Petri dish versus Winogradsky column: a longue durée perspective on purity and diversity in microbiology, 1880s–1980s


Microbial diversity has become a leitmotiv of contemporary microbiology, as epitomized in the concept of the microbiome, with significant consequences for the classification of microbes. In this paper, I contrast microbiology’s current diversity ideal with its influential predecessor in the twentieth century, that of purity, as epitomized in Robert Koch’s bacteriological culture methods. Purity and diversity, the two polar opposites with regard to making sense of the microbial world, have been operationalized in microbiological practice by tools such as the “clean” Petri dish versus the “dirty” Winogradsky column, the latter a container that mimics, in the laboratory, the natural environment that teems with diverse microbial life. By tracing the impact of the practices and concepts of purity and diversity on microbial classification through a history of techniques, tools, and manuals, I show the shifts in these concepts over the last century. Juxtaposing the dominant purity ideal with the more restricted, but continuously articulated, diversity ideal in microbial ecology not only provides a fresh perspective on microbial classification that goes beyond its intellectual history, but also contextualizes the present focus on diversity. By covering the period of a century, this paper outlines a revised longue durée historiography that takes its inspiration from artifacts, such as Petri dish and the Winogradsky column, and thereby simple, but influential technologies that often remain invisible. This enables the problem of historical continuity in modern science to be addressed and the accelerationist narratives of its development to be countered.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    “The secret world inside you,” exhibition at the AMNH, Nov. 7th, 2015–Aug. 16th, 2016; on Micropia, see the post on the microbiology blog “Small things considered” at Last access Aug 28th, 2017.

  2. 2.

  3. 3.

    “The microbiome of your gut”; “Make a home for microbes. How to make a Winogradsky column,” texts on the AMNH’s website at; Last access Mar. 29th, 2017). On microbial communities as models for ecosystems and life in general in recent science, Paxson and Helmreich (2014).

  4. 4.

    In an introductory essay to Bergey's Manual, the most important taxonomic reference work of microbiology, a microbial species has traditionally been defined as a distinct group of strains with distinguishing features and bearing close resemblance, which are “made up of the descendants of a single isolation in pure culture, and usually made up of a succession of cultures ultimately derived from an initial single colony” (Garrity et al. 2007, pp. 27–28).

  5. 5.

    On the “messy and polluted bacteriology” (Gradmann 2000), see next section. The term “pure culture era” was used by Cowan and Hill (1978); see Sect. 4.

  6. 6.

    On social and technological acceleration, see Rosa (2005) and my conclusion.

  7. 7.

    For brevity’s sake, scientists’ dates of birth and death are only provided where this is deemed relevant.

  8. 8.

    Some hints at the ambiguities inherent in this concept, which has always functioned as a stratagem to sort out bacteriologists, probably as much as bacteria, are provided by, for example, the concise summary on the topic in Lafar’s Handbuch der technischen Mykologie (1907), which sees Nägeli as much as Theodor Billroth, Edwin Klebs or Hallier as historical proponents of pleomorphism, but also concedes the confusion stemming from the fact that every researcher in the field would understand the concept differently from others. Lafar, standing firmly within the bacteriological framework of Pasteur and Koch (see below), suggests calling an organism pleomorphic if it possibly displays different self-contained cycles of development (“verschiedene in sich abgeschlossene Entwicklungskreise,” ibid., p. 47; unless indicated otherwise, all translations are mine). This comes closer to what “pleomorphism” may have referred to in discussions about bacterial variation in the 1920s and 1930s (Méthot 2015).

  9. 9.

    Serratia’s crimson-red growth on, for example, food had inspired tales of blood miracles over centuries, and therefore had great relevance to early nineteenth century protozoologists going back to Christian Gottfried Ehrenberg (1795–1876; Breed and Breed 1924).

  10. 10.

    Hansen’s approach represented a fusion of Pasteur, Brefeld, and Koch: Whereas it started with one selected cell (rather than obtaining isolation indirectly as Koch did for bacteria, by streaking them out), he also adapted Koch’s solid media. The concept of microbial purity as shaped in Europe also had an impact on Japanese fermentation technologies, where an interesting interplay of the purity ideal with traditional approaches using mixed microbial biota existed. See Ceccatti (2001), Lee (2015), and Teich (1983).

