Advertisement

The galaxy of the non-Linnaean nomenclature

  • Alessandro MinelliEmail author
Original Paper
Part of the following topical collections:
  1. History and Philosophy of Taxonomy as an Information Science

Abstract

Contrary to the traditional claim that needs for unambiguous communication about animal and plant species are best served by a single set of names (Linnaean nomenclature) ruled by international Codes, I suggest that a more diversified system is required, especially to cope with problems emerging from aggregation of biodiversity data in large databases. Departures from Linnaean nomenclature are sometimes intentional, but there are also other, less obvious but widespread forms of not Code-compliant grey nomenclature. A first problem is due to the circumstance that the Codes are intended to rule over the way names are applied to species and other taxonomic units, whereas users of taxonomy need names to be applied to specimens. For different reasons, it is often impossible to refer a specimen with certainty to a named species, and in those cases an open nomenclature is employed. Second, molecular taxonomy leads to the discovery of clusters of gene sequence diversity not necessarily equivalent to the species recognized and named by taxonomists. Those clusters are mostly indicated with informal names or formulas that challenge comparison between different publications or databases. In several instances, it is not even clear if a formula refers to an individual voucher specimen, or is a provisional species name. The use of non-Linnaean names and formulas must be revised and strengthened by fixing standard formats for the different kinds of objects or hypotheses and providing permanent association of ‘grey names’ with standardized source information such as author and year. In the context of a broad-scope revisitation of aims and scope of scientific nomenclature, it may be worth rethinking if natural objects like plant galls and lichens, although other than the ‘single-entity’ objects traditionally covered by biological classifications, may nevertheless deserve taxonomic names.

Keywords

Open nomenclature Grey nomenclature Data aggregation Taxonomic concept Rules for non-Linnaean nomenclature Lichen names Plant gall names 

Notes

Acknowledgements

I am grateful to Catherine Kendig and Joeri Witteveen for inviting me to contribute to this special issue and to both of them, two anonymous referees and the journal’s Editor Sabina Leonelli for their helpful suggestions on previous versions of the paper.

