Before hierarchy: the rise and fall of Stephen Jay Gould’s first macroevolutionary synthesis

  • Max W. DresowEmail author
Original Paper


Few of Stephen Jay Gould’s accomplishments in evolutionary biology have received more attention than his hierarchical theory of evolution, which postulates a causal discontinuity between micro- and macroevolutionary events. But Gould’s hierarchical theory was his second attempt to supply a theoretical framework for macroevolutionary studies—and one he did not inaugurate until the mid-1970s. In this paper, I examine Gould’s first attempt: a proposed fusion of theoretical morphology, multivariate biometry and the experimental study of adaptation in fossils. This early “macroevolutionary synthesis” was predicated on the notion that parallelism and convergence dominate the history of higher taxa, and moreover, that they can be explained in terms of adaptation leading to mechanical improvement. In this paper, I explore the origins and contents of Gould’s first macroevolutionary synthesis, as well as the reasons for its downfall. In addition, I consider how various developments during the mid-1970s led Gould to identify hierarchy and constraint as the leading themes of macroevolutionary studies—and adaptation as a macroevolutionary red herring.


Stephen Jay Gould Paleontology Macroevolution Adaptation Progress 



I would like to thank Alan Love, Emilie Snell-Rood, Mark Borrello, Ruth Shaw and Staffan Müller-Wille for their keen editorial insights during the writing process. Dr. Love read the manuscript several times and provided invaluable feedback on its organization and scope. In addition, I would like to thank Niles Eldredge, Roger D.K. Thomas and Richard Lewontin for their generous correspondence during various stages of this project. Last but not least, I owe a debt of gratitude to the participants of the 2015 MBL-ASU History of Biology Seminar (“Perspectives on Stephen Jay Gould”), and especially to the seminar organizers, John Beatty and David Sepkoski, for inviting me to participate.


  1. Allmon, W. D. (2009). The structure of Gould: Happenstance, humanism, history and the unity of his view of life. In W. D. Allmon, P. H. Kelley, & R. M. Ross (Eds.), Stephen Jay Gould: Reflections on his view of life (pp. 3–68). London: Oxford University Press.Google Scholar
  2. Allmon, W. D., Kelly, P. H., & Ross, R. M. (2009). Stephen Jay Gould: Reflections on his view of life. London: Oxford University Press.Google Scholar
  3. Bambach, R. K. (2009). Diversity in the fossil record and Stephen Jay Gould’s evolving view of the history of life. In W. D. Allmon, P. H. Kelley, & R. M. Ross (Eds.), Stephen Jay Gould: Reflections on his view of life (pp. 69–126). London: Oxford University Press.Google Scholar
  4. Cain, A. J. (1978). Ontogenetic analogy. Nature, 272, 758–759.CrossRefGoogle Scholar
  5. Carter, R. M. (1967). The shell ornament of Hysteroconcha and Hecuba (Bivalvia): A test case for inferential functional morphology. The Veliger, 10, 58–71.Google Scholar
  6. Colbert, E. H. (1947). Functions of vertebrate paleontology in the earth sciences. Bulletin of the Geological Society of America, 58, 287–291.CrossRefGoogle Scholar
  7. Danieli, G. A., Minelli, A., & Pievani, T. (2013). Stephen Jay Gould—The scientific legacy. Milan: Springer-Verlag Italia.CrossRefGoogle Scholar
  8. De Beer, G. (1954). Archaeopteryx and evolution. The Advancement of Science, 11, 160–170.Google Scholar
  9. Eldredge, N. (2013). Stephen Jay Gould in the 1960s and 1970s, and the origin of “Punctuated equilibria”. In G. A. Daneli, A. Mineli, & T. Pievani (Eds.), Stephen Jay Gould: The scientific legacy (pp. 3–20). New York: Springer.CrossRefGoogle Scholar
