Observing temporal order in living processes: on the role of time in embryology on the cell level in the 1870s and post-2000

Abstract

The article analyses the role of time in the visual culture of two phases in embryological research: at the end of the nineteenth century, and in the years around 2000. The first case study involves microscopical cytology, the second reproductive genetics. In the 1870s we observe the first of a series of abstractions in research methodology on conception and development, moving from a method propagated as the observation of the “real” living object to the production of stained and fixated objects that are then aligned in temporal order. This process of abstraction ultimately fosters a dissociation between space and time in the research phenomenon, which after 2000 is problematized and explicitly tackled in embryology. Mass data computing made it possible partially to re-include temporal complexity in reproductive genetics in certain, though not all, fields of reproductive genetics. Here research question, instrument and modelling interact in ways that produce very different temporal relationships. Specifically, this article suggests that the different techniques in the late nineteenth century and around 2000 were employed in order to align the time of the researcher with that of the phenomenon and to economize the researcher’s work in interaction with the research material’s own temporal challenges.

This is a preview of subscription content, access via your institution.

Notes

  1. 1.

    The field of reproductive genetics, used here as case study for the time around and after 2000, left its first major traces in the literature after the mid-1990s.

  2. 2.

    Schmidgen uses the term “industrialization of the cell” for the period between the 1870s and the 1890s (Schmidgen 2007, p. 57; Giedion 1987).

  3. 3.

    See also Schickore (2007), Clarke and Jacyna (1987), Schleiden (1842/1843, 120ff.), Gooday (1991) and Wahrig-Schmidt (1994). On the debates over the correct use of the microscope regarding conception, (see, e.g., Bischoff 1854).

  4. 4.

    Historians of science tend to attribute the observation of the intrusion of the sperm to Fol’s publication 2 years later (Fol 1877; see e.g., Cremer and Cremer 2009), although contemporary reviews in the late nineteenth and early twentieth century laud Hertwig’s convincing reports on conception.

  5. 5.

    As Hertwig specifically mentions Auerbach as the person who inspired him to work at the coast, this cannot yet have been a common approach by embryologists.

  6. 6.

    The five-minute time interval as a standard was already broadly established in this field of cell studies (and in, for example, the physiology of neurology; see Bock von Wülfingen 2013).

  7. 7.

    In the late 1870s and 1880s, arguments about processes in the cell became more strongly oriented on chemistry. The substance in the nucleus, previously studied and discussed in terms of its potential function in the context of heredity, was more and more often discussed in terms of its potential atomic constitution and molecular size (Nägeli and Weismann did this at length in order to calculate how many “gemmules” could fit into a nucleus). This “chemicalization” of the “hereditary substance” is linked to a chemicalization of microscopic work after the 1870s (Miescher 1874; Flemming 1882, pp. 99–129; Dahm 2005).

  8. 8.

    The field is named and framed by specific national funding calls, university chairs and international professional associations.

  9. 9.

    This method means to mark many minute DNA probes simultaneously with fluorescent substances, which are ‘read out’ by a computer program.

  10. 10.

    The following analysis has been presented in a discussion of systems approaches in Bock von Wülfingen (2009).

  11. 11.

    These are mice which have manipulated genetic material (e.g. by exposure to radioactivity), done in such a way that with a higher mutation rate, some “genes” do not function and are thus “knocked out.”

  12. 12.

    See the similar case of freezing cellular organisms at different evolutionary stages (Griesemer and Yamashita 2005), while the case of Marey’s photographs is closer to Helmholtz’s intention to access unperceivably short intervals of time (Didi-Huberman 1990).

References

  1. Adam, B. (1992). Modern times: The technology connection and its implications for social theory. Time & Society, 1, 175–191.

    Article  Google Scholar 

  2. Allchin, D. (1999). Do we see through a social microscope? Credibility as a vicarious selector. Philosophy of Science, 60(proceedings), 287–298.

    Article  Google Scholar 

  3. Auerbach, L. (1874). Organologische Studien 1: Zur Charakteristik und Lebensgeschichte der Zellkerne. Breslau: Morgenstern.

    Google Scholar 

  4. Barty, I. R. (2005). Die Einführung der Standardzeit in Nordamerika. In H. Schmidgen (Ed.), Lebendige Zeit (pp. 155–177). Berlin: Kadmos.