References

  1. Acharius, E. (1810). Lichenographia universalis. Göttingen: Danckwerts.Google Scholar
  2. Bely, A. E., & Weisblat, D. A. (2006). Lessons from leeches: a call for DNA barcoding in the lab. Evolution and Development, 8, 491–501.CrossRefGoogle Scholar
  3. Bengtson, P. (1988). Open nomenclature. Palaeontology, 31, 223–227.Google Scholar
  4. Berendsohn, W. G. (1995). The concept of “potential taxa” in databases. Taxon, 44, 207–212.CrossRefGoogle Scholar
  5. Berendsohn, W. G., Döring, M., Geoffroy, M., Glück, K., Güntsch, A., Hahn, A., et al. (2003). The Berlin Model: a concept-based taxonomic information model. Schriftenreihe für Vegetationskunde, 39, 15–42.Google Scholar
  6. Blaxter, M., Mann, J., Chapman, T., Thomas, F., Whitton, C., Robin Floyd, R., et al. (2005). Defining operational taxonomic units using DNA barcode data. Philosophical Transactions of the Royal Society of London B Biological Sciences, 360, 1935–1943.CrossRefGoogle Scholar
  7. Boykin, L. M., Kinene, T., Wainaina, J. M., Savill, A., Seal, S., Mugerwa, H., et al. (2018). Review and guide to a future naming system of African Bemisia tabaci species. Systematic Entomology, 43, 427–433.CrossRefGoogle Scholar
  8. Brunetti, R., Gissi, C., Pennati, R., Caicci, F., Gasparini, F., & Manni, L. (2015). Morphological evidence that the molecularly determined Ciona intestinalis type A and type B are different species: Ciona robusta and Ciona intestinalis. Journal of Zoological Systematics and Evolutionary Research, 53, 186–193.CrossRefGoogle Scholar
  9. Brünnich, M. T. (1772). Zoologiae fundamenta praelectionibus academicis accommodata = Grunde i dyrelaeren. Hafniae et Lipsiae: Pelt.Google Scholar
  10. Cantino, P. D., & de Queiroz, K. (2010). PhyloCode: International Code of Phylogenetic Nomenclature (Version 4c). http://www.ohio.edu/phylocode. Accessed July 31, 2019.
  11. Collins, R. A., & Cruickshank, R. H. (2012). The seven deadly sins of DNA barcoding. Molecular Ecology Resources, 13, 969–975.Google Scholar
  12. Conway, D. V. P. (2015). Marine zooplankton of southern Britain. Part 3: Ostracoda, Stomatopoda, Nebaliacea, Mysida, Amphipoda, Isopoda, Cumacea, Euphausiacea, Decapoda, Annelida, Tardigrada, Nematoda, Phoronida, Bryozoa, Entoprocta, Brachiopoda, Echinodermata, Chaetognatha, Hemichordata and Chordata. (Edited by A. W. G. John). Occasional Publications. Marine Biological Association of the United Kingdom, No. 27, Plymouth.Google Scholar
  13. de Bary, A. (1866). Morphologie und Physiologie der Pilze, Flechten und Myxomyceten. Leipzig: Engelmann.CrossRefGoogle Scholar
  14. de Queiroz, K. (1988). Systematics and the Darwinian revolution. Philosophy of Science, 55, 238–259.CrossRefGoogle Scholar
  15. de Queiroz, K., & Gauthier, J. (1990). Phylogeny as a central principle in taxonomy: Phylogenetic definitions of taxon names. Systematic Zoology, 39, 307–322.CrossRefGoogle Scholar
  16. De Smet, W. M. A. (1991). Meeting user needs by an alternative nomenclature. In D. L. Hawksworth (Ed.), Improving the stability of names: Needs and options (pp. 179–181). Königstein: Koeltz Scientific Books.Google Scholar
  17. Dehal, P., Satou, Y., Campbell, R. K., Chapman, J., Degnan, B., De Tomaso, A., et al. (2002). The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science, 298, 2157–2167.CrossRefGoogle Scholar
  18. Delaroche, F. E. (1809). Suite du mémoire sur les espèces de poissons observées à Iviça. Observations sur quelques-uns des poissons indiqués dans le précédent tableau et descriptions des espèces nouvelles ou peu connues. Annales du Muséum d’Histoire Naturelle, Paris, 13, 313–361, pls. 20–25.Google Scholar
  19. Erxleben, J. C. P. (1777) Systema regni animalis per classes, ordines, genera, species, varietates: cum synonymia et historia animalium. Classis I: Mammalia. Lipsiae: Impensis Weygandianis.Google Scholar
  20. Fišer, C., Alther, R., Zakšek, V., Borko, S., Fuchs, A., & Altermatt, F. (2018). Translating Niphargus barcodes from Switzerland into taxonomy with a description of two new species (Amphipoda, Niphargidae). ZooKeys, 760, 113–141.CrossRefGoogle Scholar
  21. Fišer, C., Konec, M., Alther, R., Švara, V., & Altermatt, F. (2017). Taxonomic, phylogenetic and ecological diversity of Niphargus (Amphipoda: Crustacea) in the Hölloch cave system (Switzerland). Systematics and Biodiversity, 15, 218–237.CrossRefGoogle Scholar
