Experimenting with sex: four approaches to the genetics of sex reversal before 1950

Abstract

In the early twentieth century, Tatsuo Aida in Japan, Øjvind Winge in Denmark, Richard Goldschmidt in Germany, and Calvin Bridges in the United States all developed different experimental systems to study the genetics of sex reversal. These locally specific experimental systems grounded these experimenters’ understanding of sex reversal as well as their interpretation of claims regarding experimental results and theories. The comparison of four researchers and their experimental systems reveals how those different systems mediated their understanding of genetic phenomena, and influenced their interpretations of sex reversal.

This is a preview of subscription content, log in to check access.

Notes

  1. 1.

    By using anthropomorphic language of excitation, Aida’s understanding of sex chromosomes appears to be a case of what Sara Richardson calls “Sexing the X,” where human characteristics are ascribed to the X and Y chromosomes (Richardson 2011).

  2. 2.

    Ha’s “The Riddle of Sex” convincingly demonstrates the importance of hormonally based understandings of sex at this time. For present purposes, I have focused on a narrower set of genetic experiments and their interpretation.

References

  1. Aida, T. (1921). On the inheritance of color in a fresh-water fish, Aplocheilus latipes Temmick and Schlegel, with special reference to sex-linked inheritance. Genetics, 6, 554–573.

    Google Scholar 

  2. Aida, T. (1930). Further genetical studies of Aplocheilus latipes. Genetics, 15, 1–16.

    Google Scholar 

  3. Aida, T. (1936). Sex reversal in Aplocheilus latipes and a new explanation of sex-differentiation. Genetics, 21, 136–153.

    Google Scholar 

  4. Allen, G. (1974). Opposition to the mendelian-chromosome theory: The physiological and developmental genetics of Richard Goldschmidt. Journal of the History of Biology, 7, 49–92.

    Article  Google Scholar 

  5. Allen, G. (1978). Thomas Hunt Morgan, the Man and His Science. Princeton: Princeton University Press.

    Google Scholar 

  6. Allen, G. (1980). The historical development of the “Time Law of Intersexuality” and its philosophical implications. In P. Leonie (Ed.), Richard Goldschmidt: Controversial geneticist and creative biologist, experientia supplementum (Vol. 35, pp. 41–48).

    Google Scholar 

  7. Allen, G. (1986). T H Morgan and the split between embryology and genetics, 1910–1935. In T. Horder, et al. (Eds.), History of Embryology (pp. 113–146). Cambridge: Cambridge University Press.

    Google Scholar 

  8. Bateson, W. (1908). The methods and scope of genetics. Cambridge: Cambridge University Press.

    Google Scholar 

  9. Bridges, C. (1916). Non-disjunction as proof of the chromosome theory of heredity. Genetics, 1, 1–52.

    Google Scholar 

  10. Bridges, C. (1922). The origin of variations in sexual and sex-limited characters. The American Naturalist, 56, 51–63.

    Article  Google Scholar 

  11. Bridges, C. (1939). Cytological and genetic basis of sex. Sex and Internal Secretions (2nd ed., pp. 15–63). Baltimore: Johns Hopkins University Press.

    Google Scholar 

  12. Brush, S. (2002). How theories became knowledge: Morgan’s chromosome theory of heredity in America and Britain. Journal of the History of Biology, 35, 471–535.

    Article  Google Scholar 

  13. Clarke, A. (1998). Disciplining reproduction: Modernity, American Life Sciences, and “the Problems of Sex”. Berkeley: University of California Press.

    Google Scholar 

  14. Crew, F. A. E. (1933). Sex determination. London: Methuen.

    Google Scholar 

  15. Davis, G., Dietrich, M., & Jacobs, D. (2009). Homeotic mutants and the assimilation of developmental genetics into the evolutionary synthesis. In Joe Cain & Michael Ruse (Eds.), Descended from Darwin: Insights into American Evolutionary Studies, 1900–1970 (pp. 133–154). Philadelphia: American Philosophical Society.

    Google Scholar 

  16. Dietrich, M. (1995). Richard Goldschmidt’s “heresies” and the evolutionary synthesis. Journal of the History of Biology, 28, 431–461.

    Article  Google Scholar 

  17. Dietrich, M. (1996). On the mutability of genes and geneticists: The “Americanization” of Richard Goldschmidt and Victor Jollos. Perspectives on Science, 4, 321–345.

    Google Scholar 

  18. Dietrich, M. (2000a). Of moths and men: Theo Lang and the persistence of Richard Goldschmidt’s theory of the genetics of homosexuality, 1916–1960. History and Philosophy of the Life Sciences, 22, 217–245.