  11. 11.

    On pure lines in research on heredity, Müller-Wille (2007).

  12. 12.

    See, for example, Löffler (1983 [1887]), or William Bulloch’s History of Bacteriology (1938); Mazumdar (2002, pp. 98 f.) provides more references.

  13. 13.

    See, for example, Kostka (1924, p. 26); Hauduroy (1947, p. 200); Schröder (1975, p. 20, pp. 59–60); Madigan and Martinko (2006, pp. 119–120). For use of these methods in classification, see Sect. 3.

  14. 14.

    “Nicht zu verachten sind auch die moralischen Erfolge, die sich unwillkürlich bei der Beschäftigung mit der Reinkultur einstellen, wie der Sinn für peinliche Sauberkeit, die Stärkung der Ausdauer und der Geduld u. dgl. m.” (Richter 1907, p. 115).

  15. 15.

    Moreover, these tools have allowed classical bacteriology to spread around the world, when the equipment and instructions on proper usage, spread by, for example, Koch's famous courses, were transferred within Europe and to North America (Gossel 1989; Kreuder-Sonnen 2012).

  16. 16.

    On these fields, see Spath (1999) and O’Malley (2014).

  17. 17.

    “Was zunächst die Gewinnung des nöthigen Materials betrifft, so sind diese Bacterien, wie oben schon erwähnt, viel verbreiteter als man bisher glaubte. Einige von ihnen sind in jedem Sumpfe oder Teiche vorhanden, aber so spärlich, dass es nicht gelingt, dieselben bei directer mikroskopischer Untersuchung des Wassers und Schlammes aufzufinden. […] Dennoch habe ich das Vorhandensein von mehreren farblosen und rothen Arten im Teiche des Botanischen Gartens, […] constatiert, indem ich diese Organismen in Gefässen mit aus den betreffenden Orten entnommenem Wasser, Schlamm etc. spontan erscheinen liess. Ich verfuhr gewöhnlich auf die Weise, dass ich einige zerschnittene Stücke eines frisch herausgenommenen Butomus-Rhizoms mit dem an demselben anhaftenden Schlamm in ein tiefes, 3–5 Liter Wasser fassendes Gefäss legte und ein paar Gramm Gyps zusetzte. Nach 5-7 tägigem Stehen bei Zimmertemperatur beginnt die H2S-Entwickelung, wodurch zunächst der am Boden des Gefässes angesammelte Schlamm geschwärzt wird; dann fängt die Flüssigkeit allmählich an, von den unteren zu den oberen Schichten fortschreitend, infolge der Ausscheidung von Schwefel zu opalesciren, und endlich wird ein starker Geruch nach H2S bemerkbar; auf der Oberfläche bildet sich ein Häutchen welches aus Schwefel besteht. Nach 3-6 Wochen kann man schon bei mikroskopischer Untersuchung ohne Mühe einige Formen von Schwefelbacterien finden; weiterhin können sie sich unter Umständen ganz gewaltig vermehren.” (Winogradsky 1888, pp. 11–12).

  18. 18.

    Ackert (2012) and O’Malley (2014); see also the collection of enrichment methods from environmental microbiology and brewing compiled under the curious title Ökologie: Anhäufungen nach Beijerinck (“Ecology: Accumulations following Beijerinck”) by Stockhausen (1907).

  19. 19.

    “Sans entrer dans des details, ce n’est que le principe de la culture – dogme sacré de la religion microbiologique – qui m’intéresse à ce moment.” Undated annotated letter from Winogradsky to van Niel, presumably early 1932; “Imaginez un botaniste qui isolerait quelques plantes alpines de leur habitat naturel pour les cultiver dans une serre durant, disons, une trentaine d’années; en les comparant ensuite à leurs ancêtres sauvages et en ayant constaté que les caractères différentiels des espèces, si nets à l’origine, sont devenus brouillés, irait-il jusqu’à affirmer que ces caractères n’ont jamais existé? […] Et bien, je crois que le microbiologiste devrait aussi se garder d’une conclusion analogue en songeant que les 24 heures d’étuve comptent pour les microbes possiblement autant que toute une année pour une phanérogame.” Annotated letter from Winogradsky to van Niel, 9.7.1932; handwritten corrections of the typescript have been included. All letters from: Fonds Winogradsky WIN.2, Archives de l’ Institut Pasteur, Paris. Van Niel tried to establish pure cultures of environmental microbes at the time, using enrichment methods as a first step. He was interested in ecology and classification as well as in obtaining organisms to study certain physiological phenomena such as phototaxis or salt tolerance in the lab. On van Niel and the Delft school, see Spath (1999, Ch. 3.)