  22. Floyd, R., Eyualem, A., Papert, A., & Blaxter, M. (2002). Molecular barcodes for soil nematode identification. Molecular Ecology, 11, 839–850.CrossRefGoogle Scholar
  23. Franz, N. M., Chen, M., Kianmajd, P., Yu, S., Bowers, S., Weakley, A. S., et al. (2016). Names are not good enough: reasoning over taxonomic change in the Andropogon complex. Semantic Web, 7, 645–667.CrossRefGoogle Scholar
  24. Franz, N. M., & Peet, R. K. (2009). Towards a language for mapping relationships among taxonomic concepts. Systematics and Biodiversity, 7, 5–20.CrossRefGoogle Scholar
  25. Franz, N. M., Peet, R. K., & Weakley, A. S. (2008). On the use of taxonomic concepts in support of biodiversity research and taxonomy. In Q. D. Wheeler (Ed.), The new taxonomy (pp. 63–86). Boca Raton: CRC Press.CrossRefGoogle Scholar
  26. Fricke, R., Eschmeyer, W. N. & van der Laan, R. (Eds.). (2019). Eschmeyer’s Catalog of fishes: Genera, species, references. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. Accessed July 30, 2019.
  27. Groves, C., & Grubb, P. (2011). Ungulate taxonomy. Baltimore: The Johns Hopkins University Press.Google Scholar
  28. Hawksworth, D. L., Hibbett, D. S., Kirk, P. M., & Lücking, R. (2016). (308–310) Proposals to permit DNA sequence data to serve as types of names of fungi. Taxon, 65, 899–900.CrossRefGoogle Scholar
  29. Hebert, P. D. N. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London, Series B: Biological Sciences, 270, 313–321.CrossRefGoogle Scholar
  30. Heppell, D. (1991). Names without number? In D. L. Hawksworth (Ed.), Improving the stability of names: Needs and options (pp. 191–196). Königstein: Koeltz.Google Scholar
  31. Horton, T., Gofas, S., Kroh, A., Poore, G. C. B., Read, G., Rosenberg, G., et al. (2017). Improving nomenclatural consistency: A decade of experience in the World Register of Marine Species. European Journal of Taxonomy, 389, 1–24.Google Scholar
  32. Huemer, P., & Karsholt, O. (1995). Gelechiidae. In A. Minelli, S. Ruffo, & S. La Posta (Eds.), Checklist delle specie della fauna italiana (Vol. 83, pp. 28–41). Bologna: Calderini.Google Scholar
  33. Iannelli, F., Pesole, G., Sordino, P., & Gissi, C. (2007). Mitogenomics reveals two cryptic species in Ciona intestinalis. Trends in Genetics, 23, 419–422.CrossRefGoogle Scholar
  34. International Commission on Zoological Nomenclature. (1999). International Code of Zoological Nomenclature (4th ed.). London: The International Trust for Zoological Nomenclature.Google Scholar
  35. International Commission on Zoological Nomenclature. (2015). Opinion 2373 (Case 3626): Phoronis Wright, 1856 (Phoronida) and P. muelleri de Selys Longchamps, 1903: both names conserved. Bulletin of Zoological Nomenclature, 72, 327–328.CrossRefGoogle Scholar
  36. Jolivet, P. (1998). Interrelationship between insects and plants. London: CRC.CrossRefGoogle Scholar
  37. Jörger, K. M., Norenburg, J. L., Wilson, N. G., & Schrödl, M. (2012). Barcoding against a paradox? Combined molecular species delineations reveal multiple cryptic lineages in elusive meiofaunal sea slugs. BMC Evolutionary Biology, 12, 245.CrossRefGoogle Scholar
  38. Jörger, K. M., & Schrödl, M. (2013). How to describe a cryptic species? Practical challenges of molecular taxonomy. Frontiers in Zoology, 10, 59.CrossRefGoogle Scholar
  39. Kõljalg, U., Tedersoo, L., Nilsson, R. H., & Abarenkov, K. (2016). Digital identifiers for fungal species. Science, 352, 1182–1183.CrossRefGoogle Scholar
  40. Kutschera, U., Langguth, H., Kuo, D.-H., Weisblat, D. A., & Shankland, M. (2013). Description of a new leech species from North America, Helobdella austinensis n. sp. (Hirudinea: Glossiphoniidae), with observations on its feeding behaviour. Zoosystematics and Evolution, 89, 239–246.CrossRefGoogle Scholar
  41. Lapage, S. P., Sneath, P. H. A., Lessel, E. F., Skerman, V. B. D., Seeliger, H. P. R., & Clark, W. A. (1990). International code of nomenclature of bacteria. Washington, DC: ASM Press.Google Scholar
  42. Leach, W. E. (1818). Sur quelques genres nouveaux de Crustacés. Journal de Physique, 88, 304–307.Google Scholar
  43. Legg, J. P., French, R., Rogan, D., Okao-Okuja, G., & Brown, J. K. (2002). A distinct Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodidae) genotype cluster is associated with the epidemic of severe cassava mosaic virus disease in Uganda. Molecular Ecology, 11, 1219–1229.CrossRefGoogle Scholar
  44. Leonelli, S. (2016). Data-centric biology. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
  45. Lepage, D. (2019). Avibasethe World Bird Database. http://avibase.bsc-eoc.org. Accessed July 30, 2019.
  46. Lepage, D., Vaidya, G., & Guralnick, R. (2014). Avibase—A database system for managing and organizing taxonomic concepts. ZooKeys, 420, 117–135.CrossRefGoogle Scholar
  47. Linnaeus, C. (1751). Philosophia botanica in qua explicantur fundamenta botanica cum definitionibus partium, exemplis terminorum, observationibus rariorum. Stockholm: Kiesewetter.Google Scholar
  48. Linnaeus, C. (1753). Species plantarum: exhibentes plantas rite cognitas, ad genera relatas, cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas. Holmiae: Laurentius Salvius.Google Scholar
  49. Linnaeus, C. (1758). Systema naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis, Edition X. 1. Stockholm: Laurentius Salvius.Google Scholar
  50. Marks, E. N. (1983). Mosquitoes of the Purari River lowlands. In T. Petr (Ed.), The Purari: Tropical environment of a high rainfall river basin (pp. 531–550). The Hague: Junk.CrossRefGoogle Scholar
  51. Matthews, S. C. (1973). Notes on open nomenclature and on synonymy lists. Palaeontology, 16, 713–719.Google Scholar
  52. Minelli, A. (2000). The ranks and the names of species and higher taxa, or, a dangerous inertia of the language of natural history. In M. T. Ghiselin & A. E. Leviton (Eds.), Cultures and institutions of natural history. Essays in the history and philosophy of science (pp. 339–351). San Francisco: California Academy of Sciences.Google Scholar
  53. Minelli, A. (2017a). Grey nomenclature needs rules. Ecologica Montenegrina, 7, 656–666.Google Scholar
  54. Minelli, A. (2017b). Updating taxonomic practice to cope with challenges from within and without the discipline. Biodiversity Journal, 8, 671–674.Google Scholar
  55. Minelli, A. (2017c). Lichens and galls—two families of chimeras in the space of form. Azafea, 19, 91–105.Google Scholar
  56. Mingazzini, P. (1905). Un Gefireo pelagico. Pelagosphaera Aloysii n. gen., n. sp. Rendiconti delle sedute solenni della R. Accademia Nazionale dei Lincei, 14, 713–720.Google Scholar
  57. Morard, R., Escarguel, G., Weiner, A. K., André, A., Douady, C. J., Wade, C. M., et al. (2016). Nomenclature for the nameless: A proposal for an integrative molecular taxonomy of cryptic diversity exemplified by planktonic Foraminifera. Systematic Biology, 65, 925–940.CrossRefGoogle Scholar
  58. Mugerwa, H., Rey, M. E., Alicai, T., Ateka, E., Atuncha, H., Ndunguru, J., et al. (2012). Genetic diversity and geographic distribution of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) genotypes associated with cassava in East Africa. Ecology and Evolution, 2, 2749–2762.CrossRefGoogle Scholar
  59. Packer, L., Monckton, S. K., Onuferko, T. M., & Ferrari, R. R. (2018). Validating taxonomic identifications in entomological research. Insect Conservation and Diversity, 11, 1–12.CrossRefGoogle Scholar
  60. Page, R. D. (2016). DNA barcoding and taxonomy: Dark taxa and dark texts. Philosophical Transactions of the Royal Society B, 371, 20150334.CrossRefGoogle Scholar
  61. Pante, E., Schoelinck, C., & Puillandre, N. (2015). From integrative taxonomy to species description: one step beyond. Systematic Biology, 64, 152–160.CrossRefGoogle Scholar
  62. Patterson, D., Mozzherin, D., Shorthouse, D., & Thessen, A. (2016). Challenges with using names to link digital biodiversity information. Biodiversity Data Journal, 4, e8080.CrossRefGoogle Scholar
  63. Pérez-Ponce de León, G., & Nadler, S. A. (2010). What we don’t recognize can hurt us: A plea for awareness about cryptic species. Journal of Parasitology, 96, 453–464.CrossRefGoogle Scholar
  64. Piantadosi, S. T., Tily, H., & Gibson, E. (2012). The communicative function of ambiguity in language. Cognition, 122, 280–291.CrossRefGoogle Scholar
  65. Pinacho-Pinacho, C. D., García-Varela, M., Sereno-Uribe, A. L., & Pérez-Ponce de León, G. (2018). A hyper-diverse genus of acanthocephalans revealed by tree-based and nontree-based species delimitation methods: ten cryptic species of Neoechinorhynchus in Middle American freshwater fishes. Molecular Phylogenetics and Evolution, 127, 30–45.CrossRefGoogle Scholar
  66. Pleijel, F. (2000). Phylogenetic taxonomy, a farewell to species, and a revision of Heteropodarke (Hesionidae, Polychaeta, Annelida). Systematic Biology, 48, 755–789.CrossRefGoogle Scholar
  67. Pleijel, F., & Rouse, G. W. (1999). Least-inclusive taxonomic unit: a new taxonomic concept for biology. Proceedings of the Royal Society of London B, 267, 627–630.CrossRefGoogle Scholar
  68. Pleijel, F., & Rouse, G. W. (2000). A new taxon, capricornia (Hesionidae, Polychaeta), illustrating the LITU (‘least-inclusive taxonomic unit’) concept. Zoologica Scripta, 29, 157–168.CrossRefGoogle Scholar
  69. Pyle, R., & Michel, E. (2008). Zoobank: developing a nomenclatural tool for unifying 250 years of biological information. Zootaxa, 1950, 39–50.CrossRefGoogle Scholar
  70. Ratnasingham, S., & Hebert, P. D. N. (2007). BARCODING, BOLD: The barcode of life data system (www.barcodinglife.org). Molecular Ecology Notes, 7, 355–364.CrossRefGoogle Scholar
  71. Richter, R. (1948). Einführung in die Zoologische Nomenklatur durch Erläuterung der Internationalen Regeln (2nd ed.). Frankfurt: Waldemar Kramer.Google Scholar
  72. Risso, A. (1810). Ichthyologie de Nice, ou, Histoire naturelle des poissons du département des Alpes Maritimes. Paris: Schoell.CrossRefGoogle Scholar
  73. Roskov Y., Ower G., Orrell T., Nicolson D., Bailly N., & Kirk P. M., et al. (Eds.) (2019). Species 2000 and ITIS catalogue of life, 2019 annual checklist. Leiden: Species 2000 (Naturalis). www.catalogueoflife.org/annual-checklist/2019. Accessed July 30, 2019.
  74. Ryberg, M., & Nilsson, R. H. (2018). New light on names and naming of dark taxa. MycoKeys, 30, 31–39.CrossRefGoogle Scholar
  75. Samyn, Y., & De Clerck, O. (2012). No name, no game. European Journal of Taxonomy, 10, 1–3.Google Scholar
  76. Schindel, D. E., & Miller, S. E. (2010). Provisional nomenclature: The on-ramp to taxonomic names. In A. Polaszek (Ed.), Systema naturae 250: The Linnaean Ark (pp. 109–115). Boca Raton: CRC.CrossRefGoogle Scholar
  77. Schwendener, S. (1868). Über die Beziehungen zwischen Algen und Flechtengonidien. Botanische Zeitung, 26, 289–292.Google Scholar
  78. Siddall, M. E., & Borda, E. (2003). Phylogeny and revision of the leech genus Helobdella (Glossiphoniidae) based on mitochondrial gene sequences and morphological data and a special consideration of the triserialis complex. Zoologica Scripta, 32, 23–33.CrossRefGoogle Scholar
  79. Sigovini, M., Keppel, E., & Tagliapietra, D. (2016). Open nomenclature in the biodiversity era. Methods in Ecology and Evolution, 7, 1217–1225.CrossRefGoogle Scholar
  80. Sseruwagi, P., Legg, J. P., Maruthi, M. N., Colvin, J., Rey, M. E. C., & Brown, J. K. (2005). Genetic diversity of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) populations and presence of the B biotype and non-B biotype that can induce silverleaf symptoms in squash, in Uganda. Annals of Applied Biology, 147, 253–265.CrossRefGoogle Scholar
  81. Sterner, B., & Franz, N. M. (2017). Taxonomy for humans or computers? Cognitive pragmatics for big data. Biological Theory, 12, 99–111.CrossRefGoogle Scholar
  82. Trontelj, P., & Fišer, C. (2009). Cryptic species diversity should not be trivialized. Systematics and Biodiversity, 7, 1–3.CrossRefGoogle Scholar
  83. Turland, N. J., Wiersema, J. H., Barrie, F. R., Greuter, W., Hawksworth, D. L., Herendeen, P. S., et al. (Eds.). (2018). International code of nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the nineteenth international botanical congress Shenzhen, China. Glashutten: Koeltz Botanical Books.Google Scholar
  84. von Marenzeller, E. (1892). Sur une Polynoïde pelagique (Nectochaeta grimaldii, nov. gen., nov. sp.) recueillie par l’Hirondelle en 1888. Bulletin de la Société Zoologique de France, 17, 183–185.CrossRefGoogle Scholar
  85. Wilson, D. E., & Reeder, D. M. (Eds.) (2005). Mammal species of the world: A taxonomic and geographic reference (Vols. 1, 2) 3rd Ed. Baltimore: Johns Hopkins University Press.Google Scholar
  86. Zachos, F. E., Apollonio, M., Barmann, E. V., Festa-Bianchet, M., Gohlich, U., Habel, J. C., et al. (2013). Species inflation and taxonomic artefacts. A critical comment on recent trends in mammalian classification. Mammalian Biology, 78, 1–6.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of BiologyUniversity of PadovaPaduaItaly

Personalised recommendations