    Google Scholar 

  19. Dietrich, M. (2000b). From hopeful monsters to homeotic effects: Richard Goldschmidt’s integration of development, evolution, and genetics. American Zoologist, 40, 28–37.

    Google Scholar 

  20. Dietrich, M. (2000c). The problem of the gene. Comptes Rendus de l’Académie des Sciences de Paris, 323, 1139–1146.

    Google Scholar 

  21. Dietrich, M. (2000d). From gene to genetic hierarchy: Richard Goldschmidt and the problem of the gene. In P. Beurton, R. Falk, & H. Rheinberger (Eds.), The concept of the gene in development and evolution. Cambridge: Cambridge University Press.

    Google Scholar 

  22. Dietrich, M. (2008). Striking the hornet’s nest: Richard Goldschmidt’s rejection of the particulate gene. In O. Harman & M. R. Dietrich (Eds.), Rebels, mavericks, and heretics in biology (pp. 119–136). New Haven, CT: Yale University Press.

    Google Scholar 

  23. Dietrich, M. (2011). Reinventing Richard Goldschmidt: Reputation, memory, and biography. Journal of the History of Biology, 44, 693–712.

    Article  Google Scholar 

  24. Gilbert, S. (1978). The embryological origins of the gene theory. Journal of the History of Biology, 11, 307–351.

    Article  Google Scholar 

  25. Gilbert, S. (1988). Cellular politics: Ernest everett just, Richard B. Goldschmidt and the attempt to reconcile embryology and genetics. In R. Rainger, K. Benson, & J. Maienschein (Eds.), The American development of biology (pp. 311–346). New Brunswick: Rutgers University Press.

    Google Scholar 

  26. Goldschmidt, R. (1911). Über die Vererbung der sekundären Geschlechtscharaktere. Sitzungberichte der Gesellschaft fur Morphologie und Physiologie in München, 27, 115–118.

    Google Scholar 

  27. Goldschmidt, R. (1916). Experimental intersexuality and the sex problem. American Naturalist, 50, 705–718.

    Article  Google Scholar 

  28. Goldschmidt, R. (1920). Einführung in die Vererbungswissenschaft (3rd ed.). Leipzig: W. Engelmann.

    Google Scholar 

  29. Goldschmidt, R. (1923). The mechanism and physiology of sex determination. William Dakin, trans. London: Methuen and Co.

  30. Goldschmidt, R. (1927a). Physiologische theorie der vererbung. Berlin: Springer.

    Google Scholar 

  31. Goldschmidt, R. (1927b). Die zygotischen sexuellen Zwischenstufen und die Theorie der Geschlechtsbestimmung. Ergebnisse der Biologie, 2, 554–684.

    Google Scholar 

  32. Goldschmidt, R. (1931). Die sexuellen Zwischenstufen. Berlin: JSpringer.

    Google Scholar 

  33. Goldschmidt, R. (1934). Lymantria. Bibliographia Genetica, 111, 1–185.

    Google Scholar 

  34. Goldschmidt, R. (1937). A critical review of some recent work in sex determination. I. Fishes. The Quarterly Review of Biology, 12, 426–439.

    Article  Google Scholar 

  35. Goldschmidt, R. (1938). Physiological genetics. New York: McGraw-Hill.

    Google Scholar 

  36. Goldschmidt, R. (1940). The material basis of evolution. New Haven: Yale University Press.

    Google Scholar 

  37. Goldschmidt, R. (1942). Sex-determination in Melandrium and Lymantria. Science, 95, 120–121.

    Article  Google Scholar 

  38. Goldschmidt, R. (1950). Fifty years of genetics. American Naturalist, 84, 313–339.

    Article  Google Scholar 

  39. Goldschmidt, R. (1960). In and out of the ivory tower. Seattle: University of Washington Press.

    Google Scholar 

  40. Ha, N. (2011). The riddle of sex: Biological theories of sexual difference in the early twentieth-century. Journal of the History of Biology, 44, 505–546.

    Article  Google Scholar 

  41. Harwood, J. (1993). Styles of scientific thought: the german genetics community, 1900–1933. Chicago: University of Chicago Press.

    Google Scholar 

  42. Herrn, R. (1995). On the history of biological theories of homosexuality. In J. De Cecco & D. Parker (Eds.), Sex, cells, and same sex attraction (pp. 31–56). New York: Haworth Press.

    Google Scholar 

  43. Hopwood, N. (2011). Approaches and species in the history of vertebrate embryology. Methods in Molecular Biology, 770, 1–20.

    Article  Google Scholar 

  44. Hori, H. (2011). A glance at the past of medaka fish biology. In K. Naruse, M. Tanaka, & H. Takeda (Eds.), Medaka: A model for organogenesis, human disease, and evolution (pp. 1–16). Dordrecht: Springer.

