Data Assimilation Improves Estimates of Climate-Sensitive Seasonal Snow


As the Earth warms, the spatial and temporal response of seasonal snow remains uncertain. The global snow science community estimates snow cover and mass with information from land surface models, numerical weather prediction, satellite observations, surface measurements, and combinations thereof. Accurate estimation of snow at the spatial and temporal scales over which snow varies has historically been challenged by the complexity of land cover and terrain and the large global extent of snow-covered regions. Like many Earth science disciplines, snow science is in an era of rapid advances as remote sensing products and models continue to gain granularity and physical fidelity. Despite clear progress, the snow science community continues to face challenges related to the accuracy of seasonal snow estimation. Namely, advances in snow modeling remain limited by uncertainties in modeling parameterization schemes and input forcings, and advances in remote sensing techniques remain limited by temporal, spatial, and technical constraints on the variables that can be observed. Accurate monitoring and modeling of snow improves our ability to assess Earth system conditions, trends, and future projections while serving highly valued global interests in water supply and weather forecasts. Thus, there is a fundamental need to understand and improve the errors and uncertainties associated with estimates of snow. A potential method to overcome model and observational shortcomings is data assimilation, which leverages the information content in both observations and models while minimizing their limitations due to uncertainty. This article proposes data assimilation as a way to reduce uncertainties in the characterization of seasonal snow changes and reviews current modeling, remote sensing, and data assimilation techniques applied to the estimation of seasonal snow. Finally, remaining challenges for seasonal snow estimation are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Albers DJ, Levine M, Gluckman B, Ginsberg H, Hripcsak G, Mamykina L. Personalized glucose forecasting for type 2 diabetes using data assimilation. PLoS Comput Biol. 2017;13(4):e1005232.

    Google Scholar 

  2. 2.

    Allchin MI, Déry SJ. A spatio-temporal analysis of trends in northern hemisphere snow-dominated area and duration, 1971–2014. Ann Glaciol. 2017;58(75pt1):21–35.

    Google Scholar 

  3. 3.

    Anderson MG, Burt TP, editors. Hydrological forecasting, vol. 372. Chichester: Wiley; 1985.

    Google Scholar 

  4. 4.

    Andreadis KM, Lettenmaier DP. Assimilating remotely sensed snow observations into a macroscale hydrology model. Adv Water Resour. 2006;29(6):872–86.

    Google Scholar 

  5. 5.

    Aoki T, Motoyoshi H, Kodama Y, Yasunari TJ, Sugiura K. Variations of the snow physical parameters and their effects on albedo in Sapporo, Japan. Ann Glaciol. 2007;46:375–81.

    Google Scholar 

  6. 6.

    Arulampalam MS, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process. 2002;50(2):174–88.

    Google Scholar 

  7. 7.

    Barnett TP, Adam JC, Lettenmaier DP. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature. 2005;438(7066):303–9.

    CAS  Google Scholar 

  8. 8.

    Barrett AP. National operational hydrologic remote sensing center snow data assimilation system (SNODAS) products at NSIDC. Boulder, CO: National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences; 2003. p. 19.

    Google Scholar 

  9. 9.

    Bavay M, Lehning M, Jonas T, Löwe H. Simulations of future snow cover and discharge in Alpine headwater catchments. Hydrol Process Int J. 2009;23(1):95–108.

    Google Scholar 

  10. 10.

    Berghuijs WR, Woods RA, Hutton CJ, Sivapalan M. Dominant flood generating mechanisms across the United States. Geophys Res Lett. 2016;43(9):4382–90.

    Google Scholar 

  11. 11.

    Bernier M, Fortin JP, Gauthier Y, Gauthier R, Roy R, Vincent P. Determination of snow water equivalent using RADARSAT SAR data in eastern Canada. Hydrol Process. 1999;13(18):3041–51.

    Google Scholar 

  12. 12.

    Bonan GB. The land surface climatology of the NCAR Land Surface Model coupled to the NCAR Community Climate Model. J Clim. 1998;11(6):1307–26.

    Google Scholar 

  13. 13.

    Bormann KJ, Brown RD, Derksen C, Painter TH. Estimating snow-cover trends from space. Nat Clim Chang. 2018;8(11):924–8.

    Google Scholar 

  14. 14.

    Brown and Derksen. Is Eurasian October snow cover extent increasing? Environ Res Lett. 2013.

  15. 15.

    Brown RD, Brasnett B. Updated annually. Canadian Meteorological Centre (CMC) daily snow depth analysis data, version 1. Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center; 2010.

    Google Scholar 

  16. 16.

    Brown RD, Brasnett B, Robinson D. Gridded North American monthly snow depth and snow water equivalent for GCM evaluation. Atmosphere-Ocean. 2003;41(1):1–14.

    Google Scholar 

  17. 17.

    Brown, et al. Arctic terrestrial snow cover. In: Snow, Water, Ice and Permafrost in the Arctic (SWIPA). Oslo, Norway: Arctic Monitoring and Assessment Programme (AMAP); 2017. p. 25–64.

    Google Scholar 

  18. 18.

    Brun E, David P, Sudul M, Brunot G. A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting. J Glaciol. 1992;38(128):13–22.