  20. 20.

    “Die langwierige Controverse über die Bacterienspecies muss damit als endgiltig abgeschlossen betrachtet werden.” Winogradsky (1888, p. 115).

  21. 21.

    Perkins (1928, p. 124). Richter (1907) makes a strong argument for the impact of pure culturing on the classification of various microbes, listing dozens of methods, many of which are variations of Koch's technique.

  22. 22.

    I will analyze the role of pure culture in classification for the American case, mostly for the reason of the availability of sources. Whereas different national and/or personal approaches to the subject existed in the first half of the century (see below), the situation became globally more homogenous after 1945, and the American institutions and manuals, such as Bergey's Manual of Determinative Bacteriology, were internationally authoritative.

  23. 23.

    Bergey (1923); further issues date from 1925, 1930, 1934, 1948, 1957, 1974, and 1984; for Bergey's history, see Murray and Holt (2001).

  24. 24.

    Committee on Bacteriological Technic (ed.) (1946). Similar to the descriptive charts and Bergey's, the Manual of Pure Culture Study developed into a successful, long-term publication. Reports read by Conn at the SAB's Annual Meetings on behalf of the Committee document the growth and revisions of the manual, as well as the numbers of copies being sold and the revenue generated for the society (e.g., Anon. 1931, p. 2). In 1946, the first bound volume was printed, to be followed by the re-named Manual of Microbiological Methods as a 7th edition in 1957 (Committee on Bacteriological Technic (ed.) 1957).

  25. 25.

    Conn, who also published a handbook on staining procedures, managed the publication of charts and manuals through a publisher at his home institution (Lillie 1977).

  26. 26.

    The era's onset depended on which species were considered. The term “pure culture era” seems to have been coined by Samuel T. Cowan (1905–1976), curator of the British National Culture and Type Collection (NCTC) and important bacterial taxonomist in the post-war decades. Cowan and Hill (1978, p. 12).

  27. 27.

    Fleck (2011, p. 108): “Jenes Züchten aus einem kranken Organismus ist nicht, wie das die klassische Bakteriologie will, eine Isolierung, die Gewinnung einer reinen Züchtung, sondern ein künstliches “Entbinden” aus dem Organismus, eine Umwandlung des Erregers in einen wilden Proteus.” The term Entbinden is German in the Polish original; the text was translated into German and republished in Fleck (2011).

  28. 28.

    For further detail on environmental microbiology and microbial ecology, see Ackert 2013; O’Malley 2014.

  29. 29.

    The symposium’s title was “Anreicherungskultur und Mutantenauslese” (enrichment culture and mutant selection); see Schlegel (1965).

  30. 30.

    The concept is used in taxonomy also by, for example, Starr et al. (1981, p. 155).

  31. 31.

    Staley and Konopka (1985) trace this observation back to Winogradsky’s students in the 1930s.

  32. 32.

    Such as, for example, the proposal of the Archaea as a third domain of life on the basis of RNA analyses around 1980 (Sapp 2009) or the blurring of species boundaries such as between the enteric bacteria Escherichia and Shigella (Lan and Reeves 2002).

  33. 33.

    “Whenever possible, the type of a species or subspecies is a designated strain. A type strain is made up of living cultures of an organism which are descended from a strain designated as the nomenclatural type. The strain should have been maintained in pure culture and should agree closely in its characters with those in the original description (see Chapter 4C). The type strain may be designated in various ways (see Rule 18b, c, and d). For a species which has not so far been maintained in laboratory culture or for which a type strain does not exist, a description, preserved specimen, or illustration (see also Rule 18f) may serve as the type” (Lapage et al. 1992, Rule 18a).


  1. Ackert, L. (2012). Sergei Vinogradskii and the cycle of life: From the thermodynamics of life to ecological microbiology, 1850–1950. Dordrecht: Springer Netherlands.

