Current Climate Change Reports

, Volume 5, Issue 3, pp 221–232 | Cite as

Carbon Cycling in Global Drylands

  • Rattan LalEmail author
Carbon Cycle and Climate (K Zickfeld, JR Melton and N Lovenduski, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Carbon Cycle and Climate


Purpose of Review

The aim of this paper is to describe the carbon cycle in drylands in relation to the processes, factors, and causes affecting it. A specific focus is placed on both biotic and abiotic mechanisms of carbon sequestration in drylands in relation to mitigation of the anthropogenic climate change.

Recent Findings

Global dryland area is increasing along with an increase in risks of desertification, salinization, and eolian/hydrologic processes of accelerated soil erosion with strong impacts on the carbon cycle. Nonetheless, drylands contribute strongly towards the land-based sink of the atmospheric carbon dioxide through sequestration of carbon in the soil, ground water, and biomass. Thus, dryland ecosystems affect inter-annual variability in the global carbon cycle and create a negative feedback through carbon sequestration.


Global drylands, covering 66.7 M km2 or 45.36% of the Earth’s land area, strongly impact the ecosystem carbon stock, contribute to the land-based carbon sink, and provide a negative feedback to the global carbon cycle. Whereas the net primary productivity is limited by the water scarcity, especially in hyper-arid and arid ecoregions, sequestration of inorganic carbon in soil and ground water is an important control of the carbon cycle. Desertification, caused by eolian and hydrologic erosion along with salinization, must be controlled and reversed to enhance carbon sequestration, achieve land degradation neutrality, and create a negative feedback. Carbon sequestration strategy recognizes “soil” as a rights holder to be protected, restored and naturally evolve.


Carbon sequestration Secondary carbonates Desertification Global carbon cycle Drylands 


Compliance with Ethical Standards

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest. The research is sponsored by the Carbon Management and Sequestration Center of The Ohio State University, Columbus, Ohio, 43210, USA.