  10. Eldredge, N., & Gould, S. J. (1972). Punctuated equilibria: An alternative to phyletic gradualism. In T. J. M. Schopf (Ed.), Models in paleobiology (pp. 82–115). San Francisco: Cooper & Co.Google Scholar
  11. Gilinsky, N. L. (1981). Stabilizing species selection in the Archaeogastropoda. Paleobiology, 7, 316–331.CrossRefGoogle Scholar
  12. Gould, S. J. (1966a). Allometry and size in ontogeny and phylogeny. Biological Reviews, 41, 587–640.CrossRefGoogle Scholar
  13. Gould, S. J. (1966b). Allometry in Pleistocene land snails from Bermuda: The influence of size upon shape. Journal of Paleontology, 40, 1131–1141.Google Scholar
  14. Gould, S. J. (1967). Evolutionary patterns in pelycosaurian reptiles. A factor analytic study. Evolution, 21, 385–401.Google Scholar
  15. Gould, S. J. (1968). Ontogeny and the explanation of form: An allometric analysis. Paleontological Society Memoir, 2, 81–98.Google Scholar
  16. Gould, S. J. (1969). An evolutionary microcosm: Pleistocene and recent history of the land snail P. (Poecilozonites) in Bermuda. Bulletin of the Museum of Comparative Anatomy, 138, 407–532.Google Scholar
  17. Gould, S. J. (1970a). Evolutionary paleontology and the science of form. Earth Science Reviews, 6, 77–119.CrossRefGoogle Scholar
  18. Gould, S. J. (1970b). Dollo on Dollo’s law: Irreversibility and the status of evolutionary laws. Journal of the History of Biology, 3, 189–212.CrossRefGoogle Scholar
  19. Gould, S. J. (1970c). Coincidence of climactic and faunal fluctuations in Pleistocene Bermuda. Science, 168, 572–573.CrossRefGoogle Scholar
  20. Gould, S. J. (1971a). D’Arcy Thompson and the science of form. New Literary History, 2, 229–258.CrossRefGoogle Scholar
  21. Gould, S. J. (1971b). Muscular mechanics and the ontogeny of swimming in scallops. Palaeontology, 14, 61–94.Google Scholar
  22. Gould, S. J. (1971c). Precise but fortuitous convergence in Pleistocene land snails from Bermuda. Journal of Paleontology, 45, 409–418.Google Scholar
  23. Gould, S. J. (1972). Allometric fallacies and the evolution of Gryphaea: A new interpretation based on White’s criterion of geometric similarity. Evolutionary Biology, 6, 91–118.Google Scholar
  24. Gould, S. J. (1973a). Positive allometry in the antlers in the “Irish Elk”, Megaloceros giganteus. Nature, 244, 375–376.CrossRefGoogle Scholar
  25. Gould, S. J. (1973b). Factor analysis of caselid pelycosaurs. Journal Pelycosaurs, 47, 886–891.Google Scholar
  26. Gould, S. J. (1974). The origin and function of “bizarre” structures: Antler size and skull size in the “Irish Elk”, Megaloceros giganteus. Evolution, 28, 191–220.Google Scholar
  27. Gould, S. J. (1975). Allometry in primates, with emphasis on the scaling and evolution of the brain. Contributions to Primatology, 5, 244–292.Google Scholar
  28. Gould, S. J. (1976). Grades and clades revisited. In R. B. Masterton, W. Hodos, & H. Jerison (Eds.), Evolution, brain and behavior (pp. 115–122). Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  29. Gould, S. J. (1977a). Ontogeny and phylogeny. Cambridge: Harvard University Press.Google Scholar
  30. Gould, S. J. (1977b). Ever since Darwin: Reflections on natural history. New York: W.W. Norton & Co.Google Scholar
  31. Gould, S. J. (1979). On the importance of heterochrony for evolutionary biology. Systematic Zoology, 28, 224–226.CrossRefGoogle Scholar
  32. Gould, S. J. (1980a). Is a new and general theory of evolution emerging? Paleobiology, 6, 119–130.CrossRefGoogle Scholar
