the emergence of bio-ontologies: Or, why researching bioinformatics requires HPSSB. History and Philosophy of the Life Sciences,32(1), 105–125.

    Google Scholar 

  40. Leonelli, S. (2012). Classificatory theory in data-intensive science: The case of open biomedical ontologies. International Studies in the Philosophy of Science,26(1), 47–65.

    Article  Google Scholar 

  41. Leonelli, S. (2013). Integrating data to acquire new knowledge: Three modes of integration in plant science. Studies in the History and Philosophy of Biological and Biomedical Sciences,44(4), 503–514.

    Article  Google Scholar 

  42. Leonelli, S. (2016). Data-centric biology: A philosophical study. Chicago: University of Chicago Press.

    Book  Google Scholar 

  43. Leonelli, S., Diehl, A. D., Christie, K. R., Harris, M. A., & Lomax, J. (2011). How the gene ontology evolves. BMC Bioinformatics,12(1), 325.

    Article  Google Scholar 

  44. Lepage, D., Vaidya, G., & Guralnick, R. (2014). Avibase—A database system for managing and organizing taxonomic concepts. ZooKeys,420(420), 117–135.

    Article  Google Scholar 

  45. Lord, P., & Stevens, R. (2010). Adding a little reality to building ontologies for biology. PLoS ONE,5(9), e12258.

    Article  Google Scholar 

  46. Maojo, V., Crespo, J., García-Remesal, M., de la Iglesia, D., Perez-Rey, D., & Kulikowski, C. (2011). Biomedical ontologies: Toward scientific debate. Methods of Information in Medicine,50(3), 203–216.

    Article  Google Scholar 

  47. Merrill, G. H. (2010a). Ontological realism: Methodology or misdirection? Applied Ontology,5(2), 79–108.

    Article  Google Scholar 

  48. Merrill, G. H. (2010b). Realism and reference ontologies: Considerations, reflections and problems. Applied Ontology,5, 189–221.

    Article  Google Scholar 

  49. Millerand, F., Ribes, D., Baker, K. S., & Bowker, G. C. (2013). Making an issue out of a standard: Storytelling practices in a scientific community. Science, Technology and Human Values,38(1), 7–43.

    Article  Google Scholar 

  50. Minelli, A. (2017). Grey nomenclature needs rules. Ecologica Montenegrina,7, 654–666.

    Google Scholar 

  51. Müller-Wille, S. (2017). Names and numbers: ‘Data’ in classical natural history, 1758–1859. Osiris,32(1), 109–128.

    Article  Google Scholar 

  52. Müller-Wille, S., & Charmantier, I. (2012). Natural history and information overload: The case of Linnaeus. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences,43(1), 4–15.

    Article  Google Scholar 

  53. Mungall, C. J. (2019). Never mind the logix: Taming the semantic anarchy of mappings in ontologies. Douroucouli.wordpress.com. Retrieved May 26 from https://douroucouli.wordpress.com/2019/05/27/never-mind-the-logix-taming-the-semantic-anarchy-of-mappings-in-ontologie/.

  54. NatureServe. (2019). Methodology and guidelines. Help.natureserve.org. Retrieved August 20 from http://help.natureserve.org/biotics/#Methodology/MethodologyGuidelines.htm.

  55. Otero-Cerdeira, L., Rodríguez-Martínez, F. J., & Gómez-Rodríguez, A. (2015). Ontology matching: A literature review. Expert Systems with Applications,42(2), 949–971.

    Article  Google Scholar 

  56. Patterson, D., Cooper, J., Kirk, P., Pyle, R., & Remsen, D. (2010). Names are key to the big new biology. Trends in Ecology & Evolution,25(12), 686–691.

    Article  Google Scholar 

  57. Pesquita, C., Faria, D., Stroe, C., Santos, E., Cruz, I. F., & Couto, F. M. (2013). What’s in a ‘Nym’? Synonyms in biomedical ontology matching. In The semantic webISWC 2013. Lecture Notes in Computer Science (Vol. 8218, pp. 526–541). Berlin: Springer.

  58. Radford, A. E., Ahles, H. E., & Bell, C. R. (1968). Manual of the vascular flora of the Carolinas. Chapel Hill, NC: University of North Carolina Press.

    Google Scholar 

  59. Remsen, D. (2016). The use and limits of scientific names in biological informatics. ZooKeys,550(4), 207–223.

    Article  Google Scholar 

  60. Seltmann, K., Austin, A., & Jennings, J. (2012). A hymenopterists’ guide to the Hymenoptera anatomy ontology: Utility, clarification, and future directions. Journal of Hymenoptera Research,27(2), 67–88.

    Google Scholar 

  61. Seppälä, S., Smith, B., & Ceusters, W. (2014). Applying the realism-based ontology-versioning method for tracking changes in the basic formal ontology. In P. Garbacz & O. Kutz (Eds.), Formal ontology in information systems (pp. 227–240). Amsterdam: IOS Press.

    Google Scholar 

  62. Smith, B. (2003). The logic of biological classification and the foundations of biomedical ontology. In Invited papers from the 10th international conference in logic methodology and philosophy of science, Oviedo, Spain (pp. 19–25).

  63. Smith, B. (2004). Beyond concepts: Ontology as reality representation. In V. Achille & L. Vieu (Eds.), Proceedings of FOIS 2004 international conference on formal ontology and information systems (pp. 73–84). Fairfax, VA: IOS Press.