  1. 1.
    Middleton N, Thomas D. World atlas of desertification. Second Edi. Routledge; 1997.Google Scholar
  2. 2.
    Safriel U, Adeel Z, Niemeijer D, Puigdefabres J, White R, et al. Dryland systems. In: Ecosyst Hum Wellbeing Curr state trends; 2005.Google Scholar
  3. 3.
    D’Odorico P, Bhattachan A, Davis KF, Ravi S, Runyan CW. Global desertification: drivers and feedbacks. Adv Water Resour. 2013;51:326–44.CrossRefGoogle Scholar
  4. 4.
    Plaza C, Zaccone C, Sawicka K, Méndez AM, Tarquis A, Gascó G, et al. Soil resources and element stocks in drylands to face global issues. Sci Rep. 2018;8:13788.CrossRefGoogle Scholar
  5. 5.
    Prăvălie R. Drylands extent and environmental issues. A global approach. Earth-Science Rev. 2016;161:259–78.CrossRefGoogle Scholar
  6. 6.
    Huang J, Yu H, Guan X, Wang G, Guo R. Accelerated dryland expansion under climate change. Nat Clim Chang. 2016;6:166–71.CrossRefGoogle Scholar
  7. 7.
    Lal R. Carbon sequestration in dryland ecosystems. Environ Manag. 2004;33:528–44.CrossRefGoogle Scholar
  8. 8.
    FAO. Carbon sequestration in dryland soils. Rome, Italy; 2004.Google Scholar
  9. 9.
    Bai SG, Jiao Y, Yang WZ, Gu P, Yang J, Liu LJ. Review of progress in soil inorganic carbon research. IOP Conf Ser Earth Environ Sci. 2017;100:012129.CrossRefGoogle Scholar
  10. 10.
    Eswaran H, Reich P, Kimble J, Beinroth F, Padmanabhan E, Moncharoen P. Global carbon stock. In: Lal R, editor. Glob Clim Chang pedogenic carbonates. Boca Raton: Lewis Publications; 2000. p. 15–25.Google Scholar
  11. 11.
    Poulter B, Frank D, Ciais P, Myneni RB, Andela N, Bi J, et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature. 2014;509:600–3.CrossRefGoogle Scholar
  12. 12.
    Blakemore R. Non-flat earth recalibrated for terrain and topsoil. Soil Syst. 2018;2:64.CrossRefGoogle Scholar
  13. 13.
    Marion GM, Verburg PSJ, McDonald EV, Arnone JA. Modeling salt movement through a Mojave Desert soil. J Arid Environ. 2008;72:1012–33.CrossRefGoogle Scholar
  14. 14.
    Serrano-Ortiz P, Sánchez-Cañete EP, Oyonarte C. The carbon cycle in drylands. Recarbonization Biosph Ecosyst Glob Carbon Cycle. Dordrecht: Springer; 2012. p. 347–68.Google Scholar
  15. 15.
    Wiesmeier M, Barthold F, Blank B, Kögel-Knabner I. Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem. Plant Soil. 2011;340:7–24.CrossRefGoogle Scholar
  16. 16.
    Xu W, Chen X, Lou G. Development of soil carbon cycle research and the prospect of soil carbon cycle research in arid areas. Arid L Geogr. 2011;34:614–20.Google Scholar
  17. 17.
    Yang L, Li G. Progress in soil inorganic carbon research. Chinese J Soil Sci. 2011;42:986–90.Google Scholar
  18. 18.
    Yu J, Fang L, Bian Z. Research progress of soil carbon pool. Acta Ecol Sin. 2014;34:4829–38.CrossRefGoogle Scholar
  19. 19.
    Monger C, Kraimer RA, Khresat S, Cole DR, Wang X, Wang J. Sequestration of inorganic carbon in soil and groundwater. Geology. 2015;43:375–8.CrossRefGoogle Scholar
  20. 20.
    Wohlfahrt G, Fenstermaker LF, Arnone Iii JA. Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem. Glob Chang Biol. 2008;14:1475–87.CrossRefGoogle Scholar
  21. 21.
    Wang J, Monger C, Wang X, Serena M, Leinauer B. Carbon sequestration in response to Grassland–Shrubland–Turfgrass conversions and a test for carbonate biomineralization in desert soils, New Mexico, USA. Soil Sci Soc Am J. 2016;80:1591–603.CrossRefGoogle Scholar
  22. 22.
    Díaz-Hernández JL, Barahona Fernández E, Linares González J. Organic and inorganic carbon in soils of semiarid regions: a case study from the Guadix-Baza basin (Southeast Spain). Geoderma. 2003;114:65–80.CrossRefGoogle Scholar
  23. 23.
    Schlesinger W. Inorganic carbon: global carbon cycle. In: Lal R, editor. Encycl Soil Sci. Boca Raton: Taylor & Francis; 2006. p. 1203–5.Google Scholar
  24. 24.
