How mechanisms explain interfield cooperation: biological–chemical study of plant growth hormones in Utrecht and Pasadena, 1930–1938

  • Caterina SchürchEmail author
Original Paper
Part of the following topical collections:
  1. New Perspectives in the History of Twentieth-Century Life Sciences


This article examines to what extent a particular case of cross-disciplinary research in the 1930s was structured by mechanistic reasoning. For this purpose, it identifies the interfield theories that allowed biologists and chemists to use each other’s techniques and findings, and that provided the basis for the experiments performed to identify plant growth hormones and to learn more about their role in the mechanism of plant growth. In 1930, chemists and biologists in Utrecht and Pasadena began to cooperatively study plant growth. I will argue that these researchers decided to join forces because they believed to rely on each other’s findings and methods to solve their research problems adequately. In the course of the cooperation, organic chemists arrived at isolating plant growth hormones by using a test method developed in plant physiology. This achievement, in turn, facilitated biologists’ investigation of the mechanism of plant growth. Researchers eventually believed to have the means to study the relation between a substance’s molecular structure and its physiological activity. The way they conceptualized the problem of identifying hormones and unraveling the mechanism of plant growth, as well as their actual research actions are compatible with the new mechanists’ account of mechanism research. The study illustrates that focusing on researchers’ mechanistic reasoning can contribute considerably to explaining the structure of cross-disciplinary research projects.


Interfield cooperation Mechanism modeling Integration Plant physiology Natural products chemistry Plant growth hormones Structure-activity relationship 



I am grateful to Kärin Nickelsen and Robert Meunier for their encouragement and helpful criticism of earlier versions of this article. I profited a lot from discussions with Christian Joas, Raphael Scholl, and Cora Stuhrmann. Finally, I would like to thank the two anonymous reviewers whose comments improved this paper significantly.


  1. Aaserud, F. (1990). Redirecting science. Niels Bohr, philanthropy, and the rise of nuclear physics. Cambridge: Cambridge University Press.Google Scholar
  2. Abir-Am, P. (1982). The discourse of physical power and biological knowledge in the 1930s: A reappraisal of the Rockefeller Foundation’s ‘policy’ in Molecular Biology. Social Studies of Science, 12(3), 341–382.CrossRefGoogle Scholar
  3. Allen, G. E. (2005). Mechanism, vitalism and organicism in late nineteenth and twentieth-century biology: The importance of historical context. Studies in History and Philosophy of Biological and Biomedical Sciences, 36, 261–283.CrossRefGoogle Scholar
  4. Andersen, H., & Wagenknecht, S. (2013). Epistemic dependence in interdisciplinary groups. Synthese, 190, 1881–1898.CrossRefGoogle Scholar
  5. Bechtel, W. (1988). Philosophy of science. An overview for cognitive science. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  6. Bechtel, W. (1993). Integrating sciences by creating new disciplines: The case of cell biology. Biology and Philosophy, 8, 277–299.CrossRefGoogle Scholar
  7. Bechtel, W., & Abrahamsen, A. (2007). In search of mitochondrial mechanisms: Interfield excursions between cell biology and biochemistry. Journal of the History of Biology, 40(1), 1–33.CrossRefGoogle Scholar
  8. Bechtel, W., & Hamilton, A. (2007). Reduction, integration, and the unity of science: Natural, behavioral, and social sciences and the humanities. In T. Kuipers (Ed.), Philosophy of science: Focal issues (pp. 377–430). Amsterdam: Elsevier.Google Scholar
  9. Bechtel, W., & Richardson, R. C. (2010). Discovering complexity. Decomposition and localization as strategies in scientific research (2nd ed.). Cambridge, MA/London: MIT Press.Google Scholar
  10. Bonner, J. (1933). The action of the plant growth hormone. Journal of General Physiology, 17, 63–76.CrossRefGoogle Scholar
  11. Bonner, J. (1936). Zum Mechanismus der Zellstreckung auf Grund der Micellarlehre. Jahrbücher für wissenschaftliche Botanik, 82(3), 377–412.Google Scholar
  12. Bonner, J., Emerson, S., Horowitz, N., & Poulson, D. (1981). Interview by Goodstein, J., Lyle, H., & Terrall, M., Pasadena, California, November 6, 1978. Resource document. Oral History Project, California Institute of Technology Archives. Accessed December 20, 2014.