    Google Scholar 

  19. 19.

    Cantet P, Boucher MA, Lachance-Coutier S, Turcotte R, Fortin V. Using a particle filter to estimate the spatial distribution of the snowpack water equivalent. J Hydrometeorol. 2019;20(4):577–94.

    Google Scholar 

  20. 20.

    Carroll TR. Operational airborne measurements of snow water equivalent and soil moisture using terrestrial gamma radiation in the United States. In: Goodison B, Barry RG, Dozier J, editors. Large scale effects of seasonal snow cover (Proceedings of the Vancouver Symposium, August 1987). Vancouver, BC: IAHS; 1987. p. 213–23.

    Google Scholar 

  21. 21.

    Carroll T. Airborne gamma radiation snow survey program: a user’s guide, version 5.0. In: National Operational Hydrologic Remote Sensing Center (NOHRSC), Chanhassen; 2001. p. 14.

    Google Scholar 

  22. 22.

    Carroll SS, Carroll TR. Effect of uneven snow cover on airborne snow water equivalent estimates obtained by measuring terrestrial gamma radiation. Water Resour Res. 1989;25(7):1505–10.

    Google Scholar 

  23. 23.

    Chang ATC, Foster JL, Hall DK. Nimbus-7 SMMR derived global snow cover parameters. Ann Glaciol. 1987;9:39–44.

    Google Scholar 

  24. 24.

    Clark MP, Slater AG, Barrett AP, Hay LE, McCabe GJ, Rajagopalan B, et al. Assimilation of snow covered area information into hydrologic and land-surface models. Adv Water Resour. 2006;29(8):1209–21.

    Google Scholar 

  25. 25.

    Clark MP, Bierkens MF, Samaniego L, Woods RA, Uijlenhoet R, Bennett KE, et al. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism. Hydrology and Earth System Sciences (online). 2017;21(LA-UR-17-27603).

  26. 26.

    Clifford D. Global estimates of snow water equivalent from passive microwave instruments: history, challenges and future developments. Int J Remote Sens. 2010;31(14):3707–26.

    Google Scholar 

  27. 27.

    Cline DW, Bales RC, Dozier J. Estimating the spatial distribution of snow in mountain basins using remote sensing and energy balance modeling. Water Resour Res. 1998;34(5):1275–85.

    CAS  Google Scholar 

  28. 28.

    Cohen J, Entekhabi D. The influence of snow cover on northern hemisphere climate variability. Atmosphere-Ocean. 2001;39(1):35–53.

    Google Scholar 

  29. 29.

    Conde V, Nico G, Mateus P, Catalão J, Kontu A, Gritsevich M. On the estimation of temporal changes of snow water equivalent by spaceborne SAR interferometry: a new application for the Sentinel-1 mission. J Hydrol Hydromech. 2019;67(1):93–100.

    Google Scholar 

  30. 30.

    Cortés G, Girotto M, Margulis SA. Analysis of sub-pixel snow and ice extent over the extratropical Andes using spectral unmixing of historical Landsat imagery. Remote Sens Environ. 2014;141:64–78.

    Google Scholar 

  31. 31.

    Croce P, Formichi P, Landi F, Mercogliano P, Bucchignani E, Dosio A, et al. The snow load in Europe and the climate change. Clim Risk Manag. 2018;20:138–54.

    Google Scholar 

  32. 32.

    De Lannoy GJ, Reichle RH, Houser PR, Arsenault KR, Verhoest NE, Pauwels VR. Satellite-scale snow water equivalent assimilation into a high-resolution land surface model. J Hydrometeorol. 2010;11(2):352–69.

    Google Scholar 

  33. 33.

    De Lannoy GJ, Reichle RH, Arsenault KR, Houser PR, Kumar S, Verhoest NE, et al. Multiscale assimilation of advanced microwave scanning radiometer–EOS snow water equivalent and moderate resolution imaging Spectroradiometer snow cover fraction observations in northern Colorado. Water Resour Res. 2012;48(1).

  34. 34.

    de Rosnay P, Balsamo G, Albergel C, Munoz-Sabater J, Isaksen L. Initialisation of land surface variables for numerical weather prediction. Surv Geophys. 2014;35:607–21.

    Google Scholar 

  35. 35.

    Dechant C, Moradkhani H. Radiance data assimilation for operational snow and streamflow forecasting. Adv Water Resour. 2011;34(3):351–64.

    Google Scholar 

  36. 36.

    Deems JS, Painter TH, Finnegan DH. LiDAR measurements of snow depth: a review. J Glaciol. 2013;59(215):467–79.

    Google Scholar 

  37. 37.

    Derksen C. The contribution of AMSR-E 18.7 and 10.7 GHz measurements to improved boreal forest snow water equivalent retrievals. Remote Sens Environ. 2008;112(5):2701–10.

    Google Scholar 

  38. 38.

    Déry SJ, Brown RD. Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback. Geophys Res Lett. 2007;34(22).

  39. 39.

    Descamps S, Aars J, Fuglei E, Kovacs KM, Lydersen C, Pavlova O, et al. Climate change impacts on wildlife in a high Arctic archipelago–Svalbard, Norway. Glob Chang Biol. 2017;23(2):490–502.

    Google Scholar 

  40. 40.

