History and Philosophy of the Life Sciences

, Volume 37, Issue 2, pp 180–209 | Cite as

Discovery of causal mechanisms

Oxidative phosphorylation and the Calvin–Benson cycle
  • Raphael SchollEmail author
  • Kärin Nickelsen
Original Paper


We investigate the context of discovery of two significant achievements of twentieth century biochemistry: the chemiosmotic mechanism of oxidative phosphorylation (proposed in 1961 by Peter Mitchell) and the dark reaction of photosynthesis (elucidated from 1946 to 1954 by Melvin Calvin and Andrew A. Benson). The pursuit of these problems involved discovery strategies such as the transfer, recombination and reversal of previous causal and mechanistic knowledge in biochemistry. We study the operation and scope of these strategies by careful historical analysis, reaching a number of systematic conclusions: (1) even basic strategies can illuminate “hard cases” of scientific discovery that go far beyond simple extrapolation or analogy; (2) the causal–mechanistic approach to discovery permits a middle course between the extremes of a completely substrate-neutral and a completely domain-specific view of scientific discovery; (3) the existing literature on mechanism discovery underemphasizes the role of combinatorial approaches in defining and exploring search spaces of possible problem solutions; (4) there is a subtle interplay between a fine-grained mechanistic and a more coarse-grained causal level of analysis, and both are needed to make discovery processes intelligible.


Discovery of causal mechanisms Context of discovery  Causality Mechanisms Oxidative phosphorylation Photosynthesis 



We thank the Lake Geneva Biology Interest Group (LG-BIG) and the participants of a January 2014 workshop on “Causality in the Biological Sciences” in Cologne, Germany. In addition, we are particularly grateful to the following for a close reading of an earlier version of the manuscript: Bill Bechtel, Ingo Brigandt, Sara Green and Nick Jones. Raphael Scholl was supported by a Grant from the Swiss National Science Foundation (P300P1_154590).