  13. Boysen Jensen, P. (1928). Die phototropische Induktion in der Spitze der Avenacoleoptile. Planta, 5, 464–477.CrossRefGoogle Scholar
  14. Butenandt, A., & von Ziegner, E. (1929). Über die physiologische Wirksamkeit des krystallisierten weiblichen Sexualhormons im Allen-Doisy-Test. Untersuchungen über das weibliche Sexualhormon. 3. Mitteilung. Hoppe-Seyler’s Zeitschrift für Physiologische Chemie, 188, 1–10.Google Scholar
  15. Craver, C. F. (2002). Interlevel experiments and multilevel mechanisms in neuroscience of memory. Philosophy of Science Supplemental, 69, S83–S97.CrossRefGoogle Scholar
  16. Craver, C. F. (2007). Explaining the brain: Mechanisms and the mosaic unity of neuroscience. Oxford: Clarendon Press.CrossRefGoogle Scholar
  17. Craver, C. F., & Bechtel, W. (2007). Top-down causation without top-down causes. Biology and Philosophy, 22, 547–563.CrossRefGoogle Scholar
  18. Craver, C. F., & Darden, L. (2013). In search of mechanisms: Discoveries across the life sciences. Chicago/London: The University of Chicago Press.CrossRefGoogle Scholar
  19. Craver, C., & Tabery, J. (2017). Mechanisms in science. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy, Spring 2017.; Metaphysics Research Lab, Stanford University.
  20. Czaja, A. T. (1932). Zum 100. Geburtstage des großen Botanikers Julius Sachs. Forschungen und Fortschritte, 8(28), 363–364.Google Scholar
  21. Darden, L. (2002). Strategies for discovering mechanisms: Schema instantiation, modular subassembly, forward/backward chaining. Philosophy of Science, 69(S3), 354–365.CrossRefGoogle Scholar
  22. Darden, L., & Craver, C. (2002). Strategies in the interfield discovery of the mechanism of protein synthesis. Studies in History and Philosophy of Biological and Biomedical Sciences, 33, 1–28.CrossRefGoogle Scholar
  23. Darden, L., & Maull, N. (1977). Interfield theories. Philosophy of Science, 44(1), 43–64.CrossRefGoogle Scholar
  24. Deichmann, U. (2008). Politik und Forschung: Heinrich Wieland und andere Chemiker in der NS-Zeit. In S. Wieland, A.-B. Hertkorn, & F. Dunkel (Eds.), Heinrich Wieland: Naturforscher, Nobelpreisträger und Willstätters Uhr (pp. 81–114). Weinheim: Wiley.Google Scholar
  25. Deutsch, M. (1949). A theory of co-operation and competition. Human Relations, 2, 129–152.CrossRefGoogle Scholar
  26. Dodds, E. C. (1934). The hormones and their chemical relation. The Lancet, 223(5775), 987–992.CrossRefGoogle Scholar
  27. Dolk, H., & Thimann, K. V. (1932). Studies on the growth hormone of plants. I. Proceedings of the National Academy of Sciences of the United States of America, 18, 30–46.CrossRefGoogle Scholar
  28. Emerson, S. (2011). Interview by Harriett Lyle, Pasadena, California, March 31, and April 4 and 6, 1979. Resource document. Oral History Project, California Institute of Technology Archives. Accessed January 20, 2015.
  29. Faasse, P. E. (1994). Experiments in growth. Ph.D. thesis, Amsterdam: Universiteit van Asterdam.Google Scholar
  30. Fischer, E. (1894). Einfluss der Configuration auf die Wirkung der Enzyme. Berichte der Deutschen Chemischen Gesellschaft, 27(3), 2985–2993.CrossRefGoogle Scholar
  31. Fischer, E. (1907). Faraday lecture. Synthetical chemistry in its relation to biology. Journal of the Chemical Society, Transactions, 91, 1749–1765.CrossRefGoogle Scholar
  32. Frey-Wyssling, A. (1936). Der Aufbau der pflanzlichen Zellwände. Protoplasma, 25, 261–300.CrossRefGoogle Scholar
  33. Haagen Smit, A. J., & Went, F. W. (1935). A physiological analysis of the growth substance. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam, 38(8), 852–857.Google Scholar
  34. Haagen-Smit, Z. (2000). Interview with Zus Haagen-Smit by Shirley K. Cohen. Pasadena, California, March 16 and 20, 2000. Resource document. Oral History Project, California Institute of Technology Archives. Accessed December 20, 2014.