    Google Scholar 

  45. Iida, K. (2009). Practice and politics in Japanese science: Hitoshi Kihara and the formation of genetics as a discipline. Journal of the History of Biology, 43, 529–570.

    Article  Google Scholar 

  46. Iida, K. (2015). Genetics and “Breeding as a Science”: Kihara Hitoshi and the Development of genetics in Japan in the first half of the twentieth century. In D. Philips & S. Kingsland (Eds.), New perspectives on the history of the life sciences and agriculture (pp. 439–458). New York: Springer.

    Google Scholar 

  47. Ishiwara, M. (1917). Medaka no taishoku no iden ni tsuite (On the inheritance of body colors in the medaka, Oryzias latipes). Mitteilungen aus der medizinischen Fakultät Kyushu, 4, 43–51.

    Google Scholar 

  48. Kingsland, S. (2009). Maintaining continuity through a scientific revolution: A rereading of E. B. Wilson and T. H. Morgan on sex determination and Mendelism. Isis, 98, 468–488.

    Article  Google Scholar 

  49. Kinoshita, M., Murata, K., Naruse, K., & Tanaka, M. (2009). History and Features of Medaka., Medaka: Biology, management, and experimental protocols Ames, IA: Wiley.

    Google Scholar 

  50. Klöppel, U. (2010). XX0XY ungelöst. Hermaphroditismus, Sex und Gender in der deutschen Medizin. Eine historische Studie zur Intersexualität. Bielefeld: Transcript.

  51. Kohler, R. (1993). Drosophila: A life in the laboratory. Journal of the History of Biology, 26, 281–310.

    Article  Google Scholar 

  52. Kohler, R. (1994). Lords of the fly: Drosophila genetics and the experimental life. Chicago: University of Chicago Press.

    Google Scholar 

  53. Komai, T. (1958). Tatuo Aida, Geneticist. Science, 127, 1327.

    Article  Google Scholar 

  54. Littlefield, C. L. & Bryant, P. J. (1980). Views on sex determination, In Leonie P (Ed.) Richard Goldschmidt: Controversial geneticist and creative biologist, Experientia Supplementum 35, (pp 49–63)

  55. Maienschein, J. (1984). What determines sex?: A study of converging approaches. Isis, 75, 457–480.

    Article  Google Scholar 

  56. Maienschein, J. (1991). Transforming traditions in American Biology, 1880–1915. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  57. Morgan, T. (1910). Sex limited inheritance in Drosophila. Science, 32, 120–122.

    Article  Google Scholar 

  58. Morgan, T. (1926). Results relating to chromosomes and genetics. The Quarterly Review of Biology, 1, 186–211.

    Article  Google Scholar 

  59. Morgan, T. (1939). Calvin Blackman Bridges. Science, 89, 118–119.

    Article  Google Scholar 

  60. Morgan, T. (1940). Biographical Memoir of Calvin Blackman Bridges, 1889–1938. Biographical Memoirs of the National Academy of Sciences, 22, 29–48.

    Google Scholar 

  61. Onaga, L. (2015). More than metamorphosis: The silkworm experiments of Toyama Kametaro and his cultivation of genetic thought in Japan’s sericultural practices, 1894–1918. In D. Philips & S. Kingsland (Eds.), New perspectives on the history of the life sciences and agriculture (pp. 415–437). New York: Springer.

    Google Scholar 

  62. Oudshoorn, N. (1994). Beyond the natural body: An archeology of sex hormones. New York, NY: Routledge.

    Google Scholar 

  63. Pueckert, D. (1987). The Weimar Republic: The Crisis of Classical Modernity. New York: Hill and Wang.

    Google Scholar 

  64. Rheinberger, H.-J. (1992a). Experiment, difference, and writing: I. Tracing protein synthesis. Studies in the History and Philosophy of Science, 23, 305–331.

    Article  Google Scholar 

  65. Rheinberger, H.-J. (1992b). Experiment, Difference, and Writing: II. The Laboratory Production of Transfer RNA. Studies in the History and Philosophy of Science, 23, 389–422.

    Article  Google Scholar 

  66. Rheinberger, H.-J. (1997). Toward a History of Epistemic Things: Synthesizing Proteins in the Test Tube. Palo Alto: Stanford University Press.

    Google Scholar 

  67. Richardson, S. (2011). Sexing the X: How the X Became the “Female Chromosome”. Signs, 37, 909–933.

    Article  Google Scholar 

  68. Richardson, S. (2013). Sex Itself: The Search for Male and Female in the Human Genome. Chicago: University of Chicago Press.

    Google Scholar 

  69. Richmond, M. (1986). Richard Goldschmidt and sex determination: The growth of German genetics, 1900–1935. Unpublished Ph.D. Dissertation, Indiana University.

