Model organisms in evo-devo: promises and pitfalls of the comparative approach

Abstract

Evolutionary developmental biology (evo-devo) is a rapidly growing discipline whose ambition is to address questions that are of relevance to both evolutionary biology and developmental biology. This field has been increasingly progressing as a new and independent comparative science. However, we argue that evo-devo’s comparative approach is challenged by several metaphysical, methodological and socio-disciplinary issues related to the foundation of heuristic functions of model organisms and the possible criteria to be adopted for their selection. In addition, new tools have to be developed to deal with newly chosen model organisms. Therefore, we present a modelling framework suitable to integrate data on individual variation into evo-devo studies on new model organisms and thus to compensate for current idealization practices deliberately suppressing variation.

This is a preview of subscription content, access via your institution.

Fig. 1

Notes

  1. 1.

    On the history of Waddington’s visual metaphor of the epigenetic landscape and especially its wide-spread use as a modelling tool in contemporary cell differentiation and stem cell biology, see Baedke (2013).

References

  1. Amundson, R. (2005). The changing role of the embryo in evolutionary thought: Roots of Evo-Devo. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  2. Andersen, E. C., Gerke, J. P., Shapiro, J. A., Crissman, J. R., Ghosh, R., Bloom, J. S., et al. (2012). Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity. Nature Genetics, 44, 285–290.

    Article  Google Scholar 

  3. Ankeny, R. A. (2001). Model organisms as models: Understanding the ‘lingua franca’ of the human genome project. Philosophy of Science, 68, S251–S261.

    Article  Google Scholar 

  4. Baedke, J. (2013). The epigenetic landscape in the course of time: Conrad Hal Waddington’s methodological impact on the life sciences. Studies in History and Philosophy of Biological and Biomedical Sciences, 44, 756–773.

    Article  Google Scholar 

  5. Bai, M., Beutel, R. G., Song, K. Q., Liu, W. G., Malqin, H., Li, S., et al. (2012). Evolutionary patterns of hind wing morphology in dung beetles (Coleoptera: Scarabaeinae). Arthropod Structure and Development, 41, 505–513.

    Article  Google Scholar 

  6. Bai, M., McCullough, E., Song, K. Q., Liu, W. G., & Yang, X. K. (2011). Evolutionary constraints in hind wing shape in Chinese dung beetles (Coleoptera: Scarabaeinae). PLoS One, 6, e21600. doi:10.1371/journal.pone.0021600.

    Article  Google Scholar 

  7. Baum, D. A., Smith, S. D., & Donovan, S. S. S. (2005). The tree-thinking challenge. Science, 310, 979–980.

    Article  Google Scholar 

  8. Bolker, J. A. (1995). Model systems in developmental biology. BioEssays, 17, 451–455.

    Article  Google Scholar 

  9. Braendle, C., Caillaud, M. C., & Stern, D. L. (2005a). Genetic mapping of aphicarus: a sex-linked locus controlling a wing polymorphism in the pea aphid (Acyrthosiphon pisum). Heredity, 94, 435–442.

    Article  Google Scholar 

  10. Braendle, C., Friebe, I., Caillaud, M. C., & Stern, D. L. (2005b). Genetic variation for an aphid polyphenism is genetically linked to a naturally occurring wing polymorphism. Proceedings of the Royal Society of London B, 272, 657–664.

    Article  Google Scholar 

  11. Brakefield, P. M., & Frankino, W. A. (2007). Polyphenisms in Lepidoptera: Multidisciplinary approaches to studies of evolution. In D. W. Whitman & T. N. Ananthakrishnan (Eds.), Phenotypic plasticity in insects. Mechanisms and consequences (pp. 121–151). Plymouth: Science Publishers.

    Google Scholar 

  12. Brisson, J. (2010). Aphid wing dimorphism: Linking environmental and genetic control of trait variation. Philosophical Transactions of the Royal Society of London B, 365, 605–616.

    Article  Google Scholar 

  13. Casane, D., & Laurenti, P. (2013). Why coelacanths are not ‘living fossils’. A review of molecular and morphological data. BioEssays, 35, 332–338.

    Article  Google Scholar 

  14. Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E., & Huang, S. (2008). Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature, 453, 544–547.

    Article  Google Scholar 

  15. Cheverud, J. M. (2001). The genetic architecture of pleiotropic relations and differential epistasis. In G. P. Wagner (Ed.), The character concept in evolutionary biology (pp. 411–433). San Diego: Academic Press.

    Google Scholar 

  16. Collins, F., & Galas, D. (1993). A new five-year plan for the U.S. human genome project. Science, 262, 43–46.

    Article  Google Scholar 

  17. Collins, F. S., Patrinos, A., Jordan, E., Chakravarti, A., Gesteland, R., & Walters, L. (1998). New goals for the U.S. human genome project: 1998–2003. Science, 282, 682–689.

    Article  Google Scholar 

  18. Crisp, M. D., & Cook, L. G. (2005). Do early branching lineages signify ancestral traits? Trends in Ecology and Evolution, 20, 122–128.

    Article  Google Scholar 

  19. de Beer, G. (1930). Embryology and evolution. Oxford: Clarendon Press.

    Google Scholar 

  20. de Beer, G. (1958). Embryos and ancestors. Oxford: Clarendon Press.

    Google Scholar 

  21. de Chadarevian, S. (1998). Of worms and programs: Caenorhabditis elegans and the study of development. Studies in History and Philosophy of the Biological and Biomedical Sciences, 29, 81–105.

    Article  Google Scholar 

  22. de Vries, H. (1904). Species and varieties: Their origin by mutation. Chicago: Open Court.

    Google Scholar 

  23. Frankino, W. A., & Raff, R. A. (2004). Evolutionary importance and pattern of phenotypic plasticity. In T. J. DeWitt & S. M. Scheiner (Eds.), Phenotypic plasticity: Functional and conceptual approaches (pp. 64–81). New York: Oxford University Press.

    Google Scholar 

  24. Fusco, G., & Minelli, A. (2000). Measuring morphological complexity of segmented animals: Centipedes as model systems. Journal of Evolutionary Biology, 13, 38–46.

    Article  Google Scholar 

  25. Fusco, G., & Minelli, A. (2010). Phenotypic plasticity in development and evolution. Philosophical Transactions of the Royal Society of London B, 365, 547–556.

    Article  Google Scholar 

  26. Ghiselin, M. T. (1974). A radical solution to the species problem. Systematic Zoology, 23, 536–544.

    Article  Google Scholar 

  27. Ghiselin, M. T. (1997). Metaphysics and the origin of species. Albany, NY: State University of New York Press.

    Google Scholar 

  28. Gilbert, S. F., & Epel, D. (2009). Ecological developmental biology: Integrating epigenetics, medicine, and evolution. Sunderland, MA: Sinauer.

    Google Scholar 

  29. Hall, B. K. (2012). Evolutionary developmental biology (Evo-Devo): Past, present, and future. Evolution Education and Outreach, 5, 184–193.

    Article  Google Scholar 

  30. Hansen, T. F. (2003). Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. BioSystems, 69, 83–94.

    Article  Google Scholar 

  31. Harris K.D.M., Bartlett N.J., Lloyd V.K., (2012). Daphnia as an emerging epigenetic model organism. Genetics Research International, 8, doi:10.1155/2012/147892.

  32. Hendrikse, J. L., Parsons, T. E., & Hallgrímsson, B. (2007). Evolvability as the proper focus of evolutionary developmental biology. Evolution & Development, 9, 393–401.

    Article  Google Scholar 

  33. Hodgkin, J. (1998). Seven types of pleiotropy. International Journal of Developmental Biology, 42, 501–505.

    Google Scholar 

  34. Huang, S. (2009a). Non-genetic heterogeneity of cells in development: More than just noise. Development, 136, 3853–3862. doi:10.1242/dev.035139.

    Article  Google Scholar 

  35. Huang, S. (2009b). Reprogramming cell fates: Reconciling rarity with robustness. BioEssays, 31, 546–560.

    Article  Google Scholar 

  36. Huang, S. (2011). The molecular and mathematical basis of Waddington’s epigenetic landscape: A framework for post-darwinian biology? BioEssays, 34, 149–157.

    Article  Google Scholar 

  37. Hull, D. L. (1976). Are species really individuals? Systematic Zoology, 25, 174–191.

    Article  Google Scholar 

  38. Huxley, J. (1942). Evolution: The modern synthesis. London: Allen & Unwin.

    Google Scholar 

  39. Janzen, F. J., & Phillips, P. C. (2006). Exploring the evolution of environmental sex determination, especially in reptiles. Journal of Evolutionary Biology, 19, 1775–1784.

    Article  Google Scholar 

  40. Jenner, R. A. (2006). Unburdening evo-devo: Ancestral attractions, model organisms, and basal baloney. Development Genes and Evolution, 216, 385–394.