    Google Scholar 

  64. Smith, B. (2008). New desiderata for biomedical terminologies. In K. Munn & B. Smith (Eds.), Applied ontology: An introduction (pp. 83–107). Boston: De Gruyter.

    Google Scholar 

  65. Smith, B. (2009). Biometaphysics. In R. Le Poidevin, P. Simons, A. McGonigal, & R. Cameron (Eds.), The Routledge companion to metaphysics (pp. 537–544). London: Routledge.

    Google Scholar 

  66. Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., et al. (2007). The OBO foundry: Coordinated evolution of ontologies to support biomedical data integration. Nature Biotechnology,25(11), 1251–1255.

    Article  Google Scholar 

  67. Smith, B., & Ceusters, W. (2006). HL7 RIM: An incoherent standard. Studies in Health Technology and Informatics,124, 133–138.

    Google Scholar 

  68. Smith, B., & Ceusters, W. (2010). Ontological realism: A methodology for coordinated evolution of scientific ontologies. Applied Ontology,5(3–4), 139–188.

    Article  Google Scholar 

  69. Smith, B., Ceusters, W., Klagges, B., Köhler, J., Kumar, A., Lomax, J., et al. (2005). Relations in biomedical ontologies. Genome Biology,6(5), R46.

    Article  Google Scholar 

  70. Sojic, A., & Kutz, O. (2012). Open biomedical pluralism: Formalising knowledge about breast cancer phenotypes. Journal of Biomedical Semantics,3(Suppl 2), S3.

    Article  Google Scholar 

  71. Sterner, B. W. (2018). Review of Sabina Leonelli’s data-centric biology: A philosophical study. Philosophy of Science,85(3), 540–550.

    Article  Google Scholar 

  72. Sterner, B. W., & Franz, N. M. (2017). Taxonomy for humans or computers? Cognitive pragmatics for big data. Biological Theory,12(2), 99–111.

    Article  Google Scholar 

  73. Sterner, B. W., & Lidgard, S. (2014). The normative structure of mathematization in systematic biology. Studies in the History and Philosophy of Biological and Biomedical Sciences,46, 44–54.

    Article  Google Scholar 

  74. Sterner, B. W., & Lidgard, S. (2018). Moving past the systematics wars. Journal of the History of Biology,51, 31–67.

    Article  Google Scholar 

  75. The Gene Ontology Consortium. (2017). Expansion of the gene ontology knowledgebase and resources. Nucleic Acids Research,45(D1), D331–D338.

    Article  Google Scholar 

  76. The OBO Foundry. (2018). Principle: Maintenance. Obofoundry.org. Retrieved September 22 from http://www.obofoundry.org/principles/fp-016-maintenance.html.

  77. Vaidya, G., Lepage, D., & Guralnick, R. (2018). The tempo and mode of the taxonomic correction process: How taxonomists have corrected and recorrected North American bird species over the last 127 years. PLoS ONE,13(4), e0195736. https://doi.org/10.1371/journal.pone.0195736.

    Article  Google Scholar 

  78. Vogt, L. (2011). Signs and terminology: Science caught between language and perception. Bionomina,4, 1–41.

    Article  Google Scholar 

  79. Vogt, L. (2017). Assessing similarity: On homology, characters, and the need for a semantic approach to non-evolutionary comparative homology. Cladistics,33, 513–539.

    Article  Google Scholar 

  80. Wilkins, J. S. (2009). Species: A history of the idea. Berkeley, CA: University of California Press.

    Google Scholar 

  81. Witteveen, J. (2015). Naming and contingency: The type method of biological taxonomy. Biology and Philosophy,30, 569–586.

    Article  Google Scholar 

  82. Witteveen, J. (2016). Suppressing synonymy with a homonym: The emergence of the nomenclatural type concept in nineteenth century natural history. Journal of the History of Biology,49(1), 135–189.

    Article  Google Scholar 

  83. Witteveen, J. (2018). Objectivity, historicity, taxonomy. Erkenntnis,83(3), 445–463.

    Article  Google Scholar 

  84. Yoder, M. J., Mikó, I., Seltmann, K. C., Bertone, M. A., & Deans, A. R. (2010). A gross anatomy ontology for Hymenoptera. PLoS ONE,5(12), e15991. https://doi.org/10.1371/journal.pone.0015991.

    Article  Google Scholar 

Download references

Acknowledgments

Our thanks to the editors for proposing and organizing the special issue on Taxonomy as an Information Science. Their comments and the referees’ responses both helped substantially improve the final text. This work was also supported by the McDonnell Foundation via the Marine Biological Laboratory and ASU’s Special Initiative Fund for Biodiversity Data Science.

Funding

Funding was provided by Division of Social and Economic Sciences (Grant No. STS 1827993), Netherlands Organisation for Scientific Research (Grant No. 275-20-060) and National Science Foundation (Grant Nos. SES-1827993, DEB-1754731).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Beckett Sterner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sterner, B., Witteveen, J. & Franz, N. Coordinating dissent as an alternative to consensus classification: insights from systematics for bio-ontologies. HPLS 42, 8 (2020). https://doi.org/10.1007/s40656-020-0300-z

Download citation

Keywords

  • Bio-ontologies
  • Big data
  • Data-centrism
  • Consensus principle
  • Coordination
  • Ontology alignment
  • Biodiversity informatics