Experimenting with sex: four approaches to the genetics of sex reversal before 1950

  • Michael R. DietrichEmail author
Original Paper


In the early twentieth century, Tatsuo Aida in Japan, Øjvind Winge in Denmark, Richard Goldschmidt in Germany, and Calvin Bridges in the United States all developed different experimental systems to study the genetics of sex reversal. These locally specific experimental systems grounded these experimenters’ understanding of sex reversal as well as their interpretation of claims regarding experimental results and theories. The comparison of four researchers and their experimental systems reveals how those different systems mediated their understanding of genetic phenomena, and influenced their interpretations of sex reversal.


Sex reversal Sex determination Genetics Experimental systems 



This paper was originally developed for the Dartmouth Humanities Institute on Global Sexual Science. I am grateful for the comments of the Institute’s participants on my first draft of this essay and especially those of Rainer Herrn and Rebecca Hodes. I also benefitted from comments provided by Sarah Richardson and the anonymous referees for this journal.


  1. Aida, T. (1921). On the inheritance of color in a fresh-water fish, Aplocheilus latipes Temmick and Schlegel, with special reference to sex-linked inheritance. Genetics, 6, 554–573.Google Scholar
  2. Aida, T. (1930). Further genetical studies of Aplocheilus latipes. Genetics, 15, 1–16.Google Scholar
  3. Aida, T. (1936). Sex reversal in Aplocheilus latipes and a new explanation of sex-differentiation. Genetics, 21, 136–153.Google Scholar
  4. Allen, G. (1974). Opposition to the mendelian-chromosome theory: The physiological and developmental genetics of Richard Goldschmidt. Journal of the History of Biology, 7, 49–92.CrossRefGoogle Scholar
  5. Allen, G. (1978). Thomas Hunt Morgan, the Man and His Science. Princeton: Princeton University Press.Google Scholar
  6. Allen, G. (1980). The historical development of the “Time Law of Intersexuality” and its philosophical implications. In P. Leonie (Ed.), Richard Goldschmidt: Controversial geneticist and creative biologist, experientia supplementum (Vol. 35, pp. 41–48).CrossRefGoogle Scholar
  7. Allen, G. (1986). T H Morgan and the split between embryology and genetics, 1910–1935. In T. Horder, et al. (Eds.), History of Embryology (pp. 113–146). Cambridge: Cambridge University Press.Google Scholar
  8. Bateson, W. (1908). The methods and scope of genetics. Cambridge: Cambridge University Press.Google Scholar
  9. Bridges, C. (1916). Non-disjunction as proof of the chromosome theory of heredity. Genetics, 1, 1–52.Google Scholar
  10. Bridges, C. (1922). The origin of variations in sexual and sex-limited characters. The American Naturalist, 56, 51–63.CrossRefGoogle Scholar
  11. Bridges, C. (1939). Cytological and genetic basis of sex. Sex and Internal Secretions (2nd ed., pp. 15–63). Baltimore: Johns Hopkins University Press.Google Scholar
  12. Brush, S. (2002). How theories became knowledge: Morgan’s chromosome theory of heredity in America and Britain. Journal of the History of Biology, 35, 471–535.CrossRefGoogle Scholar
  13. Clarke, A. (1998). Disciplining reproduction: Modernity, American Life Sciences, and “the Problems of Sex”. Berkeley: University of California Press.Google Scholar
  14. Crew, F. A. E. (1933). Sex determination. London: Methuen.Google Scholar
  15. Davis, G., Dietrich, M., & Jacobs, D. (2009). Homeotic mutants and the assimilation of developmental genetics into the evolutionary synthesis. In Joe Cain & Michael Ruse (Eds.), Descended from Darwin: Insights into American Evolutionary Studies, 1900–1970 (pp. 133–154). Philadelphia: American Philosophical Society.Google Scholar
  16. Dietrich, M. (1995). Richard Goldschmidt’s “heresies” and the evolutionary synthesis. Journal of the History of Biology, 28, 431–461.CrossRefGoogle Scholar