  33. Gould, S. J. (1980b). The promise of paleobiology as a nomothetic, evolutionary discipline. Paleobiology, 6, 96–118.CrossRefGoogle Scholar
  34. Gould, S. J. (1982a). Darwinism and the expansion of evolutionary theory. Science, 216, 380–387.CrossRefGoogle Scholar
  35. Gould, S. J. (1982b). Change in developmental timing as a mechanism of macroevolution. In J. T. Bonner (Ed.), Evolution and development (pp. 333–346). Berlin: Springer.CrossRefGoogle Scholar
  36. Gould, S. J. (1983). Opus 100. Natural History 92: 10–21. (Reprinted in The Flamingo’s Smile [1985], New York: W.W. Norton & Co., 167–184).Google Scholar
  37. Gould, S. J. (1985). The paradox of the first tier: An agenda for paleobiology. Paleobiology, 11, 2–12.CrossRefGoogle Scholar
  38. Gould, S. J. (1988). The uses of heterochrony. In M. L. McKinney (Ed.), Heterochrony: A multidisciplinary approach (pp. 1–13). New York: Springer Science+Business Media.CrossRefGoogle Scholar
  39. Gould, S. J. (1989). Wonderful life: The Burgess Shale and the nature of history. New York: W.W. Norton.Google Scholar
  40. Gould, S. J. (1993). Fulfilling the spandrels of word and mind. In J. Selzer (Ed.), Understanding scientific prose (pp. 310–336). Madison: University of Wisconsin Press.Google Scholar
  41. Gould, S. J. (1994). Tempo and mode in the macroevolutionary reconstruction of Darwinism. Proceedings of the National Academy of Sciences, 91, 6764–6771.CrossRefGoogle Scholar
  42. Gould, S. J. (1995). Happy thoughts on a sunny day in New York City. Natural History, 103, 10–17.Google Scholar
  43. Gould, S. J. (1997). Redrafting the tree of life. Proceedings of the American Philosophical Society, 141, 30–54.Google Scholar
  44. Gould, S. J. (2002). The structure of evolutionary theory. Cambridge (MA): Harvard University Press.Google Scholar
  45. Gould, S. J., & Eldredge, N. (1977). Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology, 3, 115–151.CrossRefGoogle Scholar
  46. Gould, S. J., & Garwood, R. A. (1969). Levels of integration in mammalian dentitions: An analysis of correlations in Neosophontes micrus (Insectivora) and Oryzomys couesi (Rodentia). Evolution, 23, 276–300.CrossRefGoogle Scholar
  47. Gould, S. J., & Johnson, R. F. (1972). Geographic variation. Annual Review of Ecology and Systematics, 3, 457–498.CrossRefGoogle Scholar
  48. Gould, S. J., & Katz, M. (1975). Disruption of ideal geometry in the growth of receptaculitids: A natural experiment in theoretical morphology. Paleobiology, 1, 1–20.CrossRefGoogle Scholar
  49. Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society of London: B, 205, 581–598.CrossRefGoogle Scholar
  50. Grantham, T. (2009). Taxic paleobiology and the pursuit of a unified evolutionary theory. In D. Sepkoski & M. Ruse (Eds.), The Paleobiology Revolution (pp. 215–238). Chicago: University of Chicago Press.CrossRefGoogle Scholar
  51. Haufe, C. (2015). Gould’s laws. Philosophy of Science, 82, 1–20.CrossRefGoogle Scholar
  52. Huss, J. (2009). The shape of evolution: The MBL model and clade shape. In D. Sepkoski & M. Ruse (Eds.), The Paleobiology Revolution (pp. 326–345). Chicago: University of Chicago Press.CrossRefGoogle Scholar
  53. Huxley, J. S. (1932). Problems of relative growth. London: Methuen & Co., Ltd.Google Scholar
  54. Huxley, J. S. (1954). The evolutionary process. In J. Huxley, A. C. Hardy, & E. B. Ford (Eds.), Evolution as a process (pp. 1–23). London: George Allen & Unwin Ltd.Google Scholar
  55. Huxley, J. S. (1957). The three types of evolutionary process. Nature, 180, 454–455.CrossRefGoogle Scholar