    Google Scholar 

  5. Bischoff, T. (1854). Widerlegung der von Dr. Keber bei den Najaden und Dr. Nelson bei den Ascariden behaupteten Eindringens der Spermatozoiden in das Ei. Giessen: J. Ricker’sche Buchhandlung.

  6. Bock von Wülfingen, B. (2009). Biology and the systems view. EMBO Reports, 10, 37–41.

  7. Bock von Wülfingen, B. (2011). Economies and the cell. Conception and heredity around 1900 and 2000 (Habilitationsschrift, Humboldt-Universität zu Berlin).

  8. Bock von Wülfingen, B. (2013). Freud’s ‘core of our being’ between cytology and psychoanalysis. Berichte zur Wissenschaftsgeschichte, 3, 226–244.

    Article  Google Scholar 

  9. Boveri, T. (1889). Ein geschlechtlich erzeugter Organismus ohne mütterliche Eigenschaften. Sitzungsberichte der Gesellschaft für Morphologie und Physiologie in München, 5, 73–80.

    Google Scholar 

  10. Bredekamp, H. (2005). Darwins Korallen: Frühe Evolutionsmodelle und die Tradition der Naturgeschichte. Berlin: Wagenbach.

    Google Scholar 

  11. Castells, M. (1989). The information age: Economy. Malden, MA: Wiley.

    Google Scholar 

  12. Clarke, E., & Jacyna, L. S. (1987). Nineteenth-century origins of neuroscientific concepts. Berkeley: University of California Press.

    Google Scholar 

  13. Cooper, M. (2008). Life as surplus. Washington DC: University of Washington Press.

    Google Scholar 

  14. Coulam, et al. (2007). Discordance among blastomeres renders preimplantation genetic diagnosis for neuploidy ineffective. Journal of Assisted Reproduction and Genetics, 24, 37–41.

    Article  Google Scholar 

  15. Cremer, T., & Cremer, C. (2009). Rise, fall and resurrection of chromosome territories: A historical perspective. Part I. The rise of chromosome territories. European Journal of Histochemistry, 50(3), 161–176.

    Google Scholar 

  16. Dahm, R. (2005). Friedrich Miescher and the discovery of DNA. Developmental Biology, 278, 274–288.

    Article  Google Scholar 

  17. Daston, L., & Galison, P. (2007). Objectivity. New York: Zone Books.

    Google Scholar 

  18. De Chadarevian, S. (1994). Sehen und Aufzeichnen in der Botanik des 19. Jahrhunderts. In M. Wetzel & H. Wolf (Eds.), Der Entzug der Bilder (pp. 121–144). Visuelle Realitäten, Munich: Wilhelm Fink.

    Google Scholar 

  19. Didi-Huberman, G. (1990). Devant l’image. Paris: Éditions de Minuit.

    Google Scholar 

  20. Doane, M. A. (2005). Zeitlichkeit, Speicherung, Lesbarkeit. Freud, Marey und der Film. In H. Schmidgen (Ed.), Lebendige Zeit (pp. 280–313). Berlin: Kadmos.

    Google Scholar 

  21. Dowling, D. (1999). Experimenting on theories. Science in Context, 12(2), 261–273.

    Article  Google Scholar 

  22. Drummond, A. E. (2006). The role of steroids in follicular growth. Reproductive Biology and Endocrinology, 4(16), 1–11.

    Google Scholar 

  23. Ehrlich, P., & Lazarus, A. (1956). Histology of the blood: Normal and pathological. In F. Himmelweit, M. Marquardt, & H. Dale (Eds.), Collected papers of of Paul Ehrlich (Vol. 1, pp. 181–268). New York: Pergamon.

    Google Scholar 

  24. Eisen, G. (1900). The spermatogenesis of batrachoseps. Journal of Morphology, 17, 1–117.

    Article  Google Scholar 

  25. Elias, N. (1992). Time: An essay, trans. Jephcott E., Oxford: Blackwell.

  26. Falk, R. (2006). Mendel’s impact. Science in Context, 19(2), 215–236.

    Article  Google Scholar 

  27. Flemming, W. (1882). Zellsubstanz, Kern und Zelltheilung. Leipzig: F.C.W. Vogel.

    Google Scholar 

  28. Fol, H. (1877). Sur le commencement de l’hénogénie chez divers animaux. Archives des sciences physiques et naturelles, 58, 439–472.