    Dietz AJ, Kuenzer C, Gessner U, Dech S. Remote sensing of snow–a review of available methods. Int J Remote Sens. 2012;33(13):4094–134.

    Google Scholar 

  41. 41.

    Dirmeyer PA, Gao X, Zhao M, Guo Z, Oki T, Hanasaki N. GSWP-2: multimodel analysis and implications for our perception of the land surface. Bull Am Meteorol Soc. 2006;87(10):1381–98.

    Google Scholar 

  42. 42.

    Domine F, Salvatori R, Legagneux L, Salzano R, Fily M, Casacchia R. Correlation between the specific surface area and the short wave infrared (SWIR) reflectance of snow. Cold Reg Sci Technol. 2006;46(1):60–8.

    Google Scholar 

  43. 43.

    Dozier J. Spectral signature of alpine snow cover from the Landsat thematic mapper. Remote Sens Environ. 1989;28:9–22.

    Google Scholar 

  44. 44.

    Durand M, Margulis SA. Feasibility test of multifrequency radiometric data assimilation to estimate snow water equivalent. J Hydrometeorol. 2006;7(3):443–57.

    Google Scholar 

  45. 45.

    Durand M, Margulis SA. Correcting first-order errors in snow water equivalent estimates using a multifrequency, multiscale radiometric data assimilation scheme. J Geophys Res-Atmos. 2007;112(D13).

  46. 46.

    Durand M, Molotch NP, Margulis SA. A Bayesian approach to snow water equivalent reconstruction. J Geophys Res-Atmos. 2008;113(D20).

  47. 47.

    Dutra E, Schär C, Viterbo P, Miranda PM. Land-atmosphere coupling associated with snow cover. Geophys Res Lett. 2011;38(15).

  48. 48.

    Emery C, Fowler T, Haran J, Key J, Maslanik TS. AVHRR polar pathfinder twice-daily 5 km EASE-grid composites, version 3. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center; 2000.

    Google Scholar 

  49. 49.

    Essery R, Etchevers P. Parameter sensitivity in simulations of snowmelt. J Geophys Res-Atmos. 2004;109(D20).

  50. 50.

    Essery R, Martin E, Douville H, Fernandez A, Brun E. A comparison of four snow models using observations from an alpine site. Clim Dyn. 1999;15(8):583–93.

    Google Scholar 

  51. 51.

    Essery R, Rutter N, Pomeroy J, Baxter R, Stähli M, Gustafsson D, et al. SNOWMIP2: an evaluation of forest snow process simulations. Bull Am Meteorol Soc. 2009;90(8):1120–36.

    Google Scholar 

  52. 52.

    Evensen G. Data assimilation: the ensemble Kalman filter: Springer Science & Business Media; 2009.

  53. 53.

    Foster JL, Hall DK, Chang ATC, Rango A. An overview of passive microwave snow research and results. Rev Geophys. 1984;22(2):195–208.

    Google Scholar 

  54. 54.

    Foster J, Liston G, Koster R, Essery R, Behr H, Dumenil L, et al. Snow cover and snow mass intercomparisons of general circulation models and remotely sensed datasets. J Clim. 1996;9(2):409–26.

    Google Scholar 

  55. 55.

    Foster JL, Hall DK, Chang AT, Rango A, Wergin W, Erbe E. Effects of snow crystal shape on the scattering of passive microwave radiation. IEEE Trans Geosci Remote Sens. 1999;37(2):1165–8.

    Google Scholar 

  56. 56.

    Foster JL, Sun C, Walker JP, Kelly R, Chang A, Dong J, et al. Quantifying the uncertainty in passive microwave snow water equivalent observations. Remote Sens Environ. 2005;94(2):187–203.

    Google Scholar 

  57. 57.

    Frei A, Tedesco M, Lee S, Foster J, Hall DK, Kelly R, et al. A review of global satellite-derived snow products. Adv Space Res. 2012;50(8):1007–29.

    Google Scholar 

  58. 58.

    Gascoin S, Grizonnet M, Bouchet M, Salgues G, Hagolle O. Theia snow collection: high-resolution operational snow cover maps from Sentinel-2 and Landsat-8 data. Earth Syst Sci Data. 2019;11(2):493–514.

    Google Scholar 

  59. 59.

    Girotto M, Margulis SA, Durand M. Probabilistic SWE reanalysis as a generalization of deterministic SWE reconstruction techniques. Hydrol Process. 2014a;28(12):3875–95.

    Google Scholar 

  60. 60.

    Girotto M, Cortés G, Margulis SA, Durand M. Examining spatial and temporal variability in snow water equivalent using a 27 year reanalysis: K ern R iver watershed, Sierra Nevada. Water Resour Res. 2014b;50(8):6713–34.

    Google Scholar 

  61. 61.

    Girotto M, De Lannoy GJ, Reichle RH, Rodell M. Assimilation of gridded terrestrial water storage observations from GRACE into a land surface model. Water Resour Res. 2016;52(5):4164–83.

    Google Scholar 

  62. 62.

    Girotto M, De Lannoy GJ, Reichle RH, Rodell M, Draper C, Bhanja SN, et al. Benefits and pitfalls of GRACE data assimilation: a case study of terrestrial water storage depletion in India. Geophys Res Lett. 2017;44(9):4107–15.