  56. Huxley, J. S. (1958). Evolutionary processes and taxonomy with special reference to grades. Uppsala University Årrskr., 1958, 21–38.Google Scholar
  57. Huxley, J. S. (1963). Evolution: The modern synthesis (2nd ed.). London: George Allen and Unwin Ltd.Google Scholar
  58. Kitcher, P. (2009). Evolutionary theory and the uses of biology. In W. D. Allmon, P. H. Kelley, & R. M. Ross (Eds.), Stephen Jay Gould: Reflections on his view of life (pp. 207–227). London: Oxford University Press.Google Scholar
  59. Knight, J. B. (1947). Paleontologist or geologist. Bulletin of Geological Society of America, 58, 281–286.CrossRefGoogle Scholar
  60. Lloyd, E. A., & Gould, S. J. (1993). Species selection on variability. Proceedings of the National Academy of Sciences, 90, 595–599.CrossRefGoogle Scholar
  61. Mayr, E. (1963). Animal species and evolution. Cambridge: The Belknap Press.CrossRefGoogle Scholar
  62. Mayr E. (1976). Cladistic analysis or cladistic classification. In Evolution, diversity and life: Selected essays (pp. 433–476). Cambridge (MA): Harvard University Press.Google Scholar
  63. Mayr, E. (2001). What evolution is. New York: Basic Books.Google Scholar
  64. Niklas, K. (2009). Deducing plant function from organic form: Challenges and pitfalls. In M. Laubichler & J. Maienschein (Eds.), Form and function in developmental evolution (pp. 47–82). Cambridge (UK): Cambridge University Press.CrossRefGoogle Scholar
  65. Paul, C. R. C. (1968). Morphology and function of dichoporite pore structure in cystoids. Palaeontology, 11, 697–730.Google Scholar
  66. Perez, M. (2013). Evolutionary activism: Stephen Jay Gould, the New Left and sociobiology. Endeavour, 37, 104–111.CrossRefGoogle Scholar
  67. Perez Sheldon, M. (2014). The public life of scientific orthodoxy: Stephen Jay Gould, evolutionary biology and American creationism, 1965–2002. (Doctoral dissertation, Harvard University, 2014).Google Scholar
  68. Pilbeam, D., & Gould, S. J. (1974). Size and scaling in human evolution. Science, 186, 892–901.CrossRefGoogle Scholar
  69. Princehouse, P. (2009). Punctuated equilibrium and speciation: What does it mean to be a Darwinian? In D. Sepkoski & M. Ruse (Eds.), The paleobiology revolution (pp. 145–175). Chicago: University of Chicago Press.Google Scholar
  70. Prindle, D. (2009). Stephen Jay Gould and the politics of evolution. Amherst : Prometheus Books.Google Scholar
  71. Rainger, R. (2001). Subtle agents for change: The Journal for Paleontology, J. Marvin Weller, and changing emphases in invertebrate paleontology, 1930–1965. Journal of Paleontology, 756, 1058–1064.CrossRefGoogle Scholar
  72. Raup, D. (1966). Geometric analysis of shell coiling: General problems. Journal of Paleontology, 40, 1178–1190.Google Scholar
  73. Raup, D. (1967). Geometric analysis of shell coiling: Coiling in ammonoids. Journal of Paleontology, 41, 43–65.Google Scholar
  74. Raup, D. (1977). Probabilistic models in evolutionary paleobiology: A random walk through the fossil record produces some surprising results. American Scientist, 65, 50–57.Google Scholar
  75. Raup, D., & Michelson, A. (1965). Theoretical morphology of the coiled shell. Science, 147, 1294–1295.CrossRefGoogle Scholar
  76. Raup, D. M., & Gould, S. J. (1974). Stochastic stimulation and the evolution of morphology: towards a nomothetic paleontology. Systematic Zoology, 23, 305–322.CrossRefGoogle Scholar
  77. Rudwick, M. J. S. (1961). The feeding mechanism of the Permian brachiopod Prorichthofenia. Paleontology, 3, 450–471.Google Scholar
  78. Rudwick, M. J. S. (1964). The inference of function from structure in fossils. British Journal for Philosophy of Science, 7, 27–40.CrossRefGoogle Scholar
  79. Rudwick, M. J. S. (1968). Some analytic methods in the study of ontogeny in fossils with accretionary skeletons. Paleontological Society Memoir, 2, 35–69.Google Scholar
  80. Schaeffer, B. (1947). Notes on the origin and function of the artiodactyl tarsus. American Museum Noviates, 1356, 1–24.Google Scholar
  81. Schaeffer, B. (1965). The role of experimentation in the origin of higher levels of organization. Systematic Zoology, 14, 318–336.CrossRefGoogle Scholar
  82. Segerstråle, U. (2000). Defenders of the truth. London: Oxford University Press.Google Scholar
  83. Segerstråle, U. (2003). Stephen Jay Gould: Intuitive Marxist and biologist of freedom. Rethinking Marxism, 15, 467–477.CrossRefGoogle Scholar
  84. Seilacher, A. (1968). Swimming habits of belemnites—recorded by boring barnacles. Palaeogeography, Palaeoclimatology, Palaeoecology, 4, 279–285.CrossRefGoogle Scholar
  85. Sepkoski, D. (2009a). Stephen Jay Gould: Darwinian iconoclast. In O. Harmen & M. Dietrich (Eds.), Rebels, Mavericks, and Heretics in Biology (pp. 321–337). New Haven: Yale University Press.Google Scholar
  86. Sepkoski, D. (2009b). “Radical” or “conservative”? The origin and reception of punctuated equilibrium. In D. Sepkoski & M. Ruse (Eds.), The Paleobiology Revolution (pp. 301–325). Chicago: University of Chicago Press.CrossRefGoogle Scholar
  87. Sepkoski, D. (2012). Rereading the fossil record: The growth of paleobiology as an evolutionary discipline. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  88. Sepkoski, D., & Ruse, M. (2009). The Paleobiology Revolution. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  89. Simpson, G. G. (1953). The major features of evolution. New York: Columbia University Press.Google Scholar
  90. Simpson, G. G. (1961). Some problems of vertebrate paleontology. Science, 133, 1679–1689.CrossRefGoogle Scholar
  91. Stanley, S. (1975). A theory of evolution above the species level. Proceedings of the National Academy of Sciences, 72, 646–650.CrossRefGoogle Scholar
  92. Stearns, S. C. (1976). Life-history tactics: A review of the ideas. The Quarterly Review of Biology, 51, 3–47.CrossRefGoogle Scholar
  93. Sylvester-Bradley, P. C. (1959). Iterative evolution in fossil oysters. Proceedings, International Zoological Congress, 1, 193–196.Google Scholar
  94. Thomas, R. D. K. (2009). Gould’s odyssey: Form may follow function, or former function, and all species are equal (especially bacteria) but history is trumps. In W. D. Allmon, P. H. Kelley, & R. M. Ross (Eds.), Stephen Jay Gould: Reflections on his view of life (pp. 271–290). London: Oxford University Press.Google Scholar
  95. Thompson, D. W. (1942). On growth and form. Cambridge (UK): Cambridge University Press.Google Scholar
  96. Vrba, E. S., & Gould, S. J. (1986). The hierarchical expansion of sorting and selection: sorting and selection cannot be equated. Paleobiology, 12, 217–228.CrossRefGoogle Scholar
  97. White, J. F., & Gould, S. J. (1965). Interpretation of the coefficient in the allometric equation. The American Naturalist, 99, 5–18.CrossRefGoogle Scholar
  98. Wilson, E. O. (1975). Sociobiology: The new synthesis. Cambridge (MA): Harvard University Press.Google Scholar
  99. York, R., & Clark, B. (2011). The science and humanism of Stephen Jay Gould. New York: Monthly Review Press.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Philosophy, Minnesota Center for Philosophy of ScienceUniversity of MinnesotaMinneapolisUSA

Personalised recommendations