  17. Dietrich, M. (1996). On the mutability of genes and geneticists: The “Americanization” of Richard Goldschmidt and Victor Jollos. Perspectives on Science, 4, 321–345.Google Scholar
  18. Dietrich, M. (2000a). Of moths and men: Theo Lang and the persistence of Richard Goldschmidt’s theory of the genetics of homosexuality, 1916–1960. History and Philosophy of the Life Sciences, 22, 217–245.Google Scholar
  19. Dietrich, M. (2000b). From hopeful monsters to homeotic effects: Richard Goldschmidt’s integration of development, evolution, and genetics. American Zoologist, 40, 28–37.Google Scholar
  20. Dietrich, M. (2000c). The problem of the gene. Comptes Rendus de l’Académie des Sciences de Paris, 323, 1139–1146.Google Scholar
  21. Dietrich, M. (2000d). From gene to genetic hierarchy: Richard Goldschmidt and the problem of the gene. In P. Beurton, R. Falk, & H. Rheinberger (Eds.), The concept of the gene in development and evolution. Cambridge: Cambridge University Press.Google Scholar
  22. Dietrich, M. (2008). Striking the hornet’s nest: Richard Goldschmidt’s rejection of the particulate gene. In O. Harman & M. R. Dietrich (Eds.), Rebels, mavericks, and heretics in biology (pp. 119–136). New Haven, CT: Yale University Press.Google Scholar
  23. Dietrich, M. (2011). Reinventing Richard Goldschmidt: Reputation, memory, and biography. Journal of the History of Biology, 44, 693–712.CrossRefGoogle Scholar
  24. Gilbert, S. (1978). The embryological origins of the gene theory. Journal of the History of Biology, 11, 307–351.CrossRefGoogle Scholar
  25. Gilbert, S. (1988). Cellular politics: Ernest everett just, Richard B. Goldschmidt and the attempt to reconcile embryology and genetics. In R. Rainger, K. Benson, & J. Maienschein (Eds.), The American development of biology (pp. 311–346). New Brunswick: Rutgers University Press.Google Scholar
  26. Goldschmidt, R. (1911). Über die Vererbung der sekundären Geschlechtscharaktere. Sitzungberichte der Gesellschaft fur Morphologie und Physiologie in München, 27, 115–118.Google Scholar
  27. Goldschmidt, R. (1916). Experimental intersexuality and the sex problem. American Naturalist, 50, 705–718.CrossRefGoogle Scholar
  28. Goldschmidt, R. (1920). Einführung in die Vererbungswissenschaft (3rd ed.). Leipzig: W. Engelmann.Google Scholar
  29. Goldschmidt, R. (1923). The mechanism and physiology of sex determination. William Dakin, trans. London: Methuen and Co.Google Scholar
  30. Goldschmidt, R. (1927a). Physiologische theorie der vererbung. Berlin: Springer.Google Scholar
  31. Goldschmidt, R. (1927b). Die zygotischen sexuellen Zwischenstufen und die Theorie der Geschlechtsbestimmung. Ergebnisse der Biologie, 2, 554–684.Google Scholar
  32. Goldschmidt, R. (1931). Die sexuellen Zwischenstufen. Berlin: JSpringer.CrossRefGoogle Scholar
  33. Goldschmidt, R. (1934). Lymantria. Bibliographia Genetica, 111, 1–185.Google Scholar
  34. Goldschmidt, R. (1937). A critical review of some recent work in sex determination. I. Fishes. The Quarterly Review of Biology, 12, 426–439.CrossRefGoogle Scholar
  35. Goldschmidt, R. (1938). Physiological genetics. New York: McGraw-Hill.Google Scholar
  36. Goldschmidt, R. (1940). The material basis of evolution. New Haven: Yale University Press.Google Scholar
  37. Goldschmidt, R. (1942). Sex-determination in Melandrium and Lymantria. Science, 95, 120–121.CrossRefGoogle Scholar
  38. Goldschmidt, R. (1950). Fifty years of genetics. American Naturalist, 84, 313–339.CrossRefGoogle Scholar
  39. Goldschmidt, R. (1960). In and out of the ivory tower. Seattle: University of Washington Press.Google Scholar
  40. Ha, N. (2011). The riddle of sex: Biological theories of sexual difference in the early twentieth-century. Journal of the History of Biology, 44, 505–546.CrossRefGoogle Scholar
  41. Harwood, J. (1993). Styles of scientific thought: the german genetics community, 1900–1933. Chicago: University of Chicago Press.Google Scholar
  42. Herrn, R. (1995). On the history of biological theories of homosexuality. In J. De Cecco & D. Parker (Eds.), Sex, cells, and same sex attraction (pp. 31–56). New York: Haworth Press.Google Scholar