    Article  Google Scholar 

  41. Kaern, M., Elston, T. C., Blake, W. J., & Collins, J. J. (2005). Stochasticity in gene expression: From theories to phenotypes. Nature Reviews Genetics, 6, 451–464.

    Article  Google Scholar 

  42. Krell, F. T., & Cranston, P. S. (2004). Which side of the tree is more basal. Systematic Entomology, 29, 279–281.

    Article  Google Scholar 

  43. Laforsch, C., & Tollrian, R. (2004). Inducible defenses in multipredator environments: Cyclomorphosis in Daphnia cucullata. Ecology, 85, 2302–2311.

    Article  Google Scholar 

  44. Lamarck, J.-B. (1809). Philosophie zoologique. Paris: Dentu.

    Google Scholar 

  45. Laubichler, M. D., & Rheinberger, H.-J. (2004). Alfred Kühn (1885–1968) and developmental evolution. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 302B, 103–110.

    Article  Google Scholar 

  46. Lloyd V. K., Brisson J. A., Fitzpatrick K. A., McEachern L. A., Verhulst E. C. (2012). The epigenetics of emerging and nonmodel organisms. Genetics Research International, 2, doi:10.1155/2012/491204.

  47. Love, A. (2010). Idealization in evolutionary developmental investigation: A tension between phenotypic plasticity and normal stages. Philosophical Transactions of the Royal Society B, 365, 679–690.

    Article  Google Scholar 

  48. McGhee, G. R. (1999). Theoretical morphology: The concept and its applications. New York: Columbia University Press.

    Google Scholar 

  49. McGhee, G. R. (2007). The geometry of evolution. Cambridge: Cambridge University Press.

    Google Scholar 

  50. Mezey, J. G., Cheverud, J. M., & Wagner, G. P. (2000). Is the genotype-phenotype map modular? A statistical approach using mouse quantitative trait loci. Genetics, 156, 305–311.

    Google Scholar 

  51. Minelli, A. (2003). The development of animal form: Ontogeny, morphology, and evolution. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  52. Minelli, A. (2009). Forms of becoming. Princeton, NJ: Princeton University Press.

    Google Scholar 

  53. Minelli, A. (2010). Evolutionary developmental biology does not offer a significant challenge to the neo-darwinian paradigm. In F. J. Ayala & R. Arp (Eds.), Contemporary debates in philosophy of biology (pp. 213–226). New York: Wiley-Blackwell.

    Google Scholar 

  54. Miura, T. (2005). Developmental regulation of caste-specific characters in social-insect polyphenism. Evolution & Development, 7, 122–129.

    Article  Google Scholar 

  55. Moczek, A. P. (2007). Developmental capacitance, genetic accommodation, and adaptive evolution. Evolution & Development, 9, 299–305.

    Article  Google Scholar 

  56. Müller, G. B. (2007a). Evo-devo: Extending the evolutionary synthesis. Nature Reviews Genetics, 8, 943–949.

    Article  Google Scholar 

  57. Müller, G. B. (2007b). Six memos for EvoDevo. In M. D. Laubichler & J. Maienschein (Eds.), From embryology to EvoDevo: A history of developmental evolution (pp. 499–524). Cambridge, MA: MIT Press.

    Google Scholar 

  58. Müller, G. B. (2008). EvoDevo as a discipline. In A. Minelli & G. Fusco (Eds.), Evolving pathways: Key themes in evolutionary developmental biology (pp. 3–29). Cambridge: Cambridge University Press.

    Google Scholar 

  59. Müller-Wille, S., & Rheinberger, H.-J. (2009). Das Gen im Zeitalter der Postgenomik: Eine wissenschaftshistorische Bestandsaufnahme. Frankfurt am Main: Suhrkamp.

    Google Scholar 

  60. Nijhout, H. F. (2007). Complex traits: Genetic, development, and evolution. In R. Sansom & R. N. Brandon (Eds.), Integrating evolution and development (pp. 93–111). Cambridge, MA: MIT Press.

    Google Scholar 

  61. Pagel, M., Venditti, C., & Meade, A. (2006). Large punctuational contribution of speciation to evolutionary divergence at the molecular level. Science, 314, 119–121.

    Article  Google Scholar 

  62. Pigliucci, M. (2010). Genotype → phenotype mapping and the end of the ‘genes as blueprint’ metaphor. Philosophical Transactions of the Royal Society B, 365, 557–566.

    Article  Google Scholar 

  63. Pigliucci, M., & Müller, G. (Eds.). (2010). Evolution: The extended synthesis. Cambridge: MIT Press.

    Google Scholar 

  64. Pigliucci, M., Murren, C. J., & Schlichting, C. D. (2006). Phenotypic plasticity and evolution by genetic assimilation. Journal of Experimental Biology, 209, 2362–2367.

    Article  Google Scholar 

  65. Pujadas, E., & Feinberg, A. P. (2012). Regulated noise in the epigenetic landscape of development and disease. Cell, 148, 1123–1131.

    Article  Google Scholar 

  66. Raj, A., & van Oudenaarden, A. (2008). Nature, nurture, or chance: stochastic gene expression and its consequences. Cell, 135, 216–226.

    Article  Google Scholar 

  67. Saunders, P. T., & Ho, M. V. (1984). The complexity of organisms. In J. W. Pollard (Ed.), Evolutionary theory: Paths into the future (pp. 121–139). Chichester: Wiley.

    Google Scholar 

  68. Schlichting, C. D., & Pigliucci, M. (1998). Phenotypic evolution: A reaction norm perspective. Sunderland, MA: Sinauer.

    Google Scholar 

  69. Schnabel, R., Hutter, H., Moerman, D., & Schnabel, H. (1997). Assessing normal embryogenesis in Caenorhabditis elegans using a 4D microscope: Variability of development and regional specification. Developmental Biology, 184, 234–265.

    Article  Google Scholar 

  70. Schulze, J., & Schierenberg, E. (2011). Evolution of embryonic development in nematodes. EvoDevo, 2, 18. doi:10.1186/2041-9139-2-18.

    Article  Google Scholar 

  71. Srinivasan, D. A., & Brisson J. A. (2012). Aphids: A model for polyphenism and epigenetics. Genetics Research International, 12, doi:10.1155/2012/431531.

  72. Stearns, F. W. (2010). One hundred years of pleiotropy: A retrospective. Genetics, 186, 767–773.

    Article  Google Scholar 

  73. Sulston, J. E., Schierenberg, E., White, J. G., & Thomson, J. N. (1983). The embryonic cell lineage of the nematode Caenorhabditis elegans. Developmental Biology, 100, 64–119.

    Article  Google Scholar 

  74. U.S. Department of Health and Human Services (Public Health Service—National Institutes of Health), U.S. Department of Energy (Office of Energy Research—Office of Health and Environmental Research) (1990), Understanding Our Genetic Inheritance. The U.S. Human Genome Project: The First Five Years FY 19911995. National Institutes of Health Publication No. 90–1590.

  75. Valena S., & Moczek A. P. (2012). Epigenetic mechanisms underlying developmental plasticity in horned beetles. Genetics Research International, 14, doi:10.1155/2012/576303.

  76. Vorob’eva, E. I. (2010). Modern evolutionary developmental biology: Mechanical and molecular genetic or phylogenetic approaches? Russian Journal of Developmental Biology, 41, 283–290.

    Article  Google Scholar 

  77. Waddington, C. H. (1939). An introduction to modern genetics. New York: Macmillan.

    Google Scholar 

  78. Waddington, C. H. (1957). The strategy of the genes: A discussion of some aspects of theoretical biology. London: Allen & Unwin.

    Google Scholar 

  79. Wagner, G. P., & Zhang, J. (2011). The pleiotropic structure of the genotype-phenotype map: The evolvability of complex organisms. Nature Reviews Genetics, 12, 204–213.

    Article  Google Scholar 

  80. Wilkins, A. S. (2002). The evolution of developmental systems. Sunderland: Sinauer.

    Google Scholar 

  81. Wolpert, L., & Tickle, C. (2011). Principles of development (4th ed.). Oxford: Oxford University Press.

    Google Scholar 

Download references

Acknowledgments

We thank Staffan Müller-Wille, Philippe Huneman, and an anonymous referee for constructive comments on earlier versions of this paper. The material of this paper was presented at the ‘Second European Advanced Seminar in the Philosophy of the Life Sciences: in vivo, ex vivo, in vitro, in silico – Models in the Life Sciences’ (2012) hosted by the Brocher Foundation, Geneva. JB: Financial support from the Ruhr University Research School (RURS) is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alessandro Minelli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Minelli, A., Baedke, J. Model organisms in evo-devo: promises and pitfalls of the comparative approach. HPLS 36, 42–59 (2014). https://doi.org/10.1007/s40656-014-0004-3

Download citation

Keywords

  • Evo-devo
  • Model organisms
  • Extrapolation
  • Idealization
  • Modelling
  • Epigenetic landscape
  • Individual variation
  • Genotype-phenotype mapping
  • Evolvability
  • Developmental plasticity