    Google Scholar 

  63. 63.

    Girotto M, Reichle RH, Rodell M, Liu Q, Mahanama S, De Lannoy GJ. Multi-sensor assimilation of SMOS brightness temperature and GRACE terrestrial water storage observations for soil moisture and shallow groundwater estimation. Remote Sens Environ. 2019;227:12–27.

    Google Scholar 

  64. 64.

    Golding DL, Swanson RH. Snow accumulation and melt in small forest openings in Alberta. Can J For Res. 1978;8(4):380–8.

    Google Scholar 

  65. 65.

    Gong G, Entekhabi D, Cohen J, Robinson D. Sensitivity of atmospheric response to modeled snow anomaly characteristics. J Geophys Res-Atmos. 2004;109(D6).

  66. 66.

    Groffman PM, Driscoll CT, Fahey TJ, Hardy JP, Fitzhugh RD, Tierney GL. Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry. 2001;56(2):135–50.

    CAS  Google Scholar 

  67. 67.

    Hagopian J, Bolcar M, Chambers J, Crane A, Eegholm B, Evans T, et al. Advanced topographic laser altimeter system (ATLAS) receiver telescope assembly (RTA) and transmitter alignment and test. In: Earth Observing Systems XXI (Vol. 9972, p. 997207). International Society for Optics and Photonics; 2016, September.

    Google Scholar 

  68. 68.

    Hall DK, Martinec J. Remote sensing of snow and ice. Principles and Applications of Imaging Radar. 1985:677–703.

  69. 69.

    Hall DK, Riggs GA, Salomonson VV, DiGirolamo NE, Bayr KJ. MODIS snow-cover products. Remote Sens Environ. 2002;83(1–2):181–94.

    Google Scholar 

  70. 70.

    Hall DK, Box JE, Casey KA, Hook SJ, Shuman CA, Steffen K. Comparison of satellite-derived and in-situ observations of ice and snow surface temperatures over Greenland. Remote Sens Environ. 2008;112(10):3739–49.

    Google Scholar 

  71. 71.

    Hall DK, Riggs GA, DiGirolamo NE, Román MO. MODIS cloud-gap filled snow-cover products: advantages and uncertainties. Hydrol Earth Syst Sci Discuss. 2019:1–23.

  72. 72.

    Hammond JC, Saavedra FA, Kampf SK. Global snow zone maps and trends in snow persistence 2001–2016. Int J Climatol. 2018;38(12):4369–83.

    Google Scholar 

  73. 73.

    Helmert J, Şensoy Şorman A, Alvarado Montero R, De Michele C, de Rosnay P, Dumont M, et al. Review of snow data assimilation methods for hydrological, land surface, meteorological and climate models: results from a COST HarmoSnow survey. Geosciences. 2018;8(12):489.

    Google Scholar 

  74. 74.

    Henderson GR, Peings Y, Furtado JC, Kushner PJ. Snow–atmosphere coupling in the northern hemisphere. Nat Clim Chang. 2018;1.

  75. 75.

    Hori, et al. A 38-year (1978–2015) northern hemisphere daily now cover extent product derived using consistent objective criteria from satellite-borne optical sensors. Remote Sens Environ. 2017.

  76. 76.

    Houser PR. Improved disaster management using data assimilation. In: Approaches to disaster management-examining the implications of hazards, Emergencies and Disasters: IntechOpen; 2013.

  77. 77.

    Houser PR, Shuttleworth WJ, Famiglietti JS, Gupta HV, Syed KH, Goodrich DC. Integration of soil moisture remote sensing and hydrologic modeling using data assimilation. Water Resour Res. 1998;34(12):3405–20.

    Google Scholar 

  78. 78.

    Huang C, Newman AJ, Clark MP, Wood AW, Zheng X. Evaluation of snow data assimilation using the ensemble Kalman filter for seasonal streamflow prediction in the western United States. Hydrol Earth Syst Sci. 2017;21(1):635–50.

    Google Scholar 

  79. 79.

    Huntington TG. Evidence for intensification of the global water cycle: review and synthesis. J Hydrol. 2006;319(1–4):83–95.

    Google Scholar 

  80. 80.

    Janjić T, Bormann N, Bocquet M, Carton JA, Cohn SE, Dance SL, et al. On the representation error in data assimilation. Q J R Meteorol Soc. 2018;144(713):1257–78.

    Google Scholar 

  81. 81.

    Jepsen SM, Molotch NP, Williams MW, Rittger KE, Sickman JO. Interannual variability of snowmelt in the Sierra Nevada and Rocky Mountains, United States: examples from two alpine watersheds. Water Resour Res. 2012;48(2).

  82. 82.

    Jordan, R. (1991). A one-dimensional temperature model for a snow cover: technical documentation for SNTHERM. 89 (No. CRREL-SR-91-16). Cold regions research and engineering lab Hanover NH.

  83. 83.

    Jost G, Weiler M, Gluns DR, Alila Y. The influence of forest and topography on snow accumulation and melt at the watershed-scale. J Hydrol. 2007;347(1–2):101–15.

    Google Scholar 

  84. 84.

