Skip to main content

Climate Sensitivity and Ecoclimate Sensitivity: Theory, Usage, and Past Implications for Future Biospheric Responses

Abstract

Two usages of ‘climate sensitivity’ co-exist: one climatological and one ecological. The earlier climatological usage quantifies the sensitivity of global mean surface temperature to atmospheric CO2, with formal variants differing by timescale and processes. The ecological usage, renamed here as ecoclimate sensitivity, is defined as a change in an ecological response variable per unit climate change. The two concepts are treated very differently: climatologists have focused on reducing uncertainty of global climate sensitivity estimates, while ecologists have focused on the multivariate processes governing variations in ecoclimate sensitivity across drivers, response variables, and scales. Because radiative forcing scales logarithmically to [CO2]atm, ecological impacts per ppm [CO2]atm often also scale logarithmically, although non-linear ecoclimate sensitivities can alter this expectation. Critically, past estimates of climate and ecoclimate sensitivity carry an implicit tradeoff, in which smaller estimates of climate sensitivity indicate higher ecoclimate sensitivities. For the LGM, estimates of equilibrium climate sensitivity have narrowed to 2.4 to 4.5 °C, while high ecoclimate sensitivity is indicated by post-glacial biome conversions, continental-scale species range shifts, and high community turnover. We introduce a new term, ecocarbon sensitivity, defined as the product of global climate sensitivity, local ecoclimate sensitivity, and a global-to-local climate scaling factor. Given past biospheric transformations, we can expect high sensitivity of the terrestrial biosphere to current rises in [CO2]atm, a conclusion that is insensitive to estimates of climate sensitivity. The next frontier is better quantification of the processes governing the form and variations of ecoclimate and ecocarbon sensitivity across systems and scales.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Availability of Data and Material

All underlying data are available in the supplementary materials.

Code Availability

Not applicable.

References

  1. Knutti R, Hegerl GC. The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nature Geosci. 2008;1:735–43.

    Article  CAS  Google Scholar 

  2. Charney JG. Carbon dioxide and climate: a scientific assessment. National Academies of Science Press; 1979. p. 22.

    Google Scholar 

  3. Knutti R, Rugenstein MAA, Hegerl GC. Beyond equilibrium climate sensitivity. Nat Geosci. 2017;10:727–36. https://doi.org/10.1038/ngeo3017.

    Article  CAS  Google Scholar 

  4. Collins M, et al. in Working Group I Contribution to the IPCC Fifth Assessment Report Climate Change 2013: The Physical Science Basis; 2013.

  5. Meehl GA, et al. Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Sci Adv. 2020;6:eaba1981. https://doi.org/10.1126/sciadv.aba1981.

    Article  Google Scholar 

  6. Tierney JE, et al. Glacial cooling and climate sensitivity revisited. Nature. 2020;584:569–73. https://doi.org/10.1038/s41586-020-2617-x.

    Article  CAS  Google Scholar 

  7. Seltzer AM, et al. Widespread six degrees Celsius cooling on land during the Last Glacial Maximum. Nature. 2021;593:228–32. https://doi.org/10.1038/s41586-021-03467-6.

    Article  CAS  Google Scholar 

  8. Sherwood S, et al. An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev Geophys. 2020;e2019RG000678. https://doi.org/10.1029/2019RG000678.

  9. von Humboldt, A. 1862.

  10. Wulf A. The invention of nature: Alexander von Humboldts new world. Vintage; 2016.

    Google Scholar 

  11. Lomolino M, Sax DF, Brown JH. Foundations in biogeography: classic papers with commentaries. University of Chicago Press; 2004. p. 1328.

    Google Scholar 

  12. Lyons SK, Behrensmeyer AK, Wagner P. J. Chicago: University of Chicago Press; 2019.

    Google Scholar 

  13. Thom D, et al. The climate sensitivity of carbon, timber, and species richness co-varies with forest age in boreal-temperate North America. Glob Chang Biol. 2019;25. https://doi.org/10.1111/gcb.14656.