    Google Scholar 

  29. Franklin, S. (2006). The cyborg embryo: Our path to transbiology. Theory, Culture, Society, 23, 167–186.

    Article  Google Scholar 

  30. Franklin, S. (2007). Dolly mixtures: The remaking of genealogy. Durham, NC: Duke University Press.

    Book  Google Scholar 

  31. Furnes, B., & Schimenti, J. (2007). Fast forward to new genes in mammalian reproduction. Journal of Physiology, 578(1), 25–32.

    Article  Google Scholar 

  32. Galison, P. (2000). Einstein’s clocks: The place of time. Critical Inquiry, 26(2), 355–389.

    Article  Google Scholar 

  33. Garlick, S. (2006). Mendel’s generation: Molecular sex and the informatic body. Body & Society, 12(4), 53–71.

    Article  Google Scholar 

  34. Geraedts, J. (2011). Interview by author. Tape recording, June 26, 2011.

  35. Gianaroli, L. (2011). Interview by author. Tape recording, June 8, 2011.

  36. Giedion, S. (1987). Die Herrschaft der Mechanisierung: Ein Beitrag zur anonymen Geschichte. Frankfurt: Europäische Verlagsanstalt.

    Google Scholar 

  37. Gooday, G. (1991). ‘Nature’ in the laboratory: Domestication and discipline with the microscope in victorian life science. The British Journal for the History of Science, 24(3), 307–341.

    Article  Google Scholar 

  38. Griesemer J. (2002). Space⇔Time. Temporality and attention in iconographies of the living. In H. Schmidgen (Ed.), Experimental arcades: The materiality of time relations in life sciences, art, and technology (18301930). Preprint 226 (pp. 45–57). Berlin: Max Planck Institute for the History of Science.

  39. Griesemer, J. R., & Wimsatt, W. C. (1989). Picturing Weismannism: A case study of conceptual evolution. In M. Ruse (Ed.), What the philosophy of biology is: Essays for David Hull (pp. 75–137). Dordrecht: Kluwer Academic.

    Google Scholar 

  40. Griesemer, J., & Yamashita, G. (2005). Zeitmanagement bei Modellsystemen. Beispiele aus der Evolutionsbiologie. In H. Schmidgen (Ed.), Lebendige Zeit (pp. 280–313). Berlin: Kadmos.

    Google Scholar 

  41. Hacking, I. (1985). Do we see through a microscope? In B. C. van Fraassen, P. M. Churchland, & C. A. Hooker (Eds.), Images of science (pp. 132–152). Chicago: Chicago University Press.

    Google Scholar 

  42. Hennig, J. (2006). Die Versinnlichung des Unzugänglichen—Oberflächendarstellungen in der zeitgenössischen Mikroskopie. In M. Heßler (Ed.), Konstruierte Sichbarkeiten. Wissenschafts- und Technikbilder seit der frühen Neuzeit (pp. 99–116). Munich: Fink.

    Google Scholar 

  43. Hertwig, O. (1875). Beiträge zur Erkenntnis der Bildung, Befruchtung und Theilung des thierischen Eies. Morphologisches Jahrbuch, 1, 347–432.

    Google Scholar 

  44. Hine, C. (2006). Databases as scientific instruments and their role in the ordering of scientific work. Social Studies of Science, 36(2), 269–298.

    Article  Google Scholar 

  45. Hopwood, N., Schaffer, S., & Secord, J. (2010). Seriality and scientific objects in the nineteenth century: Introduction. History of Science, 48, 251–285.

    Google Scholar 

  46. Jacob, F. (1973). The logic of life. A history of heredity (B. Spillmann, Trans.). New York: Pantheon.

  47. Jelinski, S. A., et al. (2007). The rat epididymal transcriptome: Comparison of segmental gene expression in the rat and mouse epididymides. Biology of Reproduction, 75(4), 561–570.

    Article  Google Scholar 

  48. Kay, L. (2000). Who wrote the book of life? A History of the genetic code. Stanford, CA: Stanford University Press.

    Google Scholar 

  49. Keller, E. (2002). The century of the gene. Harvard: Harvard University Press.

    Google Scholar 

  50. Keller, E. F. (2003). Models, simulation, and computer experiments. In H. Radder (Ed.), The philosophy of scientific experimentation. Pittsburgh: University of Pittsburgh Press.

    Google Scholar 

  51. Kitani, H. (Ed.). (2001). Foundations of systems biology. Cambridge, MA: MIT.

    Google Scholar 

  52. Kittler, F. (1986). Gramophone, film, typewriter. Berlin: Brinkmann und Bose.

    Google Scholar 

  53. Kölliker, A. (1895). Die Bedeutung der Zellenkerne für die Vorgänge der Vererbung. Zeitschrift für Wissenschaftliche Zoologie, 42(1), 3–50.