  70. Richmond, M. (2007). The Cell as a Basis for Heredity, Development, and Evolution: Richard Goldschmidt’s Program of Physiological Genetics. In J. Maienschein & M. D. Laubichler (Eds.), From Embryology to Evo-Devo: A History of Evolutionary Development (pp. 169–210). Cambridge: MIT Press.

    Google Scholar 

  71. Ringer, F. (1969). The Decline of the German Mandarins: The German Academic Community, 1890–1933. Hanover: University Press of New England.

    Google Scholar 

  72. Satzinger, H. (2009). Racial Purity, Stable Genes and Sex Difference: Gender in the Making of Genetic Concepts by Richard Goldschmidt and Fritz Lenz, 1916–1936. In Susanne Heim, Carola Sachse, & Mark Walker (Eds.), The Kaiser Wilhelm Society under National Socialism (pp. 145–170). Cambridge: Cambridge University Press.

    Google Scholar 

  73. Schmidt, J. (1920). Racial Investigations IV – The genetic behavior of a secondary sexual character. Compt. Rend. Trav. Lab. Carlsberg Ser. Physiol., 14, 1–12.

  74. Sengoopta, C. (1992). Science, Sexuality, and Gender in the Fin de Siecle: Otto Weininger as Baedeker. History of Science, 30, 249–279.

    Article  Google Scholar 

  75. Steinach, E. (1916). Pubertätsdrüsen und Zwitterbildung. Archiv für Entwicklungsdynamik, 42, 307–332.

    Article  Google Scholar 

  76. Stern, C. (1967). Richard Benedict Goldschmidt (1878-1958): A Biographical Memoir. In Richard Goldschmidt: Controversial Geneticist and Creative Biologist. Leonie Piternick (Ed.). Experientia Supplementum 35 (1980): 68–99.

  77. Sturtevant, A. (1965). A history of genetics. New York: Harper and Row.

    Google Scholar 

  78. Syzbalski, W. (2001). My road to Øjvind Winge, the Father of Yeast Genetics. Genetics, 158, 1–6.

    Google Scholar 

  79. Toyama, K. (1916). Ichinino Mendel seisitu ni tsuite (On some Mendelian characters). Nippon Ikusyugakkai Hokoku, 1, 1–9.

    Google Scholar 

  80. Warmke, H. E., & Blakeslee, A. H. (1939). Sex mechanisms in polyploids of Melandrium. Science, 89, 391–392.

    Article  Google Scholar 

  81. Westergaard, M. (1964). Øjvind Winge, 1886–1964. Biographical Memoirs of Fellows of the Royal Society, 10, 356–369.

    Article  Google Scholar 

  82. Winge, Ø. (1927). The location of eighteen genes in Lebistes reticulatus. Journal of Genetics, 18, 1–42.

    Article  Google Scholar 

  83. Winge, Ø. (1930). On the occurrence of XX males in Lebistes, with some remarks on Aida’s so-called ‘nondisjunctional’ males in Aplocheilus. Journal of Genetics, 23, 69–76.

    Article  Google Scholar 

  84. Winge, Ø. (1932). The Nature of Sex Chromosomes. Proceedings of the Sixth International Congress of Genetics. Genetics Society of America

  85. Winge, Ø. (1934). The experimental alteration of sex chromosomes into autosomes and vice versa, as illustrated by Lebistes. C.R Trav Lab Carlsberg, 21, 1–49.

    Google Scholar 

  86. Winge, Ø. (1937). Goldschmidt’s theory of sex determination in Lymantria. Journal of Genetics, 34, 81–87.

    Article  Google Scholar 

  87. Winge, Ø., & Divtlevsen, E. (1938). A lethal gene in the Y chromosome of Lebistes. C. R. trav. Labor. Carlsberg, 27, 203–211.

    Google Scholar 

  88. Winge, Ø., & Divtlevsen, E. (1947). Colour inheritance and sex determination in Lebistes. Heredity, 1, 65–83.

    Article  Google Scholar 

Download references

Acknowledgments

This paper was originally developed for the Dartmouth Humanities Institute on Global Sexual Science. I am grateful for the comments of the Institute’s participants on my first draft of this essay and especially those of Rainer Herrn and Rebecca Hodes. I also benefitted from comments provided by Sarah Richardson and the anonymous referees for this journal.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael R. Dietrich.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dietrich, M.R. Experimenting with sex: four approaches to the genetics of sex reversal before 1950. HPLS 38, 23–41 (2016). https://doi.org/10.1007/s40656-015-0092-8

Download citation

Keywords

  • Sex reversal
  • Sex determination
  • Genetics
  • Experimental systems