  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular biology of the cell. New York: Garland Science.Google Scholar
  2. Allchin, D. (1992). How do you falsify a question? crucial tests versus crucial demonstrations. In PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association (pp. 74–88).Google Scholar
  3. Allchin, D. (1994). The super bowl and the Ox-Phos Controversy: “Winner-take-all” competition in philosophy of science. In PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association (pp. 22–33).Google Scholar
  4. Allchin, D. (1997). A 20th century phlogiston: Constructing error and differentiating domains. Perspectives on Science, 5(1), 81–127.Google Scholar
  5. Arabatzis, T. (2006). On the inextricability of the context of discovery and the context of justification. In J. Schickore & F. Steinle (Eds.), Revisiting discovery and justification: Historical and philosophical perspectives on the context distinction (pp. 215–230). Dordrecht: Springer.CrossRefGoogle Scholar
  6. Bassham, J. A., Benson, A. A., Kay, L. D., Harris, A. Z., Wilson, A. T., & Calvin, M. (1954). The path of carbon in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor. Journal of the American Chemical Society, 76, 1760–1770.CrossRefGoogle Scholar
  7. Bechtel, W. (2005). Discovering cell mechanisms: The creation of modern cell biology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  8. Bechtel, W., & Richardson, R. C. (1993). Discovering Complexity. Decomposition and Localization as Strategies in Scientific Research. Princeton: Princeton University Press.Google Scholar
  9. Benson, A. A. (1951). Identification of ribulose in \(^{14}{\rm CO}_2\) photosynthesis products. Journal of the American Chemical Society, 73, 2971–2972.CrossRefGoogle Scholar
  10. Benson, A. A., Bassham, J. A., & Calvin, M. (1951). Sedoheptulose in photosynthesis by plants. Journal of the American Chemical Society, 73, 2970.CrossRefGoogle Scholar
  11. Benson, A. A., Bassham, J. A., Calvin, M., Hall, A. G., Hirsch, H. E., Kawaguchi, S., et al. (1952). The path of carbon in photosynthesis. XV. Ribulose and sedoheptulose. Journal of Biological Chemistry, 196, 703–716.Google Scholar
  12. Benson, A. A., & Calvin, M. (1947). The dark reductions of photosynthesis. Science, 105, 648–649.CrossRefGoogle Scholar
  13. Benson, A. A., & Calvin, M. (1950). Carbon dioxide fixation by green plants. Annual Review of Plant Physiology, 1, 25–42.CrossRefGoogle Scholar
  14. Calvin, M., & Benson, A. A. (1948). The path of carbon in photosynthesis. Science, 107, 476–480.CrossRefGoogle Scholar
  15. Calvin, M., & Massini, P. (1952). The path of carbon in photosynthesis. XX: The steady state. Experientia, 8, 445–457.CrossRefGoogle Scholar
  16. Chalmers, A. (1973). On learning from our mistakes. British Journal for the Philosophy of Science, 24(2), 164–173.CrossRefGoogle Scholar
  17. Craver, C. F., & Darden, L. (2013). In search of mechanisms: Discoveries across the life sciences. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  18. Danielli, J. F. (1954). Morphological and molecular aspects of active transport. In R. Brown & J. F. Danielli (Eds.), Active transport and secretion, vol. 8 of Symposia of the Society for Experimental Biology (pp. 502–516). Cambridge University Press.Google Scholar
  19. Darden, L. (1991). Theory change in science: Strategies from Mendelian genetics. New York: Oxford University Press.Google Scholar
  20. Darden, L. (2006). Reasoning in biological discoveries. New York: Cambridge University Press.CrossRefGoogle Scholar
  21. Evans, M. C., Buchanan, R. B., & Arnon, D. I. (1966). A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proceedings of the National Academy of Sciences (USA), 55, 928–934.CrossRefGoogle Scholar
  22. Fuller, R. C. (1999). Forty years of microbial photosynthesis research: Where it came from and what it led to. Photosynthesis Research, 62, 1–29.CrossRefGoogle Scholar
  23. Goodwin, T. W., & Lindberg, O. (Eds.). (1961). Biological structure and function. London: Academic Press.Google Scholar
  24. Hatch, M. D. (1992). I can’t believe my luck. Photosynthesis Research, 33, 1–14.CrossRefGoogle Scholar
  25. Hatch, M. D. (2002). \({\text{ C}}_4\) photosynthesis: Discovery and resolution. Photosynthesis Research, 73, 251–256.CrossRefGoogle Scholar
  26. Hatch, M. D., & Slack, C. R. (1966). Photosynthesis in sugar cane leaves: A new carboxylation reaction and the pathway of sugar formation. Biochemical Journal, 101, 103–111.CrossRefGoogle Scholar
  27. Hatch, M. D., Slack, C. R., & Johnson, H. S. (1967). Further studies on a new pathway of photosynthetic \({\text{ CO}}_2\) fixation in sugarcane and its occurrence in other plant species. Biochemical Journal, 102, 417–422.CrossRefGoogle Scholar
  28. Holmes, F. L. (1991). Hans Krebs: The formation of a scientific life. New York: Oxford Pniversity Press.Google Scholar
  29. Holmes, F. L. (2004). Investigative pathways: Patterns and stages in the careers of experimental scientists. New Haven: Yale University Press.Google Scholar
  30. Holmes, F. L. (2009). Experimental systems, investigative pathways, and the nature of discovery. In J. Meheus & T. Nickles (Eds.), Models of discovery and creativity (pp. 65–79). Dordrecht: Springer.CrossRefGoogle Scholar
  31. Holmes, F. L., Renn, J., & Rheinberger, H.-J. (2003). Reworking the bench: Research notebooks in the history of science. Berlin: Springer.CrossRefGoogle Scholar
  32. Holyoak, K. J., & Thagard, P. (1996). Mental leaps: Analogy in creative thought. Cambridge: MIT press.Google Scholar
  33. Hoyningen-Huene, P. (1987). On the varieties of the distinction between the context of discovery and the context of justification. Studies in History and Philosophy of Science, 18, 501–515.CrossRefGoogle Scholar
  34. Hoyningen-Huene, P. (2006). Context of discovery versus context of justification and Thomas Kuhn. In J. Schickore & F. Steinle (Eds.), Revisiting discovery and justification: Historical and philosophical perspectives on the context distinction (pp. 119–131). Dordrecht: Springer.CrossRefGoogle Scholar
  35. Keilin, D., & Hartree, E. F. (1939). Cytochrome and cytochrome oxidase. Proceedings of the Royal Society of London, Series B, 127, 167–191.CrossRefGoogle Scholar
  36. Kleinzeller, A., & Kotyk, A. (Eds.). (1961). Membrane transport and metabolism. New York: Academic Press.Google Scholar
  37. Kortschak, H. P., Hartt, C. E., & Burr, G. O. (1965). Carbon dioxide fixation in sugarcane leaves. Plant Physiology, 40, 209–213.CrossRefGoogle Scholar
  38. Krebs, H. (1974). The discovery of carbon dioxide fixation in mammalian tissues. Molecular and Cellular Biochemistry, 5, 79–94.CrossRefGoogle Scholar
  39. Krebs, H., & Henseleit, K. (1932). Untersuchungen ueber die Harnstoffbildung im Tierkoerper. Hoppe-Seyler’s Zeitschrift fuer physiologische Chemie, 210, 33–66.CrossRefGoogle Scholar
  40. Krebs, H., & Johnson, W. A. (1937). Metabolism of ketonic acids in animal tissues. Biochemical Journal, 31, 645–660.CrossRefGoogle Scholar
  41. Lehninger, A. (1961). Components of the energy-coupling mechanism and mitochondrial structure. In T. W. Goodwin & O. Lindberg (Eds.), Biological structure and function, vol. 2 (pp. 31–51). New York: Academic.Google Scholar
  42. Lehninger, A., Wadkins, C., Cooper, C., Devlin, T., & Gamble, J, Jr. (1958). Oxidative phosphorylation. Science, 128(3322), 450.CrossRefGoogle Scholar
  43. Levy, A., & Bechtel, W. (2013). Abstraction and the organization of mechanisms. Philosophy of Science, 80(2), 241–261.CrossRefGoogle Scholar
  44. Lipton, P. (2004). Inference to the best explanation. London: Routledge.Google Scholar
  45. Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67(1), 1–25.CrossRefGoogle Scholar
  46. Meheus, J., & Nickles, T. (2009). Models of discovery and creativity. Dordrecht: Springer.CrossRefGoogle Scholar
  47. Mitchell, P. (1949). The osmotic barrier in bacteria. In A. A. Miles & N. W. Pirie (Eds.), The nature of the bacterial surface. Oxford: Blackwell.Google Scholar
  48. Mitchell, P. (1954). Transport of phosphate across the osmotic barrier of micrococcus pyogenes: Specificity and kinetics. Journal of General Microbiology, 11, 73–82.CrossRefGoogle Scholar
  49. Mitchell, P. (1957). A general theory of membrane transport from studies of bacteria. Nature, 180(4577), 134–136.CrossRefGoogle Scholar
  50. Mitchell, P. (1958). Membrane penetration and the therapeutic value of chemicals. In S. T. Cowan & E. Rowath (Eds.), The Strategy of Chemotherapy, vol. 8 of Symposium of the Society for General Microbiology, (pp. 94–103). Cambridge University Press.Google Scholar
  51. Mitchell, P. (1961a). Approaches to the analysis of specific membrane transport. In T. W. Goodwin & O. Lindberg (Eds.), Biological structure and function, vol. 2 (pp. 581–599). New York: Academic.Google Scholar
