Taxa hold little information about organisms: Some inferential problems in biological systematics

  • Thomas A. C. ReydonEmail author
Original Paper
Part of the following topical collections:
  1. History and Philosophy of Taxonomy as an Information Science


The taxa that appear in biological classifications are commonly seen as representing information about the traits of their member organisms. This paper examines in what way taxa feature in the storage and retrieval of such information. I will argue that taxa do not actually store much information about the traits of their member organisms. Rather, I want to suggest, taxa should be understood as functioning to localize organisms in the genealogical network of life on Earth. Taxa store information about where organisms are localized in the network, which is important background information when it comes to establishing knowledge about organismal traits, but it is not itself information about these traits. The view of species and higher taxa that is proposed here follows from examining three problems that occur in contemporary biological systematics and are discussed here: the problem of generalization over taxa, the problem of phylogenetic inference, and the problematic nature of the Tree of Life.


Inference Phylogenetic inference Species Systematic biology Tree of Life 



I am indebted to two anonymous reviewers and to the guest editors of this special issue for helpful comments on an earlier version of this paper.


  1. Bapteste, E., O’Malley, M. A., Beiko, R. G., Ereshefsky, M., Gogarten, J. P., Franklin-Hall, L., et al. (2009). Prokaryotic evolution and the tree of life are two different things. Biology Direct, 4, 34.CrossRefGoogle Scholar
  2. Bapteste, E., Van Iersel, L., Janke, A., Kelchner, S., Kelk, S., McInerney, J. O., et al. (2013). Networks: Expanding evolutionary thinking. Trends in Genetics, 29, 439–441.CrossRefGoogle Scholar
  3. Bergsten, J. (2005). A review of long-branch attraction. Cladistics, 21, 163–193.CrossRefGoogle Scholar
  4. Boyd, R. (1999). Homeostasis, species, and higher taxa. In R. A. Wilson (Ed.), Species: New interdisciplinary essays (pp. 141–185). Cambridge, MA: MIT Press.Google Scholar
  5. Danchin, E. G. J. (2016). Lateral gene transfer in eukaryotes: Tip of the iceberg or of the ice cube? BMC Biology, 14, 101.CrossRefGoogle Scholar
  6. Degnan, J. H., & Rosenberg, N. A. (2006). Discordance of species trees with their most likely gene trees. PLoS Genetics, 2, e68.CrossRefGoogle Scholar
  7. Doolittle, W. F. (1999). Phylogenetic classification and the universal tree. Science, 284, 2124–2129.CrossRefGoogle Scholar
  8. Doolittle, W. F. (2010). The attempt on the life of the tree of life: Science, philosophy and politics. Biology and Philosophy, 25, 455–473.CrossRefGoogle Scholar
  9. Doolittle, W. F., & Bapteste, E. (2007). Pattern pluralism and the tree of life hypothesis. Proceedings of the National Academy of Sciences, 104, 2043–2049.CrossRefGoogle Scholar
  10. Dunning Hotopp, J. C. (2018). Grafting or pruning in the animal tree: Lateral gene transfer and gene loss? BMC Genomics, 19, 470.CrossRefGoogle Scholar
  11. Editors (2016). Editorial, Cladistics 32, 1.Google Scholar
  12. Felsenstein, J. (1978a). The number of evolutionary trees. Systematic Zoology, 27, 27–33.CrossRefGoogle Scholar
  13. Felsenstein, J. (1978b). Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology, 27, 401–410.CrossRefGoogle Scholar
  14. Felsenstein, J. (1979). Alternative methods of phylogenetic inference and their interrelationship. Systematic Zoology, 28, 49–62.CrossRefGoogle Scholar