  35. Heyn, A. N. J. (1933). Further investigations on the mechanism of cell elongation and the properties of the cell wall in connection with elongation. I. The load extension relationship. Protoplasma, 19, 78–97.CrossRefGoogle Scholar
  36. Hopkins, F. G. (1936). The influence of chemical thought in biology. Science, 84(2177), 255–260.CrossRefGoogle Scholar
  37. Höxtermann, E. (1994). Zur Geschichte des Hormonbegriffes in der Botanik und zur Entdeckungsgeschichte der ‘Wuchsstoffe’. History and Philosophy of the Life Sciences, 16, 311–337.Google Scholar
  38. Illari, P., & Williamson, J. (2012). What is a mechanism? Thinking about mechanisms across the sciences. European Journal for Philosophy of Science, 2(1), 119–135.CrossRefGoogle Scholar
  39. Johnson, J. A. (2015). From bio-organic chemistry to molecular and synthetic biology: Fulfilling Emil Fischer’s dream. Keynote Lecture at the International Workshop on the History of Chemistry, 2 March 2015. Resource document. The Japanese Society for the History of Chemistry. Accessed January 20, 2017.
  40. Karlson, P. (2013). Wie und warum entstehen wissenschaftliche Irrtümer? In D. Czeschlik (Ed.), Irrtümer in der Wissenschaft (pp. 1–20). Berlin: Springer.Google Scholar
  41. Kay, L. E. (1989). Molecules, cells, and life. An annotated bibliography of manuscript sources on physiology, biochemistry, and biophysics 1900–1960, in the Library of the American Philosophical Society. Philadelphia: American Philosophical Society.Google Scholar
  42. Kay, L. E. (1993). The molecular vision of life. Caltech, the Rockefeller Foundation, and the rise of the new biology. Monographs on the History and Philosophy of Biology. New York/Oxford: Oxford University Press.Google Scholar
  43. Kay, L. E. (1996). Life as technology: Representing, intervening and molecularizing. In S. Sarkar (Ed.), The philosophy and history of molecular biology: New perspectives (pp. 87–100). Boston Studies in the Philosophy of Science 183. Dordrecht/Boston/London: Kluwer Academic Publishers.Google Scholar
  44. Koepfli, J. B., Thimann, K. V., & Went, F. W. (1938). Phytohormones: Structure and physiological activity, I. Journal of Biological Chemistry, 122, 763–780.Google Scholar
  45. Kögl, F. (1930). Wege und Ziele der Erforschung von Naturstoffen. Antrittsrede. In Jaarboek der Rijks-Universiteit te Utrecht 19301931. Utrecht: J. van Druten.Google Scholar
  46. Kögl, F. (1932). Ueber die Chemie des Auxins, eines pflanzlichen Wuchsstoffs. Chemisch Weekblad, 29(21), 317–318.Google Scholar
  47. Kögl, F. (1933). On plant growth hormones (auxin a and auxin b). British Association for the Advancement of Science. Report of the Annual Meeting 1933 in Leicester, September 613 (pp. 600–609). London: Office of the British Association.Google Scholar
  48. Kögl, F., & Erxleben, H. (1934). Über die Konstitution der Auxine a und b. 10. Mitteilung über pflanzliche Wuchsstoffe. Hoppe-Seyler’s Zeitschrift für Physiologische Chemie, 227, 51–73.CrossRefGoogle Scholar
  49. Kögl, F., Erxleben, H., & Haagen-Smit, A. J. (1933a). Über ein Phytohormon der Zellstreckung. Zur Chemie des krystallisierten Auxins. 5. Mitteilung über pflanzliche Wachstumsstoffe. Hoppe-Seyler’s Zeitschrift für Physiologische Chemie, 216, 31–44.CrossRefGoogle Scholar
  50. Kögl, F., & Haagen Smit, A. J. (1931). Über die Chemie des Wuchsstoffs. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam, 34, 1411–1416.Google Scholar
  51. Kögl, F., Haagen Smit, A. J., & Erxleben, H. (1933b). Über ein Phytohormon der Zellstreckung. Reindarstellung des Auxins aus menschlichem Harn. 4. Mitteilung über pflanzliche Wachstumsstoffe. Hoppe-Seyler’s Zeitschrift für Physiologische Chemie, 214, 241–261.CrossRefGoogle Scholar
  52. Kögl, F., Haagen Smit, A. J., & Erxleben, H. (1934). Über ein neues Auxin („Hetero-auxin“) aus Harn. 11. Mitteilung über pflanzliche Wachstumsstoffe. Hoppe-Seyler’s Zeitschrift für Physiologische Chemie, 228, 90–108.CrossRefGoogle Scholar