  52. Mitchell, P. (1961b). Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biochemical Journal, 79(3), 23P–24P.Google Scholar
  53. Mitchell, P. (1961c). Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature, 191(4784), 144–148.CrossRefGoogle Scholar
  54. Mitchell, P., & Moyle, J. (1956a). Liberation and osmotic properties of the protoplasts of Micrococcus lysodeikticus and Sarcina lutea. Journal of General Microbiology, 15(3), 512–520.CrossRefGoogle Scholar
  55. Mitchell, P., & Moyle, J. (1956b). Osmotic function and structure in bacteria. In E. T. C. Spooner & B. A. D. Stocker (Eds.), Bacterial Anatomy, vol. 6 of Symposium of the Society for General Microbiology, (pp. 150–180). Cambridge University Press.Google Scholar
  56. Mitchell, P., & Moyle, J. (1956c). Permeation mechanisms in bacterial membranes. Discussions of the Faraday Society, 21, 258–265.CrossRefGoogle Scholar
  57. Mitchell, P., & Moyle, J. (1956d). The cytochrome system in the plasma membrane of Staphylococcus aureus. Biochemical Journal, 64(1), 19P.Google Scholar
  58. Mitchell, P., & Moyle, J. (1957). Autolytic release and osmotic properties of ‘Protoplasts’ from Staphylococcus aureus. Journal of General Microbiology, 16, 184–194.CrossRefGoogle Scholar
  59. Mitchell, P., & Moyle, J. (1958). Group-translocation: a consequence of enzyme-catalysed group-transfer. Nature, 182, 372–373.CrossRefGoogle Scholar
  60. Mitchell, P., & Moyle, J. (1959). Permeability of the envelopes of Staphylococcus aureus to some salts, amino acids, and non-electrolytes. Journal of General Microbiology, 20, 434–441.CrossRefGoogle Scholar
  61. Moses, V., & Moses, S. (2000). The Calvin Lab: Bio-Organic Chemistry Group at the University of California, Berkeley, 1945–1963. An oral history conducted 1995–1997, vol. 1. Regional Oral History Office, the Bancroft Library, University of California, Berkeley.Google Scholar
  62. Nersessian, N. (2008). Creating scientific concepts. Cambridge: The MIT Press.Google Scholar
  63. Nickelsen, K. (2009). The construction of a scientific model: Otto Warburg and the building block strategy. Studies in History and Philosophy of Biological and Biomedical Sciences, 40(2), 73–86.CrossRefGoogle Scholar
  64. Nickelsen, K. (2012). The path of carbon in photosynthesis: How to discover a biochemical pathway. Ambix, 59, 266–293.CrossRefGoogle Scholar
  65. Nickelsen, K. (2015). Explaining photosynthesis: Models of biochemical mechanisms. (1840–1960). Dordrecht: Springer.CrossRefGoogle Scholar
  66. Nickelsen, K., & Graßhoff, G. (2008). Concepts from the bench: Krebs and the urea cycle. In G. Hon, J. Schickore, & F. Steinle (Eds.), Going amiss in experimental research (pp. 91–117). Dordrecht: Springer.Google Scholar
  67. Nickles, T. (1980a). Scientific discovery: Case studies, vol. 2. Dordrecht: Springer.CrossRefGoogle Scholar
  68. Nickles, T. (1980b). Scientific discovery, logic, and rationality, vol. 1. Dordrecht: Springer.CrossRefGoogle Scholar
  69. Popper, K. R. (2002). The logic of scientific discovery. London: Routledge.Google Scholar
  70. Prebble, J. (1996). Successful theory development in biology: A consideration of the theories of oxidative phosphorylation proposed by Davies and Krebs, Williams and Mitchell. Bioscience Reports, 16(3), 207–215.CrossRefGoogle Scholar
  71. Prebble, J. (2000). The lasting value of Mitchell’s mechanisms. Nature, 404(6776), 330–330.CrossRefGoogle Scholar
  72. Prebble, J. (2001). The philosophical origins of Mitchell’s chemiosmotic concepts. Journal of the History of Biology, 34(3), 433–460.CrossRefGoogle Scholar
  73. Prebble, J., & Weber, B. (2003). Wandering in the gardens of the mind: Peter Mitchell and the making of Glynn. Oxford: Oxford University Press.Google Scholar
  74. Prebble, J. N. (2010). The discovery of oxidative phosphorylation: A conceptual off-shoot from the study of glycolysis. Studies in History and Philosophy of Biological and Biomedical Sciences, 41(3), 253–262.CrossRefGoogle Scholar
  75. Quayle, J. R., Fuller, R. C., Benson, A. A., & Calvin, M. (1954). Enzymatic carboxylation of ribulose diphosphate. Journal of the American Chemical Society, 76, 3610–3612.CrossRefGoogle Scholar
  76. Racker, E., & Stoeckenius, W. (1974). Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation. Journal of Biological Chemistry, 249(2), 662–663.Google Scholar
  77. Rheinberger, H.-J. (1997). Toward a history of epistemic things: Synthesizing proteins in the test tube. Stanford: Stanford University Press.Google Scholar
  78. Robertson, R. (1960). Ion transport and respiration. Biological Reviews, 35(2), 231–264.CrossRefGoogle Scholar
  79. Robinson, J. D. (1997). Moving questions: A history of membrane transport and bioenergetics. New York: Oxford University Press.CrossRefGoogle Scholar
  80. Ruben, S., & Kamen, M. D. (1941). Long-lived radioactive carbon: C14. Physical Review, 59, 349–354.CrossRefGoogle Scholar
  81. Sagan, L. (1967). On the origin of mitosing cells. Journal of Theoretical Biology, 14(3), 225–274.CrossRefGoogle Scholar
  82. Schaffner, K. F. (1994). Discovery and explanation in biology and medicine. Chicago: University of Chicago Press.Google Scholar
  83. Schickore, J. (2014). Scientific Discovery. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Spring 2014 ed.).
  84. Schickore, J., & Steinle, F. (2006). Revisiting discovery and justification: Historical and philosophical perspectives on the context distinction. New York: Springer.CrossRefGoogle Scholar
  85. Scholl, R. (2013). Causal inference, mechanisms, and the Semmelweis case. Studies in History and Philosophy of Science, 44(1), 66–76.CrossRefGoogle Scholar
  86. Simon, H. A. (1973). Does scientific discovery have a logic? Philosophy of Science, 40(4), 471–480.CrossRefGoogle Scholar
  87. Singleton, R. (1997). Heterotrophic \({\text{ CO}}_2\)-fixation, mentors, and students: The Wood-Werkman reactions. Journal of the History of Biology, 30, 91–120.CrossRefGoogle Scholar
  88. Skou, J. C. (1957). The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochimica et biophysica acta, 23, 394–401.CrossRefGoogle Scholar
  89. Skou, J. C. (1961). The relationship of a (\({\rm Mg}^{2+} + {\rm Na}^{+}\))-activated, \({\rm K}^{+}\)-stimulated enzyme or enzyme system to the active, linked transport of a \({\rm Na}^{+}\) and \({\rm K}^{+}\) across the cell membrane. In A. Kleinzeller & A. Kotyk (Eds.), Membrane transport and metabolism. New York: Academic Press.Google Scholar
  90. Slater, E. (1953). Mechanism of phosphorylation in the respiratory chain. Nature, 172(4387), 975–978.CrossRefGoogle Scholar
  91. Slater, E. (1994). Peter Dennis Mitchell. 29(September), pp. 1920–10, April 1992. Biographical Memoirs of Fellows of the Royal Society, 40, 283–305.CrossRefGoogle Scholar
  92. Steinle, F. (2006). Concept formation and the limits of justification: “Discovering” the two electricities. In J. Schickore & F. Steinle (Eds.), Revisiting discovery and justification: Historical and philosophical perspectives on the context distinction (pp. 183–195). New York: Springer.CrossRefGoogle Scholar
  93. Thagard, P. (2003). Pathways to biomedical discovery. Philosophy of Science, 70(2), 235–254.CrossRefGoogle Scholar
  94. Thimann, K. V. (1938). The absorption of carbon dioxide in photosynthesis. Science, 88, 506–507.CrossRefGoogle Scholar
  95. Watson, J., & Crick, F. (1953). Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature, 171, 737–738.CrossRefGoogle Scholar
  96. Weber, B. (1991). Glynn and the conceptual development of the chemiosmotic theory: A retrospective and prospective view. Bioscience Reports, 11(6), 577–617.CrossRefGoogle Scholar
  97. Weber, M. (2002). Theory testing in experimental biology: The chemiosmotic mechanism of ATP synthesis. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 33(1), 29–52.CrossRefGoogle Scholar
  98. Weber, M. (2005). Philosophy of experimental biology. Cambridge: Cambridge University Press.Google Scholar
  99. Wilson, A. T., & Calvin, M. (1955). The photosynthetic cycle. \({\text{ CO}_2}\) dependent transients. Journal of the American Chemical Society, 77, 5948–5957.CrossRefGoogle Scholar
  100. Wood, H. G., & Werkman, C. H. (1935). The utilization of \({\text{ CO}_2}\) by the propionic acid bacteria in the dissimilation of glycerol. Journal of Bacteriology, 30, 332.Google Scholar
  101. Wood, H. G., & Werkman, C. H. (1936). The utilization of \({\text{ CO}_2}\) in the dissimilation of glycerol by the propionic acid bacteria. Biochemical Journal, 30, 48–53.CrossRefGoogle Scholar
  102. Wood, H. G., & Werkman, C. H. (1938). The utilization of \({\text{ CO}_2}\) by the propionic acid bacteria. Biochemical Journal, 32, 1262–1271.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2015

Authors and Affiliations

  1. 1.Center for Philosophy of Science, 817 Cathedral of LearningUniversity of PittsburghPittsburghUSA
  2. 2.Historisches Seminar der LMU MünchenMunichGermany

Personalised recommendations