    Google Scholar 

  54. Landecker, H. (2002). New times for biology: Nerve cultures and the advent of cellular life in vitro. Studies in History and Philosophy of Biological and Biomedical Sciences, 33, 667–694.

    Article  Google Scholar 

  55. Landecker H. (2005). Living differently in time: Plasticity, temporality and cellular biotechnology. Culture Machine, 7. Retrieved September 25, 2013, from http://www.culturemachine.net/.

  56. Landecker, H. (2007). Culturing life: How cells became technologies. Cambridge, MA: Harvard University Press.

    Google Scholar 

  57. Latour, B. (1986). Visualization and cognition: Thinking with eyes and hands. In H. Kuklick (Ed.), Knowledge and society: studies in the sociology and culture past and present (Vol. 6, pp. 1–40). Greenwich, CT: JAI.

    Google Scholar 

  58. Lepenies, W. (1976). Das Ende der Naturgeschichte: Wandel kultureller Selbstverständlichkeiten in den Wissenschaften des 18. und 19. Jahrhunderts. Munich: Hanser.

    Google Scholar 

  59. Lin, Y. H., et al. (2005). Isochromosome of Yp in a man with sertoly-cell-only syndrome. Fertility and Sterility, 83(3), 764–766.

    Article  Google Scholar 

  60. Liu, Z., et al. (2011). Comparative analysis on MRNA expression level and methylation status of DAZL gene between cattle yaks and their parents. Animal Reproductive Science, 126(3–4), 258–264.

    Article  Google Scholar 

  61. Lynch, M. (1985). Discipline and the material form of images: An analysis of scientific visibility. Social Studies of Science, 15, 37–66.

    Article  Google Scholar 

  62. Merz, M. (2006). Locating the dry lab on the lab map. In J. Lenhard, G. Küppers, & T. Shinn (Eds.), Simulation: Pragmatic constructions of reality (pp. 155–172). Dordrecht: Springer.

    Google Scholar 

  63. Miescher, F. (1874). Das Protamin—Eine neue organische Basis aus den Samenfäden des Rheinlachses. Berichte der Deutschen Chemischen Gesesllschaft, 7, 376.

    Article  Google Scholar 

  64. Morgan, M. S. (2003). Experiments without material intervention: Model experiments. In H. Radder (Ed.), The philosophy of scientific experimentation (pp. 216–235). Pittsburgh, PA: University of Pittsburgh Press.

    Google Scholar 

  65. Morgan, M. S. (2005). Experiments versus models: New phenomena, inference and surprise. Journal of Economic Methodology, 12(2), 317–329.

    Article  Google Scholar 

  66. Nowotny, H. (1993). Eigenzeit. Entstehung und Strukturierung eines Zeitgefühls. Frankfurt: Suhrkamp.

    Google Scholar 

  67. Nowotny, H., & Testa, G. (2010). Naked genes. Reinventing the human in the molecular age. Cambridge, MA: MIT Press.

    Google Scholar 

  68. Oxford English Dictionary. (2013). Retrieved September 25, 2013, from http://oxforddictionaries.com/ (entry “instrument”).

  69. Ratcliff, M. J. (1999). Temporality, sequential iconography and linearity in figures: The impact of the discovery of division in infusoria. History and Philosophy of the Life Sciences, 21(3), 255–292.

    Google Scholar 

  70. Rheinberger, H.-J. (1994). Experimental systems: Historiality, narration, and deconstruction. Science in Context, 7(1), 65–81.

    Google Scholar 

  71. Rheinberger, H.-J. (2002). Experimentalsysteme und Epistemische Dinge. Göttingen: Wallstein.

    Google Scholar 

  72. Rheinberger, H.-J., & Müller-Wille, S. (2009). Vererbung: Geschichte und Kultur eines biologischen Konzepts. Frankfurt: Fischer Taschenbuch.

    Google Scholar 

  73. Rocket, J. C. (2001). Genomic and proteomic techniques applied to reproductive biology. Genome Biology, 2(9), 4020.1–4020.3.

    Google Scholar 

  74. Schaffner, K. (2007). Theories, models, and equations in systems biology. In F. C. Boogerd, F. J. Bruggeman, J. S. Hofmeyr, & H. V. Westerhoff (Eds.), Toward a philosophy of systems biology (pp. 145–162). Amsterdam: Elsevier.

    Google Scholar 

  75. Scherthan, H. (2001). A bouquet makes ends meet. Molecular Cell Biology, 2, 621–627.

    Google Scholar 

  76. Schickore, J. (2007). The microscope and the eye: A history of reflections, 1740–1870. Chicago: University of Chicago Press.

    Google Scholar 

  77. Schleiden, M. J. (1842). Grundzüge einer wissenschaftlichen Botanik. Leipzig: Engelmann.

    Google Scholar 

  78. Schmidgen, H. (2002). Of frogs and men: The origins of psychophysiological time experiments, 1850–1865. Endeavour, 26(4), 142–148.

    Article  Google Scholar 

  79. Schmidgen, H. (2004). Pictures, preparations, and living processes: The production of immediate visual perception (Anschauung) in late-19th-century physiology. Journal of the History of Biology, 37(3), 477–513.

    Article  Google Scholar 

  80. Schmidgen, H. (2005). Die Donders-Maschine. Ein Kapitel Physiologiegeschichte mit Deleuze und Guattari. In H. Schmidgen (Ed.), Lebendige Zeit (pp. 242–279). Berlin: Kadmos.

    Google Scholar 

  81. Schmidgen, H. (2007). ”Zukunftsmaschinen,” Rechtsgeschichte—Legal history. Zeitschrift des Max-Planck-Instituts für Europäische Rechtsgeschichte, 10, 51–62.

    Google Scholar 

  82. Sermon, K. (2011). Interview by author. Tape recording, May 26, 2011.

  83. Shima, J. E., et al. (2004). The Murine testicular transcriptome: Characterising gene expression in the testis during the progression of spermatogenesis. Biology of Reproduction, 71, 319–330.

    Article  Google Scholar 

  84. Stevens, N. M. (1905). Studies in spermatogenesis, with special reference to the “accessory chromosome”. Washington: Carnegie Institution of Washington. (Publication No. 36).

    Google Scholar 

  85. Strelchenko, N., et al. (2006). Reprogramming of human somatic cells by embryonic stem cell cytoplast. Reproductive BioMedicine Online, 12(1), 107–111.

    Article  Google Scholar 

  86. Taub, L. (2011). Introduction. Reengaging with instruments. Isis, 102(4), 689–696.

    Article  Google Scholar 

  87. Traweek, S. (1988). Beamtimes and lifetimes: The world of high energy physicists. Cambridge, MA: Harvard University Press.

    Google Scholar 

  88. Wachtel, S. S., Somkuti, S. G., & Schinfeld, J. S. (2000). Monozygotic twins of opposite sex. Cytogenetics and Cell Genetics, 91, 293–295.

    Article  Google Scholar 

  89. Wahrig-Schmidt, B. (1994). Das ‘geistige Auge’ des Beobachters und die Bewegungen der vorherrschenden Gedankendinge. In M. Hagner, H.-J. Rheinberger, & B. Wahrig-Schmidt (Eds.), Objekte, Differenzen und Konjunkturen (pp. 23–47). Berlin: Akademie.

    Google Scholar 

  90. Waldby, C. (2002). Stem cells, tissue cultures and the production of biovalue. Health, 6(3), 305–323.

    Google Scholar 

  91. Wang, N., et al. (2011). Altered expression of armet and Mrlp51 in the oocyte, preimplantation embryo, and brain of mice following oocyte in vitro maturation but postnatal brain development and cognitive function are normal. Reproduction, 142(3), 401–408.

    Article  Google Scholar 

  92. Wellmann, J. (2011). Science and cinema. Science in Context, 24(3), 311–328.

    Article  Google Scholar 

  93. Wilkins-Haug, L. (2009). Epigenetics and assisted reproduction. Current Opinion in Obstetrics and Gynecology, 21(3), 201–206.

    Article  Google Scholar 

  94. Wilson, E. B. (1895). An atlas of the fertilisation and karyokinesis of the ovum. New York: Columbia University Press.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bettina Bock von Wülfingen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bock von Wülfingen, B. Observing temporal order in living processes: on the role of time in embryology on the cell level in the 1870s and post-2000. HPLS 37, 87–104 (2015). https://doi.org/10.1007/s40656-014-0054-6

Download citation

Keywords

  • Reproduction
  • Conception
  • Time container
  • Genetics
  • Embryology
  • Microscope