    Google Scholar 

  2. Anderson, W. (2004). Natural histories of infectious disease: Ecological vision in twentieth-century biomedical science. Osiris, 19, 39–61.

    Article  Google Scholar 

  3. Anonymous, (1931). Thirty-second annual meeting of the society of American bacteriologists. Journal of Bacteriology, 21(1), 1–60.

    Google Scholar 

  4. Bergey, D. H. (1923). Bergey’s manual of determinative bacteriology (1st ed.). Baltimore: Williams & Wilkins.

    Google Scholar 

  5. Bonneuil, C. (2016). Pure lines as industrial simulacra: A cultural history of genetics from Darwin to Johannsen. In S. Müller-Wille & Ch. Brandt (Eds.), Heredity explored. Between public domain and experimental science (pp. 213–242). Cambridge: MIT Press.

    Google Scholar 

  6. Braudel, F. (1958). Histoire et Sciences sociales: La longue durée. Annales Histoire, Sciences Sociales, 13(4), 725–753.

    Google Scholar 

  7. Braudel, F. (1966). La Méditerranée et le monde méditerranéen à l’époque de Philippe II. Paris: Armand Colin.

    Google Scholar 

  8. Breed, R. S., & Breed, M. E. (1924). The type species of the genus Serratia, commonly known as Bacillus prodigiosus. Journal of Bacteriology, 9, 545–557.

    Google Scholar 

  9. Brock, T. D. (1966). Principles of microbial ecology. Englewood Cliffs, N.J.: Prentice-Hall.

    Google Scholar 

  10. Brock, T. D. (1970). Biology of microorganisms. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  11. Buchanan, R. E., St John-Brooks, R., & Breed, R. S. (1948). International bacteriological code of nomenclature. Journal of Bacteriology, 55(3), 287–306.

    Google Scholar 

  12. Bulloch, W. (1938). The history of bacteriology. London: Oxford University Press.

    Google Scholar 

  13. Ceccatti, J. S. (2001). Science in the brewery: Pure yeast culture and the transformation of brewing practices in Germany at the end of the 19th century. Ph.D. Dissertation, The University of Chicago.

  14. Collard, P. J., & Collard, P. (1976). The development of microbiology. Cambridge: Cambridge University Press.

    Google Scholar 

  15. Committee on Bacteriological Technic (Ed.). (1923). Manual of methods for pure culture study of bacteria (1st ed.). Geneva, NY: The Society of American Bacteriologists.

    Google Scholar 

  16. Committee on Bacteriological Technic (Ed.). (1946). Manual of methods for pure culture study of bacteria (9th ed.). Geneva, N.Y.: Biotech Publications.

    Google Scholar 

  17. Committee on Bacteriological Technic (Ed.). (1952). Manual of methods for pure culture study of bacteria (10th ed.). Geneva, NY: Biotech Publications.

    Google Scholar 

  18. Committee on Bacteriological Technic (Ed.). (1957). Manual of microbiological methods. New York: McGraw-Hill.

    Google Scholar 

  19. Conn, H. J. (1927). An elementary laboratory guide in general bacteriology. Baltimore: Williams & Wilkins.

    Google Scholar 

  20. Corner, T. R. (1992). Ecology in a jar. Science Teacher, 59(3), 32–36.

    Google Scholar 

  21. Cowan, S. T., & Hill, L. R. (1978). A dictionary of microbial taxonomy. Cambridge: Cambridge University Press.

    Google Scholar 

  22. Daston, L. (2004). Type specimens and scientific memory. Critical Inquiry, 31(1), 153–182.

    Article  Google Scholar 

  23. de Chadarevian, S. (2009). Microstudies versus big picture accounts? Studies in History and Philosophy of Biological and Biomedical Sciences, 40(1), 13–19.

    Article  Google Scholar 

  24. Doolittle, W. F. (2013). Microbial neopleomorphism. Biology and Philosophy, 28(2), 351–378.

    Article  Google Scholar 

  25. Douglas, M. (1985 [1966]). Reinheit und Gefährdung: eine Studie zu Vorstellungen von Verunreinigung und Tabu. Berlin: Reimer.