    Laban P, Metternicht G, Davies J. Soil biodiversity and soil organic carbon: keeping drylands alive. Soil Biodivers. soil Org. carbon Keep. drylands alive. Gland, Switzerland. 2018.Google Scholar
  25. 25.
    Fan J, Zhong H, Harris W, Yu G, Wang S, Hu Z, et al. Carbon storage in the grasslands of China based on field measurements of above- and below-ground biomass. Clim Chang. 2008;86:375–96.CrossRefGoogle Scholar
  26. 26.
    Perez-Quezada JF, Delpiano CA, Snyder KA, Johnson DA, Franck N. Carbon pools in an arid shrubland in Chile under natural and afforested conditions. J Arid Environ. 2011;75:29–37.CrossRefGoogle Scholar
  27. 27.
    He N, Yu Q, Wu L, Wang Y, Han X. Carbon and nitrogen store and storage potential as affected by land-use in a Leymus chinensis grassland of northern China. Soil Biol Biochem. 2008;40:2952–9.CrossRefGoogle Scholar
  28. 28.
    Glenday J. Carbon storage and emissions offset potential in an African dry forest, the Arabuko-Sokoke Forest, Kenya. Environ Monit Assess. 2008;142:85–95.CrossRefGoogle Scholar
  29. 29.
    Goudie A, Wilkinson J. A warm desert environment (Cambridge topics in geography). Cambridge: Cambridge University Press; 1977.Google Scholar
  30. 30.
    Verrecchia EP, Dumont JL, Rolko KE. Do fungi building limestones exist in semi-arid regions? Naturwissenschaften. 1990;77:584–856.CrossRefGoogle Scholar
  31. 31.
    Delgado G, Delgado R, Párraga J, Rivadeneyra MA, Aranda V. Precipitation of carbonates and phosphates by bacteria in extract solutions from a semi-arid saline soil. Influence of Ca2+ and Mg2+ concentrations and Mg2+/Ca2+ molar ratio in biomineralization. Geomicrobiol J. 2008;25:1–3.CrossRefGoogle Scholar
  32. 32.
    Allen DE, Pringle MJ, Page KL, Dalal RC. A review of sampling designs for the measurement of soil organic carbon in Australian grazing lands. Rangel J. 2010;32:227–46.CrossRefGoogle Scholar
  33. 33.
    Smith MD. An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J Ecol. 2011;99:656–63.CrossRefGoogle Scholar
  34. 34.
    Frank D, Reichstein M, Bahn M, Thonicke K, Frank D, Mahecha MD, et al. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob Chang Biol. 2015;21:2861–80.CrossRefGoogle Scholar
  35. 35.
    Sippel S, Reichstein M, Ma X, Mahecha MD, Lange H, Flach M, et al. Drought, heat, and the carbon cycle: a review. Curr Clim Chang Rep. 2018;4:266–86.CrossRefGoogle Scholar
  36. 36.
    Ravi S, Breshears DD, Huxman TE, D’Odorico P. Land degradation in drylands: interactions among hydrologic-aeolian erosion and vegetation dynamics. Geomorphology. 2010;116:236–45.CrossRefGoogle Scholar
  37. 37.
    Li C, Zhang C, Luo G, Chen X, Maisupova B, Madaminov AA, et al. Carbon stock and its responses to climate change in Central Asia. Glob Chang Biol. 2015;21:1951–67.CrossRefGoogle Scholar
  38. 38.
    DeLong C, Cruse R, Wiener J. The soil degradation paradox: compromising our resources when we need them the most. Sustain. 2015;7:866–79.CrossRefGoogle Scholar
  39. 39.
    Ibrahim YZ, Balzter H, Kaduk J, Tucker CJ. Land degradation assessment using residual trend analysis of GIMMS NDVI3g, soil moisture and rainfall in sub-Saharan West Africa from 1982 to 2012. Remote Sens. 2015;7:5471–94.CrossRefGoogle Scholar
  40. 40.
    Tully K, Sullivan C, Weil R, Sanchez P. The state of soil degradation in sub-Saharan Africa: baselines, trajectories, and solutions. Sustain. 2015;7:6523–52.CrossRefGoogle Scholar
  41. 41.
    Zingore S, Mutegi J, Agesa B, Tamene L, Kihara J. Soil degradation in sub-Saharan Africa and crop production options for soil rehabilitation. Better Crop. 2015;99:24–6.Google Scholar
  42. 42.
    Lal R. Soil erosion and the global carbon budget. Environ Int. 2003;29:437–50.CrossRefGoogle Scholar
  43. 43.
    Tamene L, Le QB. Estimating soil erosion in sub-Saharan Africa based on landscape similarity mapping and using the revised universal soil loss equation (RUSLE). Nutr Cycl Agroecosyst. 2015;102:17–31.CrossRefGoogle Scholar