  15. Felsenstein, J. (1988). Phylogenies from molecular sequences: Inference and reliability. Annual Review of Genetics, 22, 521–565.CrossRefGoogle Scholar
  16. Felsenstein, J. (2004). Inferring phylogenies. Sunderland, MA: Sinauer.Google Scholar
  17. Godefroit, P., Cau, A., Dong-Yu, H., Escuillié, F., Wenhao, W., & Dyke, G. (2013). A Jurassic avialan dinosaur from China resolves the early phylogenetic history of birds. Nature, 498, 359–362.CrossRefGoogle Scholar
  18. Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society (London) B, 205, 581–598.CrossRefGoogle Scholar
  19. Griffiths, P. E. (1999). Squaring the circle: Natural kinds with historical essences. In R. A. Wilson (Ed.), Species: New interdisciplinary essays (pp. 209–228). Cambridge, MA: MIT Press.Google Scholar
  20. Griffiths, P. E. (2001). Genetic information: A metaphor in search of a theory. Philosophy of Science, 68, 394–412.CrossRefGoogle Scholar
  21. Haber, M. (2009). Phylogenetic inference. In A. Tucker (Ed.), A companion to the philosophy of history and historiography (pp. 231–242). Chichester: Wiley-Blackwell.CrossRefGoogle Scholar
  22. Hecht, M. K., & Edwards, J. L. (1977). The methodology of phylogenetic inference above the species level. In M. K. Hecht, P. C. Goody, & B. M. Hecht (Eds.), Major patterns in vertebrate evolution (pp. 3–51). New York: Plenum Press.CrossRefGoogle Scholar
  23. Hempel, C. G., & Oppenheim, P. (1948). Studies in the logic of explanation. Philosophy of Science, 15, 135–175.CrossRefGoogle Scholar
  24. Hennig, W. (1950). Grundzüge einer Theorie der phylogenetischen Systematik. Berlin: Deutscher Zentralverlag.Google Scholar
  25. Hennig, W. (1965). Phylogenetic systematics. Annual Review of Entomology, 10, 97–116.CrossRefGoogle Scholar
  26. Hennig, W. (1966). Phylogenetic systematics. Urbana, IL: University of Illinois Press.Google Scholar
  27. Jenner, R. A. (2004). Accepting partnership by submission? Morphological phylogenetics in a molecular millennium. Systematic Biology, 53, 333–342.CrossRefGoogle Scholar
  28. Keeling, P. J., & Palmer, J. D. (2008). Horizontal gene transfer in eukaryotic evolution. Nature Reviews Genetics, 9, 605–618.CrossRefGoogle Scholar
  29. Khalidi, M. A. (2018). Natural kinds as nodes in causal networks. Synthese, 195, 1379–1396.CrossRefGoogle Scholar
  30. Kitcher, P. (1981). Explanatory unification. Philosophy of Science, 48, 507–531.CrossRefGoogle Scholar
  31. Koonin, E. V., & Wolf, Y. I. (2009). The fundamental units, processes and patterns of evolution, and the tree of life conundrum. Biology Direct, 4, 33.CrossRefGoogle Scholar
  32. Kunin, V., Goldovsky, L., Darentzas, N., & Ouzounis, C. A. (2005). The net of life: Reconstructing the microbial phylogenetic network. Genome Research, 15, 954–959.CrossRefGoogle Scholar
  33. Lee, M. S. Y., & Palci, A. (2015). Morphological phylogenetics in the genomic age. Current Biology, 25, R922–R929.CrossRefGoogle Scholar
  34. Leonelli, S. (2013). Classificatory theory in biology. Biological Theory, 7, 338–345.CrossRefGoogle Scholar
  35. Maynard Smith, J. (2000). The concept of information in biology. Philosophy of Science, 67, 177–194.CrossRefGoogle Scholar
  36. Mayr, E. (1961). Cause and effect in biology. Science, 134, 1501–1506.CrossRefGoogle Scholar
  37. Mayr, E. (1968). Theory of biological classification. Nature, 220, 545–548.CrossRefGoogle Scholar
  38. Mayr, E., & Bock, W. J. (2002). Classifications and other ordering systems. Journal of Zoological Systematics and Evolutionary Research, 40, 169–194.CrossRefGoogle Scholar
  39. Mindell, D. P. (2013). The tree of life: Metaphor, model, and heuristic device. Systematic Biology, 62, 479–489.CrossRefGoogle Scholar