  26. Edgerton, D. H. E. (2008). The shock of the old. Technology and global history since 1900. London: Profile.

    Google Scholar 

  27. Epstein, S. S. (2013). The phenomenon of microbial uncultivability. Current Opinion in Microbiology, 16(5), 636–642.

    Article  Google Scholar 

  28. Espahangizi, K. (2015). From Topos to Oikos: The standardization of glass containers as epistemic boundaries in modern laboratory research (1850–1900). Science in Context, 28(3), 397–425.

    Article  Google Scholar 

  29. Fleck, L. (1980 [1935]), Entstehung und Entwicklung einer wissenschaftlichen Tatsache. Einführung in die Lehre vom Denkstil und Denkkollektiv. Frankfurt: Suhrkamp.

  30. Fleck, L. (2011). Denkstile und Tatsachen: Gesammelte Schriften und Zeugnisse. Herausgegeben von Sylwia Werner und Claus Zittel. Berlin: Suhrkamp.

    Google Scholar 

  31. Fuhrmann, F. (1910). Die wichtigsten Methoden beim Arbeiten mit Pilzen und Bakterien. In E. Abderhalden (Ed.), Handbuch der biochemischen Arbeitsmethoden, Vol. 3. Part 2 (pp. 1204–1336). Berlin: Urban & Schwarzenberg.

    Google Scholar 

  32. Garrity, G., Brenner, D. J., Krieg, N. R., & Staley, J. R. (Eds.). (2007). Bergey’s Manual ® of systematic bacteriology: Volume 2: The proteobacteria, Part B: The gammaproteobacteria. New York: Springer.

  33. Gerhardt, P., & American Society for Microbiology. (1981). Manual of Methods for General Bacteriology. Washington, D.C.: American Society for Microbiology.

    Google Scholar 

  34. Gossel, P. P. (1989). The emergence of American bacteriology, 18751900. Ph.D. Dissertation, Johns Hopkins University.

  35. Gradmann, Ch. (2001). Isolation, contamination, and pure culture: Monomorphism and polymorphism of pathogenic micro-organisms as research problem 1860–1880. Perspectives on Science, 9(2), 147–172.

    Article  Google Scholar 

  36. Gradmann, Ch. (2005). Krankheit im Labor: Robert Koch und die medizinische Bakteriologie. Göttingen: Wallstein.

    Google Scholar 

  37. Gradmann, Ch. (2014). A spirit of scientific rigour: Koch’s postulates in twentieth-century medicine. Microbes and Infection, 16(11), 885–892.

    Article  Google Scholar 

  38. Grote, M. (2015). What could the “Longue Durée” mean for the history of modern sciences? Working Paper Fédération Maison des Sciences de l’Homme. FMSH-WP-2015-98. 2015, < halshs-01171257>.

  39. Grote, M. (2016). Das Patchwork der Mikroben. Bio-Technologien jenseits der großen Erzählungen. In M. Pratschke, M. Stadler & N. Güttler (Eds.), Wissen, ca. 1980. Nach Feierabend. Zürcher Jahrbuch für Wissensgeschichte 16, 35–51.

  40. Grote, M. (forthcoming). Petri dish. In: S. Bauer, M. Schlünder & M. Rentetzi (Eds.), Boxes in action. Manchester: Mattering Press.

  41. Hauduroy, P. (1947). Microbiologie générale et technique microbiologique. Paris: Masson.

    Google Scholar 

  42. Holmes, F. L. (2003). The Longue Durée in the history of science. History and Philosophy of the Life Sciences, 25(4), 463–470.

    Article  Google Scholar 

  43. Hueppe, F. (1889). Die Methoden der Bakterienforschung. Wiesbaden: C.W. Kreidel.

    Google Scholar 

  44. Jackson, C. M. (2015). The “Wonderful Properties of Glass”: Liebig’s Kaliapparat and the Practice of Chemistry in Glass. Isis, 106(1), 43–69.

    Article  Google Scholar 

  45. Kisskalt, K., & Hartmann, M. (1907). Praktikum der Bakteriologie und Protozoologie. Jena: G. Fischer.

    Google Scholar 

  46. Koch, R. (1881). Zur Untersuchung von pathogenen Organismen. In J. Schwalbe (Ed.), Gesammelte Werke von Robert Koch (pp. 112–163). Leipzig: Thieme.