    Kelly R. The AMSR-E snow depth algorithm: description and initial results. J Remote Sens Soc Jpn. 2009;29(1):307–17.

    Google Scholar 

  85. 85.

    Kendra JR, Sarabandi K, Ulaby FT. Radar measurements of snow: experiment and analysis. IEEE Trans Geosci Remote Sens. 1998;36(3):864–79.

    Google Scholar 

  86. 86.

    Kim, E. J., Gatebe, C. K., Hall, D. K., & Kang, D. H. (2018). NASA’s SnowEx campaign and measuring global snow from space (GSFC-E-DAA-TN55784).

    Google Scholar 

  87. 87.

    Klein G, Vitasse Y, Rixen C, Marty C, Rebetez M. Shorter snow cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than to later snow onset. Clim Chang. 2016;139(3–4):637–49.

    Google Scholar 

  88. 88.

    Koster RD, Betts AK, Dirmeyer PA, Bierkens M, Bennett KE, Déry SJ, et al. Hydroclimatic variability and predictability: a survey of recent research. Hydrol Earth Syst Sci. 2017;21(7):3777–98.

    Google Scholar 

  89. 89.

    Krinner G, Derksen C, Essery R, Flanner M, Hagemann S, Clark M, et al. ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks. Geosci Model Dev. 2018;11:5027–49.

    Google Scholar 

  90. 90.

    Lahoz WA, Schneider P. Data assimilation: making sense of earth observation. Front Environ Sci. 2014;2:16.

    Google Scholar 

  91. 91.

    Lawrence DM, Slater AG, Tomas RA, Holland MM, Deser C. Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss. Geophys Res Lett. 2008;35(11).

  92. 92.

    Lehning M, Bartelt P, Brown B, Russi T, Stöckli U, Zimmerli M. SNOWPACK model calculations for avalanche warning based upon a new network of weather and snow stations. Cold Reg Sci Technol. 1999;30(1–3):145–57.

    Google Scholar 

  93. 93.

    Leisenring M, Moradkhani H. Snow water equivalent prediction using Bayesian data assimilation methods. Stoch Env Res Risk A. 2011;25(2):253–70.

    Google Scholar 

  94. 94.

    Lemmetyinen J, Pulliainen J, Arslan A, Kontu A, Rautiainen K, Vehviläinen J, et al. Analysis of active and passive microwave observations from the NoSREx campaign. In: 2011 IEEE International Geoscience and Remote Sensing Symposium: IEEE; 2011. p. 2737–40.

  95. 95.

    Lemmetyinen J, Derksen C, Rott H, Macelloni G, King J, Schneebeli M, et al. Retrieval of effective correlation length and snow water equivalent from radar and passive microwave measurements. Remote Sens. 2018;10(2):170.

    Google Scholar 

  96. 96.

    Li D, Durand M, Margulis SA. Potential for hydrologic characterization of deep mountain snowpack via passive microwave remote sensing in the Kern River basin, Sierra Nevada, USA. Remote Sens Environ. 2012;125:34–48.

    Google Scholar 

  97. 97.

    Li D, Lettenmaier DP, Margulis SA, Andreadis K. The value of accurate high-resolution and spatially continuous snow information to streamflow forecasts. J Hydrometeorol. 2019;20(4):731–49.

    Google Scholar 

  98. 98.

    Lievens H, Demuzere M, Marshall HP, Reichle RH, Brucker L, Brangers I, et al. Snow depth variability in the Northern Hemisphere mountains observed from space. Nat Commun. 2019;10(1):1–12.

    CAS  Google Scholar 

  99. 99.

    Lin P, Wei J, Yang ZL, Zhang Y, Zhang K. Snow data assimilation-constrained land initialization improves seasonal temperature prediction. Geophys Res Lett. 2016;43(21):11–423.

    Google Scholar 

  100. 100.

    Liu Y, Margulis S. Deriving Bias and uncertainty in MERRA-2 snowfall precipitation over High Mountain Asia. Front Earth Sci. 2019;7:280.

    Google Scholar 

  101. 101.

    Liu Y, Peters-Lidard CD, Kumar S, Foster JL, Shaw M, Tian Y, et al. Assimilating satellite-based snow depth and snow cover products for improving snow predictions in Alaska. Adv Water Resour. 2013;54:208–27.

    Google Scholar 

  102. 102.

    Lundquist J, Hughes M, Gutmann E, Kapnick S. Our skill in modeling mountain rain and snow is bypassing the skill of our observational networks. Bull Am Meteorol Soc. 2019;2019.

  103. 103.

    Luojus, K., Pullianinen, J., Takala, M., Lemmetyinen, J., Kangwa, M., Smolander, T., ... & Pinnock, S. (2013). ESA Globsnow: Algorithm Theoretical Basis Document-SWE-algorithm.

  104. 104.

    Margulis SA, Girotto M, Cortés G, Durand M. A particle batch smoother approach to snow water equivalent estimation. J Hydrometeorol. 2015;16(4):1752–72.

    Google Scholar 

  105. 105.

    Margulis SA, Cortés G, Girotto M, Durand M. A Landsat-era Sierra Nevada snow reanalysis (1985–2015). J Hydrometeorol. 2016;17(4):1203–21.