  14. Amburgey SM, et al. Range position and climate sensitivity: the structure of among-population demographic responses to climatic variation. Glob Change Biol. 2018;24:439–54. https://doi.org/10.1111/gcb.13817.

    Article  Google Scholar 

  15. Seidl R, et al. Globally consistent climate sensitivity of natural disturbances across boreal and temperate forest ecosystems. Ecography. 2020;43:967–78. https://doi.org/10.1111/ecog.04995.

    Article  Google Scholar 

  16. Seddon AWR, Macias-Fauria M, Long PR, Benz D, Willis KJ. Sensitivity of global terrestrial ecosystems to climate variability. Nature. 2016;531:229–32. https://doi.org/10.1038/nature16986.

    Article  CAS  Google Scholar 

  17. Smith RJ, Jovan S, McCune B. Climatic niche limits and community-level vulnerability of obligate symbioses. J Biogeogr. 2020;47:382–95. https://doi.org/10.1111/jbi.13719.

    Article  Google Scholar 

  18. Langmore NE, Bailey LD, Heinsohn RG, Russell AF, Kilner RM. Egg size investment in superb fairy-wrens: helper effects are modulated by climate. Proc R Soc B Biol Sci. 2016;283:20161875. https://doi.org/10.1098/rspb.2016.1875.

    Article  Google Scholar 

  19. Litzow MA, Mueter FJ, Hobday AJ. Reassessing regime shifts in the North Pacific: incremental climate change and commercial fishing are necessary for explaining decadal-scale biological variability. Glob Change Biol. 2014;20:38–50. https://doi.org/10.1111/gcb.12373.

    Article  Google Scholar 

  20. Peltier DMP, Ogle K. Tree growth sensitivity to climate is temporally variable. Ecol Lett. 2020. https://doi.org/10.1111/ele.13575.

    Article  Google Scholar 

  21. Wilmking M, et al. Global assessment of relationships between climate and tree growth. Glob Chang Biol. 2020. https://doi.org/10.1111/gcb.15057.

    Article  Google Scholar 

  22. Rudgers JA, et al. Climate sensitivity functions and net primary production: a framework for incorporating climate mean and variability. Ecology. 2018;99:576–82. https://doi.org/10.1002/ecy.2136.

    Article  Google Scholar 

  23. Ratajczak Z, et al. Abrupt change in ecological systems: inference and diagnosis. Trends Ecol Evol. 2018;33:513–26. https://doi.org/10.1016/j.tree.2018.04.013.

    Article  Google Scholar 

  24. Williams JW, Blois JL, Shuman BN. Extrinsic and intrinsic forcing of abrupt ecological change: case studies from the late Quaternary. J Ecol. 2011;99:664–77.

    Article  Google Scholar 

  25. EPICA community members. Eight glacial cycles from an Antarctic ice core. Nature. 2004;429: 623–628, http://www.nature.com/nature/journal/v429/n6992/suppinfo/nature02599_S1.html.

  26. PALAEOSENS Project Members. Making sense of palaeoclimate sensitivity. Nature. 2012;491:683–91.

    Article  Google Scholar 

  27. Annan JD, Hargreaves JC. A new global reconstruction of temperature changes at the Last Glacial Maximum. Clim Past. 2013;9:367–76. https://doi.org/10.5194/cp-9-367-2013.

    Article  Google Scholar 

  28. Schmittner A, et al. Climate sensitivity estimated from temperature reconstructions of the Last Glacial Maximum. Science. 2011;334:1385–8.

    Article  CAS  Google Scholar 

  29. Annan JD, Hargreaves JC. A perspective on model-data surface temperature comparison at the Last Glacial Maximum. Quatern Sci Rev. 2015;107:1–10.

    Article  Google Scholar 

  30. Jansen EJ, et al. Climate Change 2007: The Physical Science Basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, et al. (eds). Cambridge University Press; 2007.

  31. Kaufman D, et al. A global database of Holocene paleotemperature records. Sci Data. 2020;7:115. https://doi.org/10.1038/s41597-020-0445-3.