  53. Kögl, F., & Kostermans, D. G. F. R. (1935). Über die Konstitutions-Spezifität des Hetero-auxins. 16. Mitteilung über pflanzliche Wachstumsstoffe. Hoppe-Seyler’s Zeitschrift für Physiologische Chemie, 235, 201–216.CrossRefGoogle Scholar
  54. Kohler, R. E. (1982). From medical chemistry to biochemistry. The making of a biomedical discipline. Cambridge Monography on the History of Medicine. Cambridge: Cambridge University Press.Google Scholar
  55. Kohler, R. E. (1991). Partners in science. Foundations and natural scientists 1900–1945. Chicago/London: The University of Chicago Press.Google Scholar
  56. Laquer, F. (1928). Über den gegenwärtigen Stand der Hormonforschung. Zeitschrift für Angewandte Chemie, 41, 1028–1033.CrossRefGoogle Scholar
  57. Loeb, J. (1918). Forced movements, tropisms, and animal conduct. Monographs on Experimental Biology 1. Philadelphia/London: J. B. Lippincott Company.Google Scholar
  58. Love, A. C. (2008). Explaining evolutionary innovations and novelties: Criteria of explanatory adequacy and epistemological prerequisites. Philosophy of Science, 75(5), 874–886.CrossRefGoogle Scholar
  59. MacLeod, M., & Nersessian, N. J. (2016). Interdisciplinary problem-solving: Emerging modes in integrative systems biology. European Journal for Philosophy of Science, 6, 401–418.CrossRefGoogle Scholar
  60. Mc Manus, F. (2012). Development and mechanistic explanation. Studies in History and Philosophy of Biological and Biomedical Sciences, 43, 532–541.CrossRefGoogle Scholar
  61. Morange, M. (2007). Physics, biology and history. Interdisciplinary Science Reviews, 32(2), 107–112.CrossRefGoogle Scholar
  62. Morange, M. (2008). The death of molecular biology? History and Philosophy of the Life Sciences, 30(1), 31–42.Google Scholar
  63. Morgan, T. H. (1927a). Study and research in biology. Bulletin of the California Institute of Technology, 36(117), 86–91.Google Scholar
  64. Morgan, T. H. (1927b). The relation of biology to physics. Science, 65(1679), 213–220.CrossRefGoogle Scholar
  65. Munns, D. P. D. (2014). “The awe in which biologists held physicists”: Frits Went’s first phytotron at Caltech, and an experimental definition of the biological environment. History and Philosophy of the Life Sciences, 36(2), 209–231.CrossRefGoogle Scholar
  66. Nersessian, N. J., & Patton, C. (2009). Model-based reasoning in interdisciplinary engineering. In A. Meijers (Ed.), Handbook of the philosophy of technology and engineering sciences (pp. 687–718). Amsterdam: Elsevier.Google Scholar
  67. Nickles, T. (1981). What is a problem that we may solve it? Synthese, 47(1), 85–118.CrossRefGoogle Scholar
  68. Nielsen, N. (1924). Studies on the transmission of stimuli in the coleoptile of Avena. Dansk Botanisk Arkiv, 4, 1–43.Google Scholar
  69. Nielsen, N. (1930). Untersuchungen über einen neuen wachstumsregulierenden Stoff: Rhizopin. Jahrbücher für wissenschaftliche Botanik, 73, 125–191.Google Scholar
  70. Parascondola, J. (1974). The controversy over structure-activity relationships in the early twentieth century. Pharmacy in History, 16(2), 54–63.Google Scholar
  71. Pauling, L. (1938). The future of the Crellin laboratory. Science, 87(2269), 563–565.CrossRefGoogle Scholar
  72. Pauly, P. J. (1987a). Controlling life. Jacques Loeb & the engineering ideal in biology. Monographs on the History and Philosophy of Biology. New York/Oxford: Oxford University Press.Google Scholar
  73. Pauly, P. J. (1987b). General physiology and the discipline of physiology, 1890–1935. In G. L. Geison (Ed.), Physiology in the American Context 1850–1940 (pp. 195–207). New York: Springer.Google Scholar
  74. Pisek, A. (1929). Wuchsstoff und Tropismen. Österreichische Botanische Zeitschrift, 78, 168–186.CrossRefGoogle Scholar
  75. Ramsey, J. L. (2008). Mechanisms and their explanatory challenges in organic chemistry. Philosophy of Science, 75(5), 970–982.CrossRefGoogle Scholar
  76. Rasmussen, N. (1999). The forgotten promise of thiamin: Merck, Caltech biologists, and plant hormones in a 1930s biotechnology project. Journal of the History of Biology, 32(2), 245–261.CrossRefGoogle Scholar
  77. Rheinberger, H.-J. (2009). Recent science and its exploration: The case of molecular biology. Studies in History and Philosophy of Biological and Biomedical Sciences, 40, 6–12.CrossRefGoogle Scholar
  78. Sachs, J. (1882). Stoff und Form der Pflanzenorgane, II. Arbeiten des Botanischen Instituts Würzburg, 2, 689–718.Google Scholar
  79. Seubert, E. (1925). Über Wachstumsregulatoren in der Koleoptile von Avena. Zeitschrift für Botanik, 17, 49–88.Google Scholar
  80. Skoog, F. (1994). A personal history of cytokinin and plant hormone research. In D. W. S. Mok & M. C. Mok (Eds.), Cytokinins: Chemistry, activity, and fuction (pp. 1–14). Boca Raton: CRC Press.Google Scholar
  81. Snow, R. (1935). Activation of cambial growth by pure hormones. The New Physiologist, 34(5), 347–360.CrossRefGoogle Scholar
  82. Stark, P. (1927). Das Reizleitungsproblem bei den Pflanzen im Lichte neuerer Erfahrungen. Ergebnisse der Biologie, 2, 1–94.Google Scholar
  83. Thimann, K. V. (1935a). On an analysis of the activity of two growth-promoting substances on plant tissues. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam, 38, 896–912.Google Scholar
  84. Thimann, K. V. (1935b). Growth substances in plants. Annual Review of Biochemistry, 4, 545–568.Google Scholar
  85. Thimann, K. V., & Campbell, N. A. (1986). Sowing the seeds of agricultural research. BioScience, 36(11), 734–736.CrossRefGoogle Scholar
  86. Thimann, K. V., & Dolk, H. E. (1933). Conditions governing the production of the plant growth hormone by Rhizopus cultures. Biologisches Zentralblatt, 53(1), 49–66.Google Scholar
  87. Thimannn, K. V., & Koepfli, J. B. (1935). Identity of the growth-promoting and root-forming substances of plants. Nature (Supplement), 135, 101–102.Google Scholar
  88. Troyer, J. R. (2008). Error or fraud in science: Auxin a and b and animal tumor proteins. Journal of the North Carolina Academy of Science, 124(1), 1–5.Google Scholar
  89. van Overbeek, J. (1933). Wuchsstoff, Lichtwachstumsreaktion und Phototropismus bei Raphanus. Recueil des travaux botaniques néerlandais, 30, 537–626.Google Scholar
  90. Walden, P. (1941). Geschichte der Organischen Chemie seit 1880. Berlin: Springer.CrossRefGoogle Scholar
  91. Went, F. A. F. C. (1930). Les conceptions nouvelles sur les tropismes des plantes. Revue générale des sciences pures et appliquées, 41(22), 631–643.Google Scholar
  92. Went, F. A. F. C. (1931). Wachstum. In S. Kostytschew (Ed.), Lehrbuch der Pflanzenphysiologie (Vol. 2, pp. 254–323). Berlin: Julius Springer.Google Scholar
  93. Went, F. A. F. C. (1933). Lehrbuch der Allgemeinen Botanik. Jena: Gustav Fischer.Google Scholar
  94. Went, F. A. F. C. (1934). Hormone bei Pflanzen. Verhandlungen der Schweizerischen Naturforschenden Gesellschaft, 115, 220–240.Google Scholar
  95. Went, F. A. F. C. (1935). The investigations on growth and tropisms carried on in the botanical laboratory of the University of Utrecht during the last decade. Biological Review, 10, 187–207.CrossRefGoogle Scholar
  96. Went, F. W. (1928). Wuchsstoff und Wachstum. Recueil des travaux botaniques néerlandais, 25, 1–116.Google Scholar
  97. Went, F. W. (1934). A test method for Rhizocaline, the rootforming substance. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam, 37, 445–455.Google Scholar
  98. Went, F. W. (1935a). Hormones, involved in root formation. The phenomenon of inhibition. In M. J. Sirks (Ed.), Zesde Internationaal Botanisch Congress. Amsterdam, 27 September, 1935. Proceedings (Vol. 2, pp. 267–269). Leiden: E. J. Brill.Google Scholar
  99. Went, F. W. (1935b). Auxin, the plant growth-hormone. Botanical Review, 1(5), 162–182.Google Scholar
  100. Went, F. W., & Thimann, K. V. (1937). Phytohormones. Experimental Biology Monographs. New York: The Macmillan Company.Google Scholar
  101. Wildman, S. G. (1997). The auxin-a, b enigma: Scientific fraud or scientific ineptitude? Plant Growth Regulation, 22, 37–68.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.WissenschaftsgeschichteHistorisches Seminar der LMUMunichGermany

Personalised recommendations