  40. Morrison, D. A. (2014). Is the tree of life the best metaphor, model, or heuristic for phylogenetics? Systematic Biology, 63, 628–638.CrossRefGoogle Scholar
  41. O’Malley, M. A., & Koonin, E. V. (2011). How stands the tree of life a century and a half after the origin? Biology Direct, 6, 32.CrossRefGoogle Scholar
  42. O’Malley, M. A., Martin, W., & Dupré, J. (2010). The tree of life: Introduction to an evolutionary debate. Biology and Philosophy, 25, 441–453.CrossRefGoogle Scholar
  43. Pleijel, F. (1995). On character coding for phylogeny reconstruction. Cladistics, 11, 309–315.CrossRefGoogle Scholar
  44. Reydon, T. A. C. (2006). Generalizations and kinds in natural science: The case of species. Studies in History and Philosophy of Biological and Biomedical Sciences, 37, 230–255.CrossRefGoogle Scholar
  45. Reydon, T. A. C., & Kunz, W. (2019). Species as natural entities, instrumental units and ranked taxa: New perspectives on the grouping and ranking problems. Biological Journal of the Linnean Society, 126, 623–636.CrossRefGoogle Scholar
  46. Richards, R. (2003). Character individuation in phylogenetic inference. Philosophy of Science, 70, 264–279.CrossRefGoogle Scholar
  47. Sarkar, S. (2003). Genes encode information for phenotypic traits. In C. Hitchcock (Ed.), Contemporary debates in philosophy of science (pp. 259–272). London: Blackwell.Google Scholar
  48. Scotland, R. W., Olmstead, R. G., & Bennett, J. R. (2003). Phylogeny reconstruction: The role of morphology. Systematic Biology, 52, 539–548.CrossRefGoogle Scholar
  49. Sieber, K. B., Bromley, R. E., & Dunning Hotopp, J. C. (2017). Lateral gene transfer between prokaryotes and eukaryotes. Experimental Cell Research, 358, 421–426.CrossRefGoogle Scholar
  50. Sober, E. (1983). Competing methods of phylogenetic inference. Annual Review of Ecology and Systematics, 14, 335–357.CrossRefGoogle Scholar
  51. Sober, E. (1988). Reconstructing the past: Parsimony, evolution, and inference. Cambridge, MA: MIT Press.Google Scholar
  52. Sokal, R. R., & Sneath, P. H. A. (1963). Principles of numerical taxonomy. London: W.H. Freeman and Co.Google Scholar
  53. Stegmann, U. (2009). DNA, inference, and information. British Journal for the Philosophy of Science, 60, 1–17.CrossRefGoogle Scholar
  54. Suh, A., Smeds, L., & Ellegren, H. (2015). The dynamics of incomplete lineage sorting across the ancient adaptive radiation of neoavian birds. PLoS Biology, 13, e1002224.CrossRefGoogle Scholar
  55. Velasco, J. D. (2013). Philosophy and phylogenetics. Philosophy Compass, 8(10), 990–998.CrossRefGoogle Scholar
  56. Vernon, K. (1988). The founding of numerical taxonomy. British Journal for the History of Science, 21, 143–159.CrossRefGoogle Scholar
  57. Waters, C. K. (1998). Causal regularities in the biological world of contingent distributions. Biology and Philosophy, 13, 5–36.CrossRefGoogle Scholar
  58. Wiens, J. J. (2004). The role of morphological data in phylogeny reconstruction. Systematic Biology, 53, 653–661.CrossRefGoogle Scholar
  59. Wimsatt, W. C. (2007). Re-engineering philosophy for limited beings: Piecewise approximations to reality. Cambridge, MA: Harvard University Press.Google Scholar
  60. Wimsatt, W. C. (2015). Entrenchment as a theoretical tool in evolutionary developmental biology. In A. C. Love (Ed.), Conceptual change in biology: Scientific and philosophical perspectives on evolution and development (pp. 365–402). Dordrecht: Springer.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Philosophy & Centre for Ethics and Law in the Life Sciences (CELLS)Leibniz University HannoverHannoverGermany

Personalised recommendations