    Article  CAS  Google Scholar 

  32. Bartlein PJ, et al. Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis. Clim Dyn. 2011;37:775–802. https://doi.org/10.1007/s00382-010-0904-1.

    Article  Google Scholar 

  33. Mann ME, et al. Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science. 2009;326:1256–60. https://doi.org/10.1126/science.1177303.

    Article  CAS  Google Scholar 

  34. Nolan C, et al. Past and future global transformation of terrestrial ecosystems under climate change. Science. 2018;361:920–3. https://doi.org/10.1126/science.aan5360.

    Article  CAS  Google Scholar 

  35. Fischer H, et al. Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Nat Geosci. 2018;11:474–85. https://doi.org/10.1038/s41561-018-0146-0.

    Article  CAS  Google Scholar 

  36. Williams JW, et al. The ice age ecologist: testing methods for reserve prioritization during the last global warming. Glob Ecol Biogeogr. 2013;22:289–301. https://doi.org/10.1111/j.1466-8238.2012.00760.x.

    Article  Google Scholar 

  37. Giesecke T, Brewer S, Finsinger W, Leydet M, Bradshaw RHW. Patterns and dynamics of European vegetation change over the last 15,000 years. J Biogeogr. 2017;44:1441–56. https://doi.org/10.1111/jbi.12974.

    Article  Google Scholar 

  38. Ordonez A, Williams JW. Climatic and biotic velocities for woody taxa distributions over the last 16 000 years in eastern North America. Ecol Lett. 2013;16:773–81. https://doi.org/10.1111/ele.12110.

    Article  Google Scholar 

  39. Overpeck JT, Whitlock C, Huntley B. Paleoclimate, global change and the future. In: Bradley RS, Pedersen TF, Alverson KD, Bergmann KF, editors. p 81–103. Springer-Verlag; 2003.

    Google Scholar 

  40. Willis KJ, Bhagwat SA. Biodiversity and climate change. Science. 2009;326:806–7.

    Article  CAS  Google Scholar 

  41. Fordham DA, et al. Using paleo-archives to safeguard biodiversity under climate change. Science. 2020;369:eabc5654. https://doi.org/10.1126/science.abc5654.

    Article  CAS  Google Scholar 

  42. McGill BJ, Dornelas M, Gotelli NJ, Magurran AE. Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol Evol. 2015;30:104–13. https://doi.org/10.1016/j.tree.2014.11.006.

    Article  Google Scholar 

  43. Sandel B, et al. The influence of late Quaternary climate-change velocity on species endemism. Science. 2011;334:660–4.

    Article  CAS  Google Scholar 

  44. Carnaval AC, Hickerson MJ, Haddad CFB, Rodrigues MT, Moritz C. Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science. 2009;323:785–9.

    Article  CAS  Google Scholar 

  45. Huntley B. et al. Projected climatic changes lead to biome changes in areas of previously constant biome. Journal of Biogeography (in press).

  46. Brown SC, Wigley TML, Otto-Bliesner BL, Rahbek C, Fordham DA. Persistent Quaternary climate refugia are hospices for biodiversity in the Anthropocene. Nat Clim Chang. 2020;10:244–8. https://doi.org/10.1038/s41558-019-0682-7.

    Article  Google Scholar 

  47. Botkin DB, et al. Forecasting the effects of global warming on biodiversity. Bioscience. 2007;57:227–36.

    Article  Google Scholar 

  48. Smith, F. A., Elliott Smith, R. E., Lyons, S. K. & Payne, J. L. Body size downgrading of mammals over the late Quaternary. Science 360, 310–313, doi:https://doi.org/10.1126/science.aao5987 (2018).

  49. Barnosky AD, Koch PL, Feranec RS, Wing SL, Shabel AB. Assessing the causes of late Pleistocene extinctions on the continents. Science. 2004;306:70–5.

    Article  CAS  Google Scholar 

  50. Stuart, A. J. Vanished giants: the lost world of the ice age. (University of Chicago Press, 2021).

  51. Hakim, G. J., Dee, S. G., Emile-Geay, J., McKay, N. & Rehfeld, K. Accelerating progress in proxy-model synthesis using open standards. PAGES Magazine (2018).

  52. Steinbauer MJ, et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature. 2018;556:231–4. https://doi.org/10.1038/s41586-018-0005-6.

    Article  CAS  Google Scholar 

  53. Fredston A, et al. Range edges of North American marine species are tracking temperature over decades. Glob Chang Biol. 2021. https://doi.org/10.1111/gcb.15614.

  54. Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214, doi:https://doi.org/10.1126/science.aai9214 (2017).

  55. Archer, D. Global warming: understanding the forecast. 2nd edition edn, (John Wiley & Sons, 2012).

  56. Zelinka, M. D. et al. Causes of higher climate sensitivity in CMIP6 models. Geophysical Research Letters 47, e2019GL085782, doi:https://doi.org/10.1029/2019GL085782 (2020).

  57. Bindoff, N. L. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds T.F. Stocker et al.) Ch. 10, 867–952 (Cambridge University Press, 2013).

  58. Lunt DJ, et al. Earth system sensitivity inferred from Pliocene modelling and data. Nat Geosci. 2010;3:60–4. https://doi.org/10.1038/ngeo706.

    Article  CAS  Google Scholar 

  59. IPCC. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds T.F. Stocker et al.) (Cambridge University Press, 2013).

  60. Zhu J, Poulsen CJ, Otto-Bliesner BL. High climate sensitivity in CMIP6 model not supported by paleoclimate. Nat Clim Chang. 2020;10:378–9. https://doi.org/10.1038/s41558-020-0764-6.

    Article  CAS  Google Scholar 

  61. Hegerl GC, Crowley TJ, Hyde WT, Frame DJ. Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature. 2006;440:1029–32.

    Article  CAS  Google Scholar 

  62. Woodward, F. I. Climate and Plant Distribution. (Cambridge University Press, 1987).

  63. Marchand W, Girardin MP, Hartmann H, Gauthier S, Bergeron Y. Taxonomy, together with ontogeny and growing conditions, drives needleleaf species’ sensitivity to climate in boreal North America. Glob Change Biol. 2019;25:2793–809. https://doi.org/10.1111/gcb.14665.

    Article  Google Scholar 

  64. Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM. Beyond predictions: Biodiversity conservation in a changing climate. Science. 2011;332:53–8.

    Article  CAS  Google Scholar 

  65. Glick P, Stein BA, Edelson N. A. Washington, DC: National Wildlife Federation; 2011.

    Google Scholar 

  66. Culp LA, Cohen EB, Scarpignato AL, Thogmartin WE, Marra PP. Full annual cycle climate change vulnerability assessment for migratory birds. Ecosphere. 2017;8:22. https://doi.org/10.1002/ecs2.1565.

    Article  Google Scholar 

  67. Beever EA, et al. Improving conservation outcomes with a new paradigm for understanding species’ fundamental and realized adaptive capacity. Conserv Lett. 2016;9:131–7. https://doi.org/10.1111/conl.12190.

    Article  Google Scholar 

  68. Charney ND, et al. Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecol Lett. 2016;19:1119–28. https://doi.org/10.1111/ele.12650.

    Article  Google Scholar 

  69. Murray CS, Wiley D, Baumann H. High sensitivity of a keystone forage fish to elevated CO2 and temperature. Conserv Physiol. 2019;7:12. https://doi.org/10.1093/conphys/coz084.

    Article  CAS  Google Scholar 

  70. Schurman JS, et al. The climatic drivers of primary Picea forest growth along the Carpathian arc are changing under rising temperatures. Glob Change Biol. 2019;25:3136–50. https://doi.org/10.1111/gcb.14721.

    Article  Google Scholar 

  71. Thom D, et al. The climate sensitivity of carbon, timber, and species richness covaries with forest age in boreal-temperate North America. Glob Change Biol. 2019;25:2446–58. https://doi.org/10.1111/gcb.14656.

    Article  Google Scholar 

  72. Seddon AW, Macias-Fauria M, Willis KJ. Climate and abrupt vegetation change in Northern Europe since the last deglaciation. The Holocene. 2015;25:25–36. https://doi.org/10.1177/0959683614556383.

    Article  Google Scholar 

  73. Polsky C, Easterling WE. Adaptation to climate variability and change in the US Great Plains: a multi-scale analysis of Ricardian climate sensitivities. Agric Ecosyst Environ. 2001;85:133–44. https://doi.org/10.1016/s0167-8809(01)00180-3.

    Article  Google Scholar 

  74. Sullivan MJP, et al. Long-term thermal sensitivity of Earth’s tropical forests. Science. 2020;368:869–74. https://doi.org/10.1126/science.aaw7578.

    Article  CAS  Google Scholar 

  75. Rollinson CR, et al. Emergent climate and CO2 sensitivities of net primary productivity in ecosystem models do not agree with empirical data in temperate forests of eastern North America. Glob Change Biol. 2017;23:2755–67. https://doi.org/10.1111/gcb.13626.

    Article  Google Scholar 

  76. Ols C, Girardin MP, Hofgaard A, Bergeron Y, Drobyshev I. Monitoring climate sensitivity shifts in tree-rings of eastern boreal North America using model-data comparison. Ecosystems. 2018;21:1042–57. https://doi.org/10.1007/s10021-017-0203-3.

    Article  CAS  Google Scholar 

  77. Elias F, et al. Assessing the growth and climate sensitivity of secondary forests in highly deforested Amazonian landscapes. Ecology. 2020;101:11. https://doi.org/10.1002/ecy.2954.

    Article  Google Scholar 

  78. deGroot, R. S., Ketner, P. & Ovaa, A. H. Selection and use of bio-indicators to assess the possible effects of climate change in Europe. Journal of Biogeography 22, 935–943, doi:https://doi.org/10.2307/2845994 (1995).

  79. Mims MC, Olson DH, Pilliod DS, Dunham JB. Functional and geographic components of risk for climate sensitive vertebrates in the Pacific Northwest, USA. Biol Cons. 2018;228:183–94. https://doi.org/10.1016/j.biocon.2018.10.012.

    Article  Google Scholar 

  80. Hellmann F, Alkemade R, Knol OM. Dispersal based climate change sensitivity scores for European species. Ecol Indic. 2016;71:41–6. https://doi.org/10.1016/j.ecolind.2016.06.013.

    Article  Google Scholar 

  81. Kuhlmann M, Guo D, Veldtman R, Donaldson J. Consequences of warming up a hotspot: species range shifts within a centre of bee diversity. Divers Distrib. 2012;18:885–97. https://doi.org/10.1111/j.1472-4642.2011.00877.x.

    Article  Google Scholar 

  82. Jarema SI, Samson J, McGill BJ, Humphries MM. Variation in abundance across a species’ range predicts climate change responses in the range interior will exceed those at the edge: a case study with North American beaver. Glob Change Biol. 2009;15:508–22. https://doi.org/10.1111/j.1365-2486.2008.01732.x.

    Article  Google Scholar 

  83. Whittaker RH. Gradient analysis of vegetation. Biol Rev. 1967;42:207–64.

    Article  CAS  Google Scholar 

  84. Hargreaves JC, Annan JD, Yoshimori M, Abe-Ouchi A. Can the Last Glacial Maximum constrain climate sensitivity? Geophys Res Lett. 2012;39:L24702.

    Article  Google Scholar 

  85. Tierney, J. E. et al. Past climates inform our future. Science 370, eaay3701, doi:https://doi.org/10.1126/science.aay3701 (2020).

  86. Kutzbach JE, Guetter PJ. The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18,000 years. J Atmos Sci. 1986;43:1726–59.

    Article  Google Scholar 

  87. Stocker, T. F. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds T.F. Stocker et al.) Ch. TS, 33–115 (Cambridge University Press, 2013).

  88. Braconnot P, et al. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 1: experiments and large-scale features. Clim Past. 2007;3:261–77. https://doi.org/10.5194/cp-3-261-2007.

    Article  Google Scholar 

  89. Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nat Clim Chang. 2012; 417–424. http://www.nature.com/nclimate/journal/v2/n6/abs/nclimate1456.html#supplementary-information.

  90. Hemming, S. R. Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Reviews of Geophysics 42, doi:https://doi.org/10.1029/2003RG000128 (2004).

  91. MARGO Project Members. Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nat Geosci. 2009;2:127–132. http://www.nature.com/ngeo/journal/v2/n2/suppinfo/ngeo411_S1.html.

  92. Osman MB, et al. Globally resolved surface temperatures since the Last Glacial Maximum. Nature. 2021;599:239–44. https://doi.org/10.1038/s41586-021-03984-4.

    Article  CAS  Google Scholar 

  93. Shakun JD, et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature. 2012;484:49–54. http://www.nature.com/nature/journal/v484/n7392/abs/nature10915.html#supplementary-information.

  94. CLIMAP Project Members. The surface of Ice-Age Earth: quantitative geological evidence is used to reconstruct boundary conditions for the climate 18,000 years ago. Science. 1976;191:1131–7.

    Article  Google Scholar 

  95. Porter SC. Snowline depression in the tropics during the Last Glaciation. Quatern Sci Rev. 2000;20:1067–91. https://doi.org/10.1016/S0277-3791(00)00178-5.

    Article  Google Scholar 

  96. Hansen, J. E. et al. in Climate Processes and Climate Sensitivity Vol. 29 (eds J. E. Hansen & T. Takahashi) 130–163 (American Geophysical Union, 1984).

  97. Joussaume, S. & Taylor, K. E. in Proceedings of the third PMIP workshop. (ed P. Braconnot) 9–24 (World Climate Research Programme).

  98. Crucifix M. Traditional and novel approaches to palaeoclimate modelling. Quatern Sci Rev. 2012;57:1–16.

    Article  Google Scholar 

  99. Schneider von Deimling, T., Ganopolski, A., Held, H. & Rahmstorf, S. How cold was the Last Glacial Maximum? Geophysical Research Letters 33, doi:https://doi.org/10.1029/2006gl026484 (2006).

  100. Antell GS, Fenton IS, Valdes PJ, Saupe EE. Thermal niches of planktonic foraminifera are static throughout glacial–interglacial climate change. Proc Natl Acad Sci. 2021;118: e2017105118. https://doi.org/10.1073/pnas.2017105118.

    Article  CAS  Google Scholar 

  101. Tzedakis PC, et al. Comparison of terrestrial and marine records of changing climate of the last 500,000 years. Earth Planet Sci Lett. 1997;150:171–6.

    Article  CAS  Google Scholar 

  102. revised chronostratigraphy and long-term vegetation trends. Tzedakis, P. C., Hooghiemstra, H. & Pälike, H. The last 1.35 million years at Tenaghi Philippon. Quatern Sci Rev. 2006;25:3416–30.

    Article  Google Scholar 

  103. Allen JRM, et al. Rapid environmental changes in southern Europe during the last glacial period. Nature. 1999;400:740–3.

    Article  CAS  Google Scholar 

  104. Lézine A-M, Izumi K, Kageyama M, Achoundong G. A 90,000-year record of Afromontane forest responses to climate change. Science. 2019;363:177–81. https://doi.org/10.1126/science.aav6821.

    Article  CAS  Google Scholar 

  105. Williams JW, Shuman BN, Webb T III, Bartlein PJ, Leduc PL. Late Quaternary vegetation dynamics in North America: scaling from taxa to biomes. Ecol Monogr. 2004;74:309–34.

    Article  Google Scholar 

  106. Newnham R, McGlone M, Moar N, Wilmshurst J, Vandergoes M. The vegetation cover of New Zealand at the Last Glacial Maximum. Quatern Sci Rev. 2013;74:202–14. https://doi.org/10.1016/j.quascirev.2012.08.022.

    Article  Google Scholar 

  107. Flenley, J. R. in Potential impacts of climate change on tropical forest ecosystems (ed A. Markham) 37–57 (Springer, 1998).