    Google Scholar 

  47. Kostka, G. (1924). Praktische Anleitung zur Kultur der Mikroorganismen. Stuttgart: Franckh’sche Verlagshandlung.

    Google Scholar 

  48. Kreuder-Sonnen, K. (2012). Wie die Mikroben nach Warschau kamen. NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin, 20(3), 157–180.

    Article  Google Scholar 

  49. Kupferberg, E. D. (2001). The expertise of germs: Practice, language and authority in American bacteriology, 18991924. Ph.D. Dissertation, Massachusetts Institute of Technology, Program in Science, Technology and Society.

  50. Lafar, Th. (1907). Handbuch der technischen Mykologie Allgemeine Morphologie und Physiologie der Gärungsorganismen (Vol. 1). Jena: Gustav Fischer.

    Google Scholar 

  51. Lan, R., & Reeves, P. R. (2002). Escherichia coli in disguise: Molecular origins of Shigella. Microbes and Infection, 4(11), 1125–1132.

    Article  Google Scholar 

  52. Lapage, S. P., Sneath, P. H. A., Lessel, E. F., et al. (Ed). (1992) International code of nomenclature of bacteria: Bacteriological code, 1990 Revision. Washington (D.C.): ASM Press. Last access August 2nd, 2016.

  53. Lautenschläger, F. M. (Ed.). (1915). Komplette Einrichtung von bakteriologischen, serologischen und chemischen Laboratorien und Untersuchungsanstalten, Operationssälen, Krankenhäusern, Sektionssälen usw. F. & M. Berlin: Lautenschläger.

    Google Scholar 

  54. Lee, V. (2015). Mold cultures: Traditional industry and microbial studies in early twentieth-century Japan. In D. Phillips & S. Kingsland (Eds.), New perspectives on the history of life sciences and agriculture (pp. 231–252). Cham: Springer.

    Google Scholar 

  55. Lehmann, K. B., & Neumann, R. O. (1907). Atlas und Grundriss der Bakteriologie und Lehrbuch der speziellen bakteriologischen Diagnostik. Teil I: Atlas. München: J. F. Lehmanns Verlag.

    Google Scholar 

  56. Lillie, R. D. (1977). Harold Joel Conn: 1886–1975. Stain Technology, 52(1), 3–4.

    Article  Google Scholar 

  57. Löffler, F. (1983 [1887]). Vorlesungen über die geschichtliche Entwicklung der Lehre von den Bakterien. Leipzig: Zentralantiquariat der DDR.

  58. Madigan, M. T., & Martinko, J. M. (Eds.). (2006). Brock biology of microorganisms (11th ed.). Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  59. Mazumdar, P. M. H. (2002). Species and specificity: An interpretation of the history of immunology. Cambridge: Cambridge University Press.

    Google Scholar 

  60. Mendelsohn, J. A. (2002). ‘Like All That Lives’: Biology, medicine and bacteria in the Age of Pasteur and Koch. History and Philosophy of the Life Sciences, 24(1), 3–36.

    Article  Google Scholar 

  61. Méthot, P.-O. (2015). Bacterial transformation and the origins of epidemics in the interwar period: The epidemiological significance of Fred Griffith’s “Transforming Experiment”. Journal of the History of Biology, 49(2), 311–358.

    Article  Google Scholar 

  62. Müller-Wille, S. (2007). Hybrids, pure cultures, and pure lines: From nineteenth-century biology to twentieth-century genetics. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 38(4), 796–806.

    Article  Google Scholar 

  63. Müller-Wille, S. (forthcoming). Names and Numbers: “Data” in Classical Natural History, 1758–1859. In: E. Aronova, Ch. von Oertzen, D. Sepkoski (Eds.), Data Histories. Osiris, Vol. 32. Chicago: University of Chicago Press.

  64. Murray, R. G. E., & Holt, J. G. (2001). The History of Bergey’s Manual. In D. R. Boone, R. W. Castenholz, & G. M. Garrity (Eds.), Bergey’s Manual ® of systematic bacteriology: Volume one: The archaea and the deeply branching and phototrophic bacteria (pp. 1–13). New York: Springer.

    Google Scholar 

  65. O’Malley, M. A. (2014). Philosophy of microbiology. Cambridge: Cambridge University Press.

    Google Scholar 

  66. O’Malley, M. A., & Dupré, J. (2007). Size doesn’t matter: Towards a more inclusive philosophy of biology. Biology and Philosophy, 22(2), 155–191.