  43. Hopwood, N. (2011). Approaches and species in the history of vertebrate embryology. Methods in Molecular Biology, 770, 1–20.CrossRefGoogle Scholar
  44. Hori, H. (2011). A glance at the past of medaka fish biology. In K. Naruse, M. Tanaka, & H. Takeda (Eds.), Medaka: A model for organogenesis, human disease, and evolution (pp. 1–16). Dordrecht: Springer.CrossRefGoogle Scholar
  45. Iida, K. (2009). Practice and politics in Japanese science: Hitoshi Kihara and the formation of genetics as a discipline. Journal of the History of Biology, 43, 529–570.CrossRefGoogle Scholar
  46. Iida, K. (2015). Genetics and “Breeding as a Science”: Kihara Hitoshi and the Development of genetics in Japan in the first half of the twentieth century. In D. Philips & S. Kingsland (Eds.), New perspectives on the history of the life sciences and agriculture (pp. 439–458). New York: Springer.Google Scholar
  47. Ishiwara, M. (1917). Medaka no taishoku no iden ni tsuite (On the inheritance of body colors in the medaka, Oryzias latipes). Mitteilungen aus der medizinischen Fakultät Kyushu, 4, 43–51.Google Scholar
  48. Kingsland, S. (2009). Maintaining continuity through a scientific revolution: A rereading of E. B. Wilson and T. H. Morgan on sex determination and Mendelism. Isis, 98, 468–488.CrossRefGoogle Scholar
  49. Kinoshita, M., Murata, K., Naruse, K., & Tanaka, M. (2009). History and Features of Medaka., Medaka: Biology, management, and experimental protocols Ames, IA: Wiley.CrossRefGoogle Scholar
  50. Klöppel, U. (2010). XX0XY ungelöst. Hermaphroditismus, Sex und Gender in der deutschen Medizin. Eine historische Studie zur Intersexualität. Bielefeld: Transcript.Google Scholar
  51. Kohler, R. (1993). Drosophila: A life in the laboratory. Journal of the History of Biology, 26, 281–310.CrossRefGoogle Scholar
  52. Kohler, R. (1994). Lords of the fly: Drosophila genetics and the experimental life. Chicago: University of Chicago Press.Google Scholar
  53. Komai, T. (1958). Tatuo Aida, Geneticist. Science, 127, 1327.CrossRefGoogle Scholar
  54. Littlefield, C. L. & Bryant, P. J. (1980). Views on sex determination, In Leonie P (Ed.) Richard Goldschmidt: Controversial geneticist and creative biologist, Experientia Supplementum 35, (pp 49–63)Google Scholar
  55. Maienschein, J. (1984). What determines sex?: A study of converging approaches. Isis, 75, 457–480.CrossRefGoogle Scholar
  56. Maienschein, J. (1991). Transforming traditions in American Biology, 1880–1915. Baltimore: Johns Hopkins University Press.Google Scholar
  57. Morgan, T. (1910). Sex limited inheritance in Drosophila. Science, 32, 120–122.CrossRefGoogle Scholar
  58. Morgan, T. (1926). Results relating to chromosomes and genetics. The Quarterly Review of Biology, 1, 186–211.CrossRefGoogle Scholar
  59. Morgan, T. (1939). Calvin Blackman Bridges. Science, 89, 118–119.CrossRefGoogle Scholar
  60. Morgan, T. (1940). Biographical Memoir of Calvin Blackman Bridges, 1889–1938. Biographical Memoirs of the National Academy of Sciences, 22, 29–48.Google Scholar
  61. Onaga, L. (2015). More than metamorphosis: The silkworm experiments of Toyama Kametaro and his cultivation of genetic thought in Japan’s sericultural practices, 1894–1918. In D. Philips & S. Kingsland (Eds.), New perspectives on the history of the life sciences and agriculture (pp. 415–437). New York: Springer.Google Scholar
  62. Oudshoorn, N. (1994). Beyond the natural body: An archeology of sex hormones. New York, NY: Routledge.CrossRefGoogle Scholar
  63. Pueckert, D. (1987). The Weimar Republic: The Crisis of Classical Modernity. New York: Hill and Wang.Google Scholar
  64. Rheinberger, H.-J. (1992a). Experiment, difference, and writing: I. Tracing protein synthesis. Studies in the History and Philosophy of Science, 23, 305–331.CrossRefGoogle Scholar
  65. Rheinberger, H.-J. (1992b). Experiment, Difference, and Writing: II. The Laboratory Production of Transfer RNA. Studies in the History and Philosophy of Science, 23, 389–422.CrossRefGoogle Scholar