  108. Wu H, Guiot J, Brewer S, Guo Z, Peng C. Dominant factors controlling glacial and interglacial variations in the treeline elevation in tropical Africa. Proc Natl Acad Sci. 2007;104:9720–4.

    Article  CAS  Google Scholar 

  109. Lézine A-M, Assi-Kaudjhis C, Roche E, Vincens A, Achoundong G. Towards an understanding of West African montane forest response to climate change. J Biogeogr. 2013;40:183–96. https://doi.org/10.1111/j.1365-2699.2012.02770.x.

    Article  Google Scholar 

  110. Finch J, Leng MJ, Marchant R. Late Quaternary vegetation dynamics in a biodiversity hotspot, the Uluguru Mountains of Tanzania. Quatern Res. 2009;72:111–22. https://doi.org/10.1016/j.yqres.2009.02.005.

    Article  Google Scholar 

  111. Prentice IC, Harrison SP, Bartlein PJ. Global vegetation and terrestrial carbon cycle changes after the last ice age. New Phytol. 2011;189:988–98.

    Article  CAS  Google Scholar 

  112. Allen JRM, et al. Global vegetation patterns of the past 140,000 years. J Biogeogr. 2020;47:2073–90. https://doi.org/10.1111/jbi.13930.

    Article  Google Scholar 

  113. Williams JW, Tarasov PA, Brewer S, Notaro M. Late-Quaternary variations in tree cover at the northern forest-tundra ecotone. Journal of Geophysical Research - Biogeosciences. 2011;116:G01017.

    Google Scholar 

  114. Normand S, et al. Postglacial migration supplements climate in determining plant species ranges in Europe. Proceedings of the Royal Society B: Biological Sciences. 2011;278:3644–53. https://doi.org/10.1098/rspb.2010.2769.

    Article  Google Scholar 

  115. Fløjgaard C, Normand S, Skov F, Svenning J-C. Deconstructing the mammal species richness pattern in Europe – towards an understanding of the relative importance of climate, biogeographic history, habitat heterogeneity and humans. Glob Ecol Biogeogr. 2011;20:218–30. https://doi.org/10.1111/j.1466-8238.2010.00604.x.

    Article  Google Scholar 

  116. Jaramillo-Correa JP, Beaulieu J, Khasa DP, Bousquet J. Inferring the past from the present phylogeographic structure of North American forest trees: seeing the forest for the genes. Can J For Res. 2009;39:286–307.

    Article  Google Scholar 

  117. Bemmels JB, Dick CW. Genomic evidence of a widespread southern distribution during the Last Glacial Maximum for two eastern North American hickory species. J Biogeogr. 2018;45:1739–50. https://doi.org/10.1111/jbi.13358.

    Article  Google Scholar 

  118. Hewitt GM. Post-glacial re-colonization of European biota. Biol J Lin Soc. 1999;68:87–112.

    Article  Google Scholar 

  119. Imbrie, J. & Kipp, N. G. in The Late Cenozoic Glacial Ages (ed K. Turekian) 71–181 (Yale University Press, 1971).

  120. Birks, H. J. B. in Statistical modelling of Quaternary science data. Technical Guide 5 (eds D. Maddy & J. S. Brew) 116–254 (Quaternary Research Association, 1995).

  121. Rull V, Vegas-Vilarrúbia T, Montoya E. Neotropical vegetation responses to Younger Dryas climates as analogs for future climate change scenarios and lessons for conservation. Quatern Sci Rev. 2015;115:28–38. https://doi.org/10.1016/j.quascirev.2015.03.003.

    Article  Google Scholar 

  122. Morel AC, Nogue S. Combining contemporary and paleoecological perspectives for estimating forest resilience. Front For Glob Change. 2019;2:17. https://doi.org/10.3389/ffgc.2019.00057.

    Article  Google Scholar 

  123. Williams JW, et al. The Neotoma Paleoecology Database: a multi-proxy, international community-curated data resource. Quatern Res. 2018;89:156–77. https://doi.org/10.1017/qua.2017.105.