  44. 44.
    Darwish T, Fadel A. Mapping of soil organic carbon stock in the Arab countries to mitigate land degradation. Arab J Geosci. 2017;10:474.CrossRefGoogle Scholar
  45. 45.
    Brazier RE, Turnbull L, Wainwright J, Bol R. Carbon loss by water erosion in drylands: implications from a study of vegetation change in the south-west USA. Hydrol Process. 2014;28:2212–22.CrossRefGoogle Scholar
  46. 46.
    Turnbull L, Wainwright J, Brazier RE. A conceptual framework for understanding semi-arid land degradation: ecohydrological interactions across multiple-space and time scales. Ecohydrol Ecosyst L Water Process Interact Ecohydrogeomorphol. 2008;1:23–34.Google Scholar
  47. 47.
    Turnbull L, Wainwright J, Brazier RE. Changes in hydrology and erosion over a transition from grassland to shrubland. Hydrol Process. 2010;24:393–414.Google Scholar
  48. 48.
    Chappell A, Webb NP, Leys JF, Waters CM, Orgill S, Eyres MJ. Minimising soil organic carbon erosion by wind is critical for land degradation neutrality. Environ Sci Pol. 2019;93:43–52.CrossRefGoogle Scholar
  49. 49.
    Cowie AL, Orr BJ, Castillo Sanchez VM, Chasek P, Crossman ND, Erlewein A, et al. Land in balance: the scientific conceptual framework for land degradation neutrality. Environ Sci Pol. 2018;79:25–35.CrossRefGoogle Scholar
  50. 50.
    FAO. Global network on integrated soil management for sustainable use of salt-affected soils. Rome, Italy; 2005.Google Scholar
  51. 51.
    Rengasamy P. Salinity in the landscape: a growing problem in Australia. Geotimes. 2008;53:34.Google Scholar
  52. 52.
    Setia R, Gottschalk P, Smith P, Marschner P, Baldock J, Setia D, et al. Soil salinity decreases global soil organic carbon stocks. Sci Total Environ. 2013;465:267–72.CrossRefGoogle Scholar
  53. 53.
    Lal R. Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. Bioscience. 2010;60:708–21.CrossRefGoogle Scholar
  54. 54.
    Rutledge S, Campbell DI, Baldocchi D, Schipper LA. Photodegradation leads to increased carbon dioxide losses from terrestrial organic matter. Glob Chang Biol. 2010;16:3065–74.Google Scholar
  55. 55.
    Austin AT, Vivanco L. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature. 2006;442:555–8.CrossRefGoogle Scholar
  56. 56.
    Brandt LA, Bonnet C, King JY. Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems. J Geophys Res Biogeosci. 2009;114:G022004.Google Scholar
  57. 57.
    Chambers A, Lal R, Paustian K. Soil carbon sequestration potential of US croplands and grasslands: implementing the 4 per thousand initiative. J Soil Water Conserv. 2016;71:68A–76A.CrossRefGoogle Scholar
  58. 58.
    Hoyle FC, D’Antuono M, Overheu T, Murphy DV. Capacity for increasing soil organic carbon stocks in dryland agricultural systems. Soil Res. 2014;51:657–67.CrossRefGoogle Scholar
  59. 59.
    Farage PK, Ardö J, Olsson L, Rienzi EA, Ball AS, Pretty JN. The potential for soil carbon sequestration in three tropical dryland farming systems of Africa and Latin America: a modelling approach. Soil Tillage Res. 2007;94:457–72.CrossRefGoogle Scholar
  60. 60.
    Guenet B, Camino-Serrano M, Ciais P, Tifafi M, Maignan F, Soong JL, et al. Impact of priming on global soil carbon stocks. Glob Chang Biol. 2018;24:1873–83.CrossRefGoogle Scholar
  61. 61.
    Keller AA, Goldstein RA. Impact of carbon storage through restoration of drylands on the global carbon cycle. Environ Manag. 1998;22:757–66.CrossRefGoogle Scholar
  62. 62.
    Lal R. Potential of desertification control to sequester carbon and mitigate the greenhouse effect. Clim Chang. 2001;15:35–72.CrossRefGoogle Scholar
  63. 63.
    Squires V, Glenn E, Ayoub A. Combating global climate change by combating land degradation. Nairobi, Kenya: United Nations Environment Programme; 1995.Google Scholar
  64. 64.