  66. Rheinberger, H.-J. (1997). Toward a History of Epistemic Things: Synthesizing Proteins in the Test Tube. Palo Alto: Stanford University Press.Google Scholar
  67. Richardson, S. (2011). Sexing the X: How the X Became the “Female Chromosome”. Signs, 37, 909–933.CrossRefGoogle Scholar
  68. Richardson, S. (2013). Sex Itself: The Search for Male and Female in the Human Genome. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  69. Richmond, M. (1986). Richard Goldschmidt and sex determination: The growth of German genetics, 1900–1935. Unpublished Ph.D. Dissertation, Indiana University.Google Scholar
  70. Richmond, M. (2007). The Cell as a Basis for Heredity, Development, and Evolution: Richard Goldschmidt’s Program of Physiological Genetics. In J. Maienschein & M. D. Laubichler (Eds.), From Embryology to Evo-Devo: A History of Evolutionary Development (pp. 169–210). Cambridge: MIT Press.Google Scholar
  71. Ringer, F. (1969). The Decline of the German Mandarins: The German Academic Community, 1890–1933. Hanover: University Press of New England.Google Scholar
  72. Satzinger, H. (2009). Racial Purity, Stable Genes and Sex Difference: Gender in the Making of Genetic Concepts by Richard Goldschmidt and Fritz Lenz, 1916–1936. In Susanne Heim, Carola Sachse, & Mark Walker (Eds.), The Kaiser Wilhelm Society under National Socialism (pp. 145–170). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  73. Schmidt, J. (1920). Racial Investigations IV – The genetic behavior of a secondary sexual character. Compt. Rend. Trav. Lab. Carlsberg Ser. Physiol., 14, 1–12.Google Scholar
  74. Sengoopta, C. (1992). Science, Sexuality, and Gender in the Fin de Siecle: Otto Weininger as Baedeker. History of Science, 30, 249–279.CrossRefGoogle Scholar
  75. Steinach, E. (1916). Pubertätsdrüsen und Zwitterbildung. Archiv für Entwicklungsdynamik, 42, 307–332.CrossRefGoogle Scholar
  76. Stern, C. (1967). Richard Benedict Goldschmidt (1878-1958): A Biographical Memoir. In Richard Goldschmidt: Controversial Geneticist and Creative Biologist. Leonie Piternick (Ed.). Experientia Supplementum 35 (1980): 68–99.Google Scholar
  77. Sturtevant, A. (1965). A history of genetics. New York: Harper and Row.Google Scholar
  78. Syzbalski, W. (2001). My road to Øjvind Winge, the Father of Yeast Genetics. Genetics, 158, 1–6.Google Scholar
  79. Toyama, K. (1916). Ichinino Mendel seisitu ni tsuite (On some Mendelian characters). Nippon Ikusyugakkai Hokoku, 1, 1–9.Google Scholar
  80. Warmke, H. E., & Blakeslee, A. H. (1939). Sex mechanisms in polyploids of Melandrium. Science, 89, 391–392.CrossRefGoogle Scholar
  81. Westergaard, M. (1964). Øjvind Winge, 1886–1964. Biographical Memoirs of Fellows of the Royal Society, 10, 356–369.CrossRefGoogle Scholar
  82. Winge, Ø. (1927). The location of eighteen genes in Lebistes reticulatus. Journal of Genetics, 18, 1–42.CrossRefGoogle Scholar
  83. Winge, Ø. (1930). On the occurrence of XX males in Lebistes, with some remarks on Aida’s so-called ‘nondisjunctional’ males in Aplocheilus. Journal of Genetics, 23, 69–76.CrossRefGoogle Scholar
  84. Winge, Ø. (1932). The Nature of Sex Chromosomes. Proceedings of the Sixth International Congress of Genetics. Genetics Society of AmericaGoogle Scholar
  85. Winge, Ø. (1934). The experimental alteration of sex chromosomes into autosomes and vice versa, as illustrated by Lebistes. C.R Trav Lab Carlsberg, 21, 1–49.Google Scholar
  86. Winge, Ø. (1937). Goldschmidt’s theory of sex determination in Lymantria. Journal of Genetics, 34, 81–87.CrossRefGoogle Scholar
  87. Winge, Ø., & Divtlevsen, E. (1938). A lethal gene in the Y chromosome of Lebistes. C. R. trav. Labor. Carlsberg, 27, 203–211.Google Scholar
  88. Winge, Ø., & Divtlevsen, E. (1947). Colour inheritance and sex determination in Lebistes. Heredity, 1, 65–83.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2015

Authors and Affiliations

  1. 1.Department of Biological SciencesDartmouth CollegeHanoverUSA

Personalised recommendations