Advertisement

History and Philosophy of the Life Sciences

, Volume 36, Issue 1, pp 42–59 | Cite as

Model organisms in evo-devo: promises and pitfalls of the comparative approach

  • Alessandro MinelliEmail author
  • Jan Baedke
Original Paper

Abstract

Evolutionary developmental biology (evo-devo) is a rapidly growing discipline whose ambition is to address questions that are of relevance to both evolutionary biology and developmental biology. This field has been increasingly progressing as a new and independent comparative science. However, we argue that evo-devo’s comparative approach is challenged by several metaphysical, methodological and socio-disciplinary issues related to the foundation of heuristic functions of model organisms and the possible criteria to be adopted for their selection. In addition, new tools have to be developed to deal with newly chosen model organisms. Therefore, we present a modelling framework suitable to integrate data on individual variation into evo-devo studies on new model organisms and thus to compensate for current idealization practices deliberately suppressing variation.

Keywords

Evo-devo Model organisms Extrapolation Idealization Modelling Epigenetic landscape Individual variation Genotype-phenotype mapping Evolvability Developmental plasticity 

Notes

Acknowledgments

We thank Staffan Müller-Wille, Philippe Huneman, and an anonymous referee for constructive comments on earlier versions of this paper. The material of this paper was presented at the ‘Second European Advanced Seminar in the Philosophy of the Life Sciences: in vivo, ex vivo, in vitro, in silico – Models in the Life Sciences’ (2012) hosted by the Brocher Foundation, Geneva. JB: Financial support from the Ruhr University Research School (RURS) is gratefully acknowledged.

References

  1. Amundson, R. (2005). The changing role of the embryo in evolutionary thought: Roots of Evo-Devo. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  2. Andersen, E. C., Gerke, J. P., Shapiro, J. A., Crissman, J. R., Ghosh, R., Bloom, J. S., et al. (2012). Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity. Nature Genetics, 44, 285–290.CrossRefGoogle Scholar
  3. Ankeny, R. A. (2001). Model organisms as models: Understanding the ‘lingua franca’ of the human genome project. Philosophy of Science, 68, S251–S261.CrossRefGoogle Scholar
  4. Baedke, J. (2013). The epigenetic landscape in the course of time: Conrad Hal Waddington’s methodological impact on the life sciences. Studies in History and Philosophy of Biological and Biomedical Sciences, 44, 756–773.CrossRefGoogle Scholar
  5. Bai, M., Beutel, R. G., Song, K. Q., Liu, W. G., Malqin, H., Li, S., et al. (2012). Evolutionary patterns of hind wing morphology in dung beetles (Coleoptera: Scarabaeinae). Arthropod Structure and Development, 41, 505–513.CrossRefGoogle Scholar
  6. Bai, M., McCullough, E., Song, K. Q., Liu, W. G., & Yang, X. K. (2011). Evolutionary constraints in hind wing shape in Chinese dung beetles (Coleoptera: Scarabaeinae). PLoS One, 6, e21600. doi: 10.1371/journal.pone.0021600.CrossRefGoogle Scholar
  7. Baum, D. A., Smith, S. D., & Donovan, S. S. S. (2005). The tree-thinking challenge. Science, 310, 979–980.CrossRefGoogle Scholar
  8. Bolker, J. A. (1995). Model systems in developmental biology. BioEssays, 17, 451–455.CrossRefGoogle Scholar
  9. Braendle, C., Caillaud, M. C., & Stern, D. L. (2005a). Genetic mapping of aphicarus: a sex-linked locus controlling a wing polymorphism in the pea aphid (Acyrthosiphon pisum). Heredity, 94, 435–442.CrossRefGoogle Scholar
  10. Braendle, C., Friebe, I., Caillaud, M. C., & Stern, D. L. (2005b). Genetic variation for an aphid polyphenism is genetically linked to a naturally occurring wing polymorphism. Proceedings of the Royal Society of London B, 272, 657–664.CrossRefGoogle Scholar
  11. Brakefield, P. M., & Frankino, W. A. (2007). Polyphenisms in Lepidoptera: Multidisciplinary approaches to studies of evolution. In D. W. Whitman & T. N. Ananthakrishnan (Eds.), Phenotypic plasticity in insects. Mechanisms and consequences (pp. 121–151). Plymouth: Science Publishers.Google Scholar
  12. Brisson, J. (2010). Aphid wing dimorphism: Linking environmental and genetic control of trait variation. Philosophical Transactions of the Royal Society of London B, 365, 605–616.CrossRefGoogle Scholar
  13. Casane, D., & Laurenti, P. (2013). Why coelacanths are not ‘living fossils’. A review of molecular and morphological data. BioEssays, 35, 332–338.CrossRefGoogle Scholar
  14. Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E., & Huang, S. (2008). Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature, 453, 544–547.CrossRefGoogle Scholar
  15. Cheverud, J. M. (2001). The genetic architecture of pleiotropic relations and differential epistasis. In G. P. Wagner (Ed.), The character concept in evolutionary biology (pp. 411–433). San Diego: Academic Press.CrossRefGoogle Scholar
  16. Collins, F., & Galas, D. (1993). A new five-year plan for the U.S. human genome project. Science, 262, 43–46.CrossRefGoogle Scholar
  17. Collins, F. S., Patrinos, A., Jordan, E., Chakravarti, A., Gesteland, R., & Walters, L. (1998). New goals for the U.S. human genome project: 1998–2003. Science, 282, 682–689.CrossRefGoogle Scholar
  18. Crisp, M. D., & Cook, L. G. (2005). Do early branching lineages signify ancestral traits? Trends in Ecology and Evolution, 20, 122–128.CrossRefGoogle Scholar
  19. de Beer, G. (1930). Embryology and evolution. Oxford: Clarendon Press.Google Scholar
  20. de Beer, G. (1958). Embryos and ancestors. Oxford: Clarendon Press.Google Scholar
  21. de Chadarevian, S. (1998). Of worms and programs: Caenorhabditis elegans and the study of development. Studies in History and Philosophy of the Biological and Biomedical Sciences, 29, 81–105.CrossRefGoogle Scholar
  22. de Vries, H. (1904). Species and varieties: Their origin by mutation. Chicago: Open Court.Google Scholar
  23. Frankino, W. A., & Raff, R. A. (2004). Evolutionary importance and pattern of phenotypic plasticity. In T. J. DeWitt & S. M. Scheiner (Eds.), Phenotypic plasticity: Functional and conceptual approaches (pp. 64–81). New York: Oxford University Press.Google Scholar
  24. Fusco, G., & Minelli, A. (2000). Measuring morphological complexity of segmented animals: Centipedes as model systems. Journal of Evolutionary Biology, 13, 38–46.CrossRefGoogle Scholar
  25. Fusco, G., & Minelli, A. (2010). Phenotypic plasticity in development and evolution. Philosophical Transactions of the Royal Society of London B, 365, 547–556.CrossRefGoogle Scholar
  26. Ghiselin, M. T. (1974). A radical solution to the species problem. Systematic Zoology, 23, 536–544.CrossRefGoogle Scholar
  27. Ghiselin, M. T. (1997). Metaphysics and the origin of species. Albany, NY: State University of New York Press.Google Scholar
  28. Gilbert, S. F., & Epel, D. (2009). Ecological developmental biology: Integrating epigenetics, medicine, and evolution. Sunderland, MA: Sinauer.Google Scholar
  29. Hall, B. K. (2012). Evolutionary developmental biology (Evo-Devo): Past, present, and future. Evolution Education and Outreach, 5, 184–193.CrossRefGoogle Scholar
  30. Hansen, T. F. (2003). Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. BioSystems, 69, 83–94.CrossRefGoogle Scholar
  31. Harris K.D.M., Bartlett N.J., Lloyd V.K., (2012). Daphnia as an emerging epigenetic model organism. Genetics Research International, 8, doi: 10.1155/2012/147892.
  32. Hendrikse, J. L., Parsons, T. E., & Hallgrímsson, B. (2007). Evolvability as the proper focus of evolutionary developmental biology. Evolution & Development, 9, 393–401.CrossRefGoogle Scholar
  33. Hodgkin, J. (1998). Seven types of pleiotropy. International Journal of Developmental Biology, 42, 501–505.Google Scholar
  34. Huang, S. (2009a). Non-genetic heterogeneity of cells in development: More than just noise. Development, 136, 3853–3862. doi: 10.1242/dev.035139.CrossRefGoogle Scholar
  35. Huang, S. (2009b). Reprogramming cell fates: Reconciling rarity with robustness. BioEssays, 31, 546–560.CrossRefGoogle Scholar
  36. Huang, S. (2011). The molecular and mathematical basis of Waddington’s epigenetic landscape: A framework for post-darwinian biology? BioEssays, 34, 149–157.CrossRefGoogle Scholar
  37. Hull, D. L. (1976). Are species really individuals? Systematic Zoology, 25, 174–191.CrossRefGoogle Scholar
  38. Huxley, J. (1942). Evolution: The modern synthesis. London: Allen & Unwin.Google Scholar
  39. Janzen, F. J., & Phillips, P. C. (2006). Exploring the evolution of environmental sex determination, especially in reptiles. Journal of Evolutionary Biology, 19, 1775–1784.CrossRefGoogle Scholar
  40. Jenner, R. A. (2006). Unburdening evo-devo: Ancestral attractions, model organisms, and basal baloney. Development Genes and Evolution, 216, 385–394.CrossRefGoogle Scholar
  41. Kaern, M., Elston, T. C., Blake, W. J., & Collins, J. J. (2005). Stochasticity in gene expression: From theories to phenotypes. Nature Reviews Genetics, 6, 451–464.CrossRefGoogle Scholar
  42. Krell, F. T., & Cranston, P. S. (2004). Which side of the tree is more basal. Systematic Entomology, 29, 279–281.CrossRefGoogle Scholar
  43. Laforsch, C., & Tollrian, R. (2004). Inducible defenses in multipredator environments: Cyclomorphosis in Daphnia cucullata. Ecology, 85, 2302–2311.CrossRefGoogle Scholar
  44. Lamarck, J.-B. (1809). Philosophie zoologique. Paris: Dentu.Google Scholar
  45. Laubichler, M. D., & Rheinberger, H.-J. (2004). Alfred Kühn (1885–1968) and developmental evolution. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 302B, 103–110.CrossRefGoogle Scholar
  46. Lloyd V. K., Brisson J. A., Fitzpatrick K. A., McEachern L. A., Verhulst E. C. (2012). The epigenetics of emerging and nonmodel organisms. Genetics Research International, 2, doi: 10.1155/2012/491204.
  47. Love, A. (2010). Idealization in evolutionary developmental investigation: A tension between phenotypic plasticity and normal stages. Philosophical Transactions of the Royal Society B, 365, 679–690.CrossRefGoogle Scholar
  48. McGhee, G. R. (1999). Theoretical morphology: The concept and its applications. New York: Columbia University Press.Google Scholar
  49. McGhee, G. R. (2007). The geometry of evolution. Cambridge: Cambridge University Press.Google Scholar
  50. Mezey, J. G., Cheverud, J. M., & Wagner, G. P. (2000). Is the genotype-phenotype map modular? A statistical approach using mouse quantitative trait loci. Genetics, 156, 305–311.Google Scholar
  51. Minelli, A. (2003). The development of animal form: Ontogeny, morphology, and evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  52. Minelli, A. (2009). Forms of becoming. Princeton, NJ: Princeton University Press.Google Scholar
  53. Minelli, A. (2010). Evolutionary developmental biology does not offer a significant challenge to the neo-darwinian paradigm. In F. J. Ayala & R. Arp (Eds.), Contemporary debates in philosophy of biology (pp. 213–226). New York: Wiley-Blackwell.Google Scholar
  54. Miura, T. (2005). Developmental regulation of caste-specific characters in social-insect polyphenism. Evolution & Development, 7, 122–129.CrossRefGoogle Scholar
  55. Moczek, A. P. (2007). Developmental capacitance, genetic accommodation, and adaptive evolution. Evolution & Development, 9, 299–305.CrossRefGoogle Scholar
  56. Müller, G. B. (2007a). Evo-devo: Extending the evolutionary synthesis. Nature Reviews Genetics, 8, 943–949.CrossRefGoogle Scholar
  57. Müller, G. B. (2007b). Six memos for EvoDevo. In M. D. Laubichler & J. Maienschein (Eds.), From embryology to EvoDevo: A history of developmental evolution (pp. 499–524). Cambridge, MA: MIT Press.Google Scholar
  58. Müller, G. B. (2008). EvoDevo as a discipline. In A. Minelli & G. Fusco (Eds.), Evolving pathways: Key themes in evolutionary developmental biology (pp. 3–29). Cambridge: Cambridge University Press.Google Scholar
  59. Müller-Wille, S., & Rheinberger, H.-J. (2009). Das Gen im Zeitalter der Postgenomik: Eine wissenschaftshistorische Bestandsaufnahme. Frankfurt am Main: Suhrkamp.Google Scholar
  60. Nijhout, H. F. (2007). Complex traits: Genetic, development, and evolution. In R. Sansom & R. N. Brandon (Eds.), Integrating evolution and development (pp. 93–111). Cambridge, MA: MIT Press.Google Scholar
  61. Pagel, M., Venditti, C., & Meade, A. (2006). Large punctuational contribution of speciation to evolutionary divergence at the molecular level. Science, 314, 119–121.CrossRefGoogle Scholar
  62. Pigliucci, M. (2010). Genotype → phenotype mapping and the end of the ‘genes as blueprint’ metaphor. Philosophical Transactions of the Royal Society B, 365, 557–566.CrossRefGoogle Scholar
  63. Pigliucci, M., & Müller, G. (Eds.). (2010). Evolution: The extended synthesis. Cambridge: MIT Press.Google Scholar
  64. Pigliucci, M., Murren, C. J., & Schlichting, C. D. (2006). Phenotypic plasticity and evolution by genetic assimilation. Journal of Experimental Biology, 209, 2362–2367.CrossRefGoogle Scholar
  65. Pujadas, E., & Feinberg, A. P. (2012). Regulated noise in the epigenetic landscape of development and disease. Cell, 148, 1123–1131.CrossRefGoogle Scholar
  66. Raj, A., & van Oudenaarden, A. (2008). Nature, nurture, or chance: stochastic gene expression and its consequences. Cell, 135, 216–226.CrossRefGoogle Scholar
  67. Saunders, P. T., & Ho, M. V. (1984). The complexity of organisms. In J. W. Pollard (Ed.), Evolutionary theory: Paths into the future (pp. 121–139). Chichester: Wiley.Google Scholar
  68. Schlichting, C. D., & Pigliucci, M. (1998). Phenotypic evolution: A reaction norm perspective. Sunderland, MA: Sinauer.Google Scholar
  69. Schnabel, R., Hutter, H., Moerman, D., & Schnabel, H. (1997). Assessing normal embryogenesis in Caenorhabditis elegans using a 4D microscope: Variability of development and regional specification. Developmental Biology, 184, 234–265.CrossRefGoogle Scholar
  70. Schulze, J., & Schierenberg, E. (2011). Evolution of embryonic development in nematodes. EvoDevo, 2, 18. doi: 10.1186/2041-9139-2-18.CrossRefGoogle Scholar
  71. Srinivasan, D. A., & Brisson J. A. (2012). Aphids: A model for polyphenism and epigenetics. Genetics Research International, 12, doi: 10.1155/2012/431531.
  72. Stearns, F. W. (2010). One hundred years of pleiotropy: A retrospective. Genetics, 186, 767–773.CrossRefGoogle Scholar
  73. Sulston, J. E., Schierenberg, E., White, J. G., & Thomson, J. N. (1983). The embryonic cell lineage of the nematode Caenorhabditis elegans. Developmental Biology, 100, 64–119.CrossRefGoogle Scholar
  74. U.S. Department of Health and Human Services (Public Health Service—National Institutes of Health), U.S. Department of Energy (Office of Energy Research—Office of Health and Environmental Research) (1990), Understanding Our Genetic Inheritance. The U.S. Human Genome Project: The First Five Years FY 19911995. National Institutes of Health Publication No. 90–1590.Google Scholar
  75. Valena S., & Moczek A. P. (2012). Epigenetic mechanisms underlying developmental plasticity in horned beetles. Genetics Research International, 14, doi: 10.1155/2012/576303.
  76. Vorob’eva, E. I. (2010). Modern evolutionary developmental biology: Mechanical and molecular genetic or phylogenetic approaches? Russian Journal of Developmental Biology, 41, 283–290.CrossRefGoogle Scholar
  77. Waddington, C. H. (1939). An introduction to modern genetics. New York: Macmillan.Google Scholar
  78. Waddington, C. H. (1957). The strategy of the genes: A discussion of some aspects of theoretical biology. London: Allen & Unwin.Google Scholar
  79. Wagner, G. P., & Zhang, J. (2011). The pleiotropic structure of the genotype-phenotype map: The evolvability of complex organisms. Nature Reviews Genetics, 12, 204–213.CrossRefGoogle Scholar
  80. Wilkins, A. S. (2002). The evolution of developmental systems. Sunderland: Sinauer.Google Scholar
  81. Wolpert, L., & Tickle, C. (2011). Principles of development (4th ed.). Oxford: Oxford University Press.Google Scholar

Copyright information

© Springer International Publishing AG 2014

Authors and Affiliations

  1. 1.Department of BiologyUniversity of PadovaPadovaItaly
  2. 2.Department of Philosophy IRuhr University BochumBochumGermany

Personalised recommendations