    Google Scholar 

  106. 106.

    Margulis SA, Fang Y, Li D, Lettenmaier DP, Andreadis K. The utility of infrequent snow depth images for deriving continuous space-time estimates of seasonal snow water equivalent. Geophys Res Lett. 2019;46(10):5331–40.

    Google Scholar 

  107. 107.

    Mätzler C, Wiesmann A. Extension of the microwave emission model of layered snowpacks to coarse-grained snow. Remote Sens Environ. 1999;70(3):317–25.

    Google Scholar 

  108. 108.

    Meiman J, Froehlich H, Dils RE. 1968. Snow accumulation in relation to elevation and forest canopy. Paper Presented at National Fall Meeting. American Geophysical Union: San Francisco; 8.

  109. 109.

    Miller SD, Lee TF, Fennimore RL. Satellite-based imagery techniques for daytime cloud/snow delineation from MODIS. J Appl Meteorol. 2005;44(7):987–97.

    Google Scholar 

  110. 110.

    Moller D, Andreadis KM, Bormann KJ, Hensley S, Painter TH. Mapping snow depth from Ka-band interferometry: proof of concept and comparison with scanning lidar retrievals. IEEE Geosci Remote Sens Lett. 2017;14(6):886–90.

    Google Scholar 

  111. 111.

    Molotch NP, Margulis SA. Estimating the distribution of snow-water equivalent using remotely sensed snow cover data and a spatially distributed snowmelt model: a multi-resolution, multi-sensor comparison. Adv Water Resour. 2008;31:1503–14.

    Google Scholar 

  112. 112.

    Molotch NP, Painter TH, Bales RC, Dozier J. Incorporating remotely-sensed snow albedo into a spatially-distributed snowmelt model. Geophys Res Lett. 2004;31(3).

  113. 113.

    Mote PW, Li S, Lettenmaier DP, Xiao M, Engel R. Dramatic declines in snowpack in the western US. Npj Climate Atmos Sc. 2018;1(1):2.

    Google Scholar 

  114. 114.

    Musselman KN, Pomeroy JW, Essery RL, Leroux N. Impact of windflow calculations on simulations of alpine snow accumulation, redistribution and ablation. Hydrol Process. 2015;29(18):3983–99.

    Google Scholar 

  115. 115.

    Musselman KN, Clark MP, Liu C, Ikeda K, Rasmussen R. Slower snowmelt in a warmer world. Nat Clim Chang. 2017;7(3):214–9.

    Google Scholar 

  116. 116.

    Musselman KN, Lehner F, Ikeda K, Clark MP, Prein AF, Liu C, et al. Projected increases and shifts in rain-on-snow flood risk over western North America. Nat Clim Chang. 2018;8(9):808.

    Google Scholar 

  117. 117.

    Nadim F, Kjekstad O, Peduzzi P, Herold C, Jaedicke C. Global landslide and avalanche hotspots. Landslides. 2006;3(2):159–73.

    Google Scholar 

  118. 118.

    Nagler T, Rott H, Ripper E, Bippus G, Hetzenecker M. Advancements for snowmelt monitoring by means of sentinel-1 SAR. Remote Sens. 2016;8(4):348.

    Google Scholar 

  119. 119.

    Navari M, Margulis SA, Tedesco M, Fettweis X, Alexander PM. Improving Greenland surface mass balance estimates through the assimilation of MODIS albedo: a case study along the K-transect. Geophys Res Lett. 2018;45(13):6549–56.

    Google Scholar 

  120. 120.

    Niu GY, Yang ZL, Mitchell KE, Chen F, Ek MB, Barlage M, et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J Geophys Res-Atmos. 2011;116(D12).

  121. 121.

    Notarnicola C. Hotspots of snow cover changes in global mountain regions over 2000–2018. Remote Sens Environ. 2020;243:111781.

    Google Scholar 

  122. 122.

    Oaida CM, Reager JT, Andreadis KM, David CH, Levoe SR, Painter TH, et al. A high-resolution data assimilation framework for snow water equivalent estimation across the Western United States and validation with the airborne snow observatory. J Hydrometeorol. 2019;20(3):357–78.

    Google Scholar 

  123. 123.

    Ohmura A. Physical basis for the temperature-based melt-index method. J Appl Meteorol. 2001;40(4):753–61.

    Google Scholar 

  124. 124.

    Painter TH, Rittger K, McKenzie C, Slaughter P, Davis RE, Dozier J. Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens Environ. 2009;113(4):868–79.

    Google Scholar 

  125. 125.

    Painter TH, Bryant AC, Skiles SM. Radiative forcing by light absorbing impurities in snow from MODIS surface reflectance data. Geophys Res Lett. 2012;39(17).

  126. 126.

    Painter TH, Berisford DF, Boardman JW, Bormann KJ, Deems JS, Gehrke F, et al. The airborne snow observatory: fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo. Remote Sens Environ. 2016;184:139–52.

    Google Scholar 

  127. 127.

    Peings Y, Douville H, Alkama R, Decharme B. Snow contribution to springtime atmospheric predictability over the second half of the twentieth century. Clim Dyn. 2011;37(5–6):985–1004.

    Google Scholar 

  128. 128.

    Peters-Lidard CD, Hossain F, Leung LR, McDowell N, Rodell M, Tapiador FJ, et al. 100 years of progress in hydrology. Meteorol Monogr. 2019;59:25–1.

    Google Scholar 

  129. 129.

    Pierce DW, Barnett TP, Hidalgo HG, Das T, Bonfils C, Santer BD, et al. Attribution of declining western US snowpack to human effects. J Clim. 2008;21(23):6425–44.

    Google Scholar 

  130. 130.

    Raleigh MS, Lundquist JD. Comparing and combining SWE estimates from the SNOW-17 model using PRISM and SWE reconstruction. Water Resour Res. 2012;48(1).

  131. 131.

    Raleigh MS, Livneh B, Lapo K, Lundquist JD. How does availability of meteorological forcing data impact physically based snowpack simulations? J Hydrometeorol. 2016;17(1):99–120.

    Google Scholar 

  132. 132.

    Rango A. Spaceborne remote sensing for snow hydrology applications. Hydrol Sci J. 1996;41(4):477–94.

    CAS  Google Scholar 

  133. 133.

    Rice R, Bales RC, Painter TH, Dozier J. Snow water equivalent along elevation gradients in the Merced and Tuolumne River basins of the Sierra Nevada. Water Resour Res. 2011;47(8).

  134. 134.

    Riggs, G. A., Hall, D. K., and Román, M. O.: MODIS snow products user guide for collection 6 (C6), available at:, 2016a.

  135. 135.

    Riggs, G. A., Hall, D. K., and Román, M. O.: VIIRS snow products user guide for collection 1 (C1), available at:, 2016b.

  136. 136.

    Riggs GA, Hall DK, Román MO. Overview of NASA’s MODIS and visible infrared imaging radiometer suite (VIIRS) snow-cover earth system data records. Earth Syst Sci Data. 2017;9(2):765–77.

    Google Scholar 

  137. 137.

    Rodell M, Houser PR. Updating a land surface model with MODIS-derived snow cover. J Hydrometeorol. 2004;5(6):1064–75.

    Google Scholar 

  138. 138.

    Rooney JF Jr. The urban snow hazard in the United States: an appraisal of disruption. Geogr Rev. 1967:538–59.

  139. 139.

    Rosenthal W, Dozier J. Automated mapping of montane snow cover at subpixel resolution from the Landsat Thematic Mapper. Water Resour Res. 1996;32(1):115–30.

    Google Scholar 

  140. 140.

    Rupp DE, Mote PW, Bindoff NL, Stott PA, Robinson DA. Detection and attribution of observed changes in northern hemisphere spring snow cover. J Clim. 2013;26(18):6904–14.

    Google Scholar 

  141. 141.

    Schlosser CA, Robock A, Vinnikov KY, Speranskaya NA, Xue Y. 18-year land-surface hydrology model simulations for a midlatitude grassland catchment in Valdai, Russia. Mon Weather Rev. 1997;125(12):3279–96.

    Google Scholar 

  142. 142.

    Schmidt RA. Properties of blowing snow. Rev Geophys. 1982;20(1):39–44.

    Google Scholar 

  143. 143.

    Schmugge TJ, Kustas WP, Ritchie JC, Jackson TJ, Rango A. Remote sensing in hydrology. Adv Water Resour. 2002;25(8):1367–85.

    Google Scholar 

  144. 144.

    Senan R, Orsolini YJ, Weisheimer A, Vitart F, Balsamo G, Stockdale TN, et al. Impact of springtime Himalayan–Tibetan Plateau snowpack on the onset of the Indian summer monsoon in coupled seasonal forecasts. Clim Dyn. 2016;47(9):2709–25.

    Google Scholar 

  145. 145.

    Shi J, Dozier J. Estimation of snow water equivalence using SIR-C/X-SAR. I Inferring snow density and subsurface properties. IEEE Transactions on Geoscience and Remote Sensing. 2000;38(6):2465–74.

    Google Scholar 

  146. 146.

    Skiles SM, Painter TH. Toward understanding direct absorption and grain size feedbacks by dust radiative forcing in snow with coupled snow physical and radiative transfer modeling. Water Resour Res. 2019;55:7362–78.

    Google Scholar 

  147. 147.

    Skiles SM, Flanner M, Cook JM, Dumont M, Painter TH. Radiative forcing by light-absorbing particles in snow. Nat Clim Chang. 2018;8(11):964–71.

    Google Scholar 

  148. 148.

    Slater AG, Clark MP. Snow data assimilation via an ensemble Kalman filter. J Hydrometeorol. 2006;7(3):478–93.

    Google Scholar 

  149. 149.

    Slater AG, Schlosser CA, Desborough CE, Pitman AJ, Henderson-Sellers A, Robock A, et al. The representation of snow in land surface schemes: results from PILPS 2 (d). J Hydrometeorol. 2001;2(1):7–25.

    Google Scholar 

  150. 150.

    Slater AG, Barrett AP, Clark MP, Lundquist JD, Raleigh MS. Uncertainty in seasonal snow reconstruction: relative impacts of model forcing and image availability. Adv Water Resour. 2013;55:165–77.

    Google Scholar 

  151. 151.

    Smyth EJ, Raleigh MS, Small EE. Particle filter data assimilation of monthly snow depth observations improves estimation of snow density and SWE. Water Resour Res. 2019;55(2):1296–311.

    Google Scholar 

  152. 152.

    Strozzi T, Matzler C. Backscattering measurements of alpine snowcovers at 5.3 and 35 GHz. IEEE Trans Geosci Remote Sens. 1998;36(3):838–48.

    Google Scholar 

  153. 153.

    Sturm M, Goldstein MA, Parr C. Water and life from snow: a trillion dollar science question. Water Resour Res. 2017;53(5):3534–44.

    Google Scholar 

  154. 154.

    Su H, Yang ZL, Niu GY, Dickinson RE. Enhancing the estimation of continental-scale snow water equivalent by assimilating MODIS snow cover with the ensemble Kalman filter. J Geophys Res-Atmos. 2008;113(D8).

  155. 155.

    Sun SF, Xue YK. Implementing a new snow scheme in simplified simple biosphere model. Adv Atmos Sci. 2001;18(3):335–54.

    Google Scholar 

  156. 156.

    Sun C, Walker JP, Houser PR. A methodology for snow data assimilation in a land surface model. J Geophys Res-Atmos. 2004;109(D8).

  157. 157.

    Tachiiri K, Shinoda M, Klinkenberg B, Morinaga Y. Assessing Mongolian snow disaster risk using livestock and satellite data. J Arid Environ. 2008;72(12):2251–63.

    Google Scholar 

  158. 158.

    Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM. GRACE measurements of mass variability in the earth system. Science. 2004;305(5683):503–5.

    CAS  Google Scholar 

  159. 159.

    Tarboton D, Bloschl G, Cooley K, Kimbauer R, Luce C. Spatial snow cover processes at Kiihtai and Reynolds Creek. Spatial Patterns in Catchment Hydrology. Observations and Modelling. 2001;158.

  160. 160.

    Tedesco M. Remote sensing of the cryosphere: Wiley; 2014.

  161. 161.

    Tedesco M, Pulliainen J, Takala M, Hallikainen M, Pampaloni P. Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data. Remote Sens Environ. 2004;90(1):76–85.

    Google Scholar 

  162. 162.

    Tedesco M, Derksen C, Pulliainen J. Hemispheric snow water equivalent: the need for a synergistic approach. EOS, Transactions American Geophysical Union. 2012;93(31):305–305.

    Google Scholar 

  163. 163.

    Thirel G, Salamon P, Burek P, Kalas M. Assimilation of MODIS snow cover area data in a distributed hydrological model using the particle filter. Remote Sens. 2013;5(11):5825–50.

    Google Scholar 

  164. 164.

    Toure A, Reichle R, Forman B, Getirana A, De Lannoy G. Assimilation of MODIS snow cover fraction observations into the NASA catchment land surface model. Remote Sens. 2018;10(2):316.

    Google Scholar 

  165. 165.

    Trujillo E, Molotch NP, Goulden ML, Kelly AE, Bales RC. Elevation-dependent influence of snow accumulation on forest greening. Nat Geosci. 2012;5(10):705–9.

    CAS  Google Scholar 

  166. 166.

    Viviroli D, Dürr HH, Messerli B, Meybeck M, Weingartner R. Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resour Res. 2007;43(7).

  167. 167.

    Walter MT, Brooks ES, McCool DK, King LG, Molnau M, Boll J. Process-based snowmelt modeling: does it require more input data than temperature-index modeling? J Hydrol. 2005;300(1–4):65–75.

    Google Scholar 

  168. 168.

    Wiesmann A, Mätzler C. Microwave emission model of layered snowpacks. Remote Sens Environ. 1999;70(3):307–16.

    Google Scholar 

  169. 169.

    Wu X, Che T, Li X, Wang N, Yang X. Slower snowmelt in spring along with climate warming across the northern hemisphere. Geophys Res Lett. 2018;45(22):12–331.

    Google Scholar 

  170. 170.

    Xu L, Dirmeyer P. Snow-atmosphere coupling strength in a global atmospheric model. Geophys Res Lett. 2011;38(13).

  171. 171.

    Xu L, Dirmeyer P. Snow–atmosphere coupling strength. Part I: effect of model biases. J Hydrometeorol. 2013;14(2):389–403.

    Google Scholar 

  172. 172.

    Zhao L, Yang ZL. Multi-sensor land data assimilation: toward a robust global soil moisture and snow estimation. Remote Sens Environ. 2018;216:13–27.

    Google Scholar 

  173. 173.

    Zsoter E, Cloke H, Stephens E, de Rosnay P, Muñoz-Sabater J, Prudhomme C, et al. How well do operational numerical weather prediction configurations represent hydrology? J Hydrometeorol. 2019;20(8):1533–52.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Manuela Girotto.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Climate Change and Snow/Sea Ice

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Girotto, M., Musselman, K.N. & Essery, R.L.H. Data Assimilation Improves Estimates of Climate-Sensitive Seasonal Snow. Curr Clim Change Rep 6, 81–94 (2020).

Download citation


  • Data assimilation
  • Seasonal snow
  • Remote sensing of snow
  • Modeling of snow
  • Climate change