    Article  Google Scholar 

  124. Uhen, M. D., Buckland, P. I., Goring Simon, J., Jenkins, J. & Williams, J. W. The EarthLife Consortium API: an extensible, open-source service for accessing fossil data and taxonomies from multiple community paleodata resources. Frontiers of Biogeography e50711, doi:https://doi.org/10.21425/F5FBG50711 (2021).

  125. Lenoir J, Svenning JC. Climate-related rangeshifts—a global multidimensional synthesis and new research directions. Ecography. 2015;38:15–28.

    Article  Google Scholar 

  126. Rodman KC, et al. A changing climate is snuffing out post-fire recovery in montane forests. Glob Ecol Biogeogr. 2020. https://doi.org/10.1111/geb.13174.

  127. Marlon JR. What the past can say about the present and future of fire. Quatern Res. 2020;96:66–87. https://doi.org/10.1017/qua.2020.48.

    Article  Google Scholar 

  128. Hughes TP, et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science. 2018;359:80–3. https://doi.org/10.1126/science.aan8048.

    Article  CAS  Google Scholar 

  129. Snyder CW. Evolution of global temperature over the past two million years. Nature. 2016;538:226–8. https://doi.org/10.1038/nature19798.

    Article  CAS  Google Scholar 

  130. Sage RF, Coleman JR. Effects of low atmospheric CO2 on plants: more than a thing of the past. Trends Plant Sci. 2001;6:18–24.

    Article  CAS  Google Scholar 

  131. Claesson J, Nycander J. Combined effect of global warming and increased CO2-concentration on vegetation growth in water-limited conditions. Ecol Model. 2013;256:23–30. https://doi.org/10.1016/j.ecolmodel.2013.02.007.

    Article  CAS  Google Scholar 

  132. Ropars, P. et al. Different parts, different stories: climate sensitivity of growth is stronger in root collars vs. stems in tundra shrubs. Global Change Biology 23, 3281–3291, doi:https://doi.org/10.1111/gcb.13631 (2017).

  133. Lange J, et al. Moisture-driven shift in the climate sensitivity of white spruce xylem anatomical traits is coupled to large-scale oscillation patterns across northern treeline in northwest North America. Glob Change Biol. 2020;26:1842–56. https://doi.org/10.1111/gcb.14947.

    Article  Google Scholar 

  134. Hillebrand H, et al. Thresholds for ecological responses to global change do not emerge from empirical data. Nature Ecology & Evolution. 2020. https://doi.org/10.1038/s41559-020-1256-9.

    Article  Google Scholar 

  135. Scheffer M, Carpenter SR. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol. 2003;18:648–56.

    Article  Google Scholar 

  136. Vandvik V, et al. Biotic rescaling reveals importance of species interactions for variation in biodiversity responses to climate change. Proc Natl Acad Sci. 2020;117:22858–65. https://doi.org/10.1073/pnas.2003377117.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The ideas for this paper germinated during a visiting scholarship at the Institute for Advanced Study at Durham University. This paper benefitted from discussions with Matt McGlone, Adrian George, and Suzette Flantua. David Fastovich kindly assisted with figure development for Figures 2 and 4, while Sydney Widell assisted with the data compilation for Figure 3.

Funding

JWW was supported in part by the National Science Foundation (1855781, 1948926) and the Kellett Fellowship at UW-Madison.

Author information

Authors and Affiliations

Authors

Contributions

JWW led the writing and development of the paper, with all authors contributing to design and writing.

Corresponding author

Correspondence to John W. Williams.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Vegetation and Climate Change

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 34 KB)

Supplementary file2 (DOCX 36 KB)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, J.W., Huntley, B. & Seddon, A.W.R. Climate Sensitivity and Ecoclimate Sensitivity: Theory, Usage, and Past Implications for Future Biospheric Responses. Curr Clim Change Rep 8, 1–16 (2022). https://doi.org/10.1007/s40641-022-00179-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40641-022-00179-5

Keywords