    Article  Google Scholar 

  67. Paxson, H., & Helmreich, S. (2014). The perils and promises of microbial abundance: Novel natures and model ecosystems, from artisanal cheese to alien seas. Social Studies of Science, 44(2), 165–193.

    Article  Google Scholar 

  68. Perkins, W. (1928). Classification of bacteria. In E. O. Jordan & I. S. Falk (Eds.), The newer knowledge of bacteriology and immunology (pp. 120–135). Chicago: The University of Chicago Press.

    Google Scholar 

  69. Reiß, C. (2012). Gateway, instrument, environment. The aquarium as a hybrid space between animal fancying and experimental zoology. NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin, 20(4), 309–336.

    Article  Google Scholar 

  70. Richter, O. (1907). Die Bedeutung der Reinkultur: eine Literaturstudie. Berlin: Gebrüder Borntraeger.

    Google Scholar 

  71. Rosa, H. (2013). Social acceleration: A new theory of modernity. New York: Columbia University Press.

    Google Scholar 

  72. Sapp, J. (2009). The new foundations of evolution: On the tree of life. Oxford: Oxford University Press.

    Google Scholar 

  73. Schlegel, H. G. (1965). Anreicherungskultur und Mutantenauslese: Symposium in Göttingen vom 28. bis 30.4.1964. Stuttgart: Fischer.

    Google Scholar 

  74. Schlegel, H. G. (1976). Allgemeine Mikrobiologie (4th ed.). Stuttgart: Thieme.

    Google Scholar 

  75. Schlegel, H. G. (2004). Geschichte der Mikrobiologie. Acta Historica Leopoldina 28 (2nd ed.). Stuttgart: Wissenschaftliche Verlagsgesellschaft.

    Google Scholar 

  76. Schröder, H. (1975). Mikrobiologisches Praktikum. Berlin: Volk und Wissen.

    Google Scholar 

  77. Spath, S. B. (1999). Cornelis Bernardus Van Niel and the Culture of Microbiology, 1920–1965. Ph.D. dissertation, University of California at Berkeley.

  78. Staley, J. T., & Konopka, A. (1985). Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annual Review of Microbiology, 39(1), 321–346.

    Article  Google Scholar 

  79. Starr, M. P., et al. (Eds.). (1981). The prokaryotes: A handbook on habitats, isolation, and identification of bacteria. Berlin: Springer.

  80. Stockhausen, F. (1907). Ökologie, “Anhäufungen” nach Beijerinck: Beiträge zur natürlichen Reinzucht der Mikroorganismen. Berlin: Institut für Gärungsgewerbe.

    Google Scholar 

  81. Teich, M. (1983). Fermentation theory and practice: The beginnings of pure yeast cultivation and English Brewing, 1883–1913. History of Technology, 8, 117–133.

    Google Scholar 

  82. Veldkamp, H. (1970). Enrichment cultures of prokaryotic organisms. In: J. R. Norris, & D. W. Ribbons (ed.), Methods in microbiology, Vol. 3A, New York: Academic Press, Ch. V, pp. 305–362.

  83. Winogradsky, S. (1888). Beiträge zur Morphologie und Physiologie der Bakterien. Heft 1: Zur Morphologie und Physiologie der Schwefelbacterien. Leipzig: Arthur Felix.

    Google Scholar 

  84. Winogradsky, S. (1949). Microbiologie du sol: problèmes et méthodes. Paris: Masson.

    Google Scholar 

Download references


I would like to thank the editors of this special issue, Robert Meunier and Kärin Nickelsen, as well as two reviewers for their comments and suggestions. I am also grateful to The American Society of Microbiology Archives, and especially Jeff Karr, for help and access to materials, and the permission to reproduce a figure from society publications. Warwick Anderson provided an inspiring comment at a moment when my only task was to shorten the manuscript, and which thus has to be spelled out elsewhere.

Author information



Corresponding author

Correspondence to Mathias Grote.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grote, M. Petri dish versus Winogradsky column: a longue durée perspective on purity and diversity in microbiology, 1880s–1980s. HPLS 40, 11 (2018).

Download citation


  • Microbiology
  • Pure culture
  • Purity
  • Classification
  • Microbial ecology
  • Petri dish
  • Winogradsky column