    Le Quéré C, Andrew RM, Friedlingstein P, Sitch S, Pongratz J, et al. Global carbon budget 2017. Earth Syst Sci Data. 2018;10:405–48.CrossRefGoogle Scholar
  65. 65.
    Lal R, Hassan H, Dumanski J. Desertification control to sequester C and mitigate the greenhouse effect. In: Carbon sequestration soils Sci Monit beyond; 1999. p. 83–107.Google Scholar
  66. 66.
    Schlesinger WH. An evaluation of abiotic carbon sinks in deserts. Glob Chang Biol. 2017;23:25–7.CrossRefGoogle Scholar
  67. 67.
    Zimov SA, Schuur EAG, Stuart Chapin F. Permafrost and the global carbon budget. Science (80- ). 2006;312:1612–3.CrossRefGoogle Scholar
  68. 68.
    WMO. Greenhouse Gas Bulletin: The state of the greenhouse gases in the atmosphere based on global observations through 2017. Switzerland: Geneva; 2018.Google Scholar
  69. 69.
    Overeem I, Jafarov E, Wang K, Schaefer K, Stewart S, Clow G, et al. Modeling the melting permafrost. Eos (Washington DC). 2019;100:30–4.Google Scholar
  70. 70.
    Evans RD, Koyama A, Sonderegger DL, Charlet TN, Newingham BA, Fenstermaker LF, et al. Greater ecosystem carbon in the Mojave Desert after ten years exposure to elevated CO 2. Nat Clim Chang. 2014;4:394–7.CrossRefGoogle Scholar
  71. 71.
    Baldocchi D, Penuelas J. The physics and ecology of mining carbon dioxide from the atmosphere by ecosystems. Glob Chang Biol. 2019;25:1191–7.CrossRefGoogle Scholar
  72. 72.
    Chapin FS, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD, et al. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems. 2006;9:1041–50.CrossRefGoogle Scholar
  73. 73.
    UNCCD. The great green wall for the Sahara: the global mechanism. Bonn, Germany; 2015.Google Scholar
  74. 74.
    Herrmann SM, Anyamba A, Tucker CJ. Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Glob Environ Chang. 2005;15:394–404.CrossRefGoogle Scholar
  75. 75.
    Trost B, Prochnow A, Drastig K, Meyer-Aurich A, Ellmer F, Baumecker M. Irrigation, soil organic carbon and N2O emissions. A review. Agron Sustain Dev. 2013;33:733–49.CrossRefGoogle Scholar
  76. 76.
    Haverd V, Raupach MR, Briggs PR, Canadell JG, Davis SJ, Law RM, et al. The Australian terrestrial carbon budget. Biogeosciences. 2013;10:851–69.CrossRefGoogle Scholar
  77. 77.
    Cleverly J, Boulain N, Villalobos-Vega R, Grant N, Faux R, Wood C, et al. Dynamics of component carbon fluxes in a semi-arid Acacia woodland, central Australia. J Geophys Res Biogeosci. 2013;118:1168–85.CrossRefGoogle Scholar
  78. 78.
    Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, et al. Persistence of soil organic matter as an ecosystem property. Nature. 2011;478:49–56.CrossRefGoogle Scholar
  79. 79.
    Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP. Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Chang Biol. 2012;18:1781–96.CrossRefGoogle Scholar
  80. 80.
    Lehmann J, Kleber M. The contentious nature of soil organic matter. Nature. 2015;528:60.CrossRefGoogle Scholar
  81. 81.
    Vidal A, Hirte J, Bender SF, Mayer J, Gattinger A, Höschen C, et al. Linking 3D soil structure and plant-microbe-soil carbon transfer in the rhizosphere. Front Environ Sci. 2018;6:9.CrossRefGoogle Scholar
  82. 82.
    Blankinship JC, Berhe AA, Crow SE, Druhan JL, Heckman KA, Keiluweit M, et al. Improving understanding of soil organic matter dynamics by triangulating theories, measurements, and models. Biogeochemistry. 2018;140:1–3.CrossRefGoogle Scholar
  83. 83.
    Gao Y, Tian J, Pang Y, Liu J. Soil inorganic carbon sequestration following afforestation is probably induced by pedogenic carbonate formation in Northwest China. Front Plant Sci. 2017;8:1282.CrossRefGoogle Scholar
  84. 84.
    Wang JP, Wang XJ, Zhang J, Zhao CY. Soil organic and inorganic carbon and stable carbon isotopes in the Yanqi Basin of northwestern China. Eur J Soil Sci. 2015;66:95–103.CrossRefGoogle Scholar
  85. 85.
    Han X, Gao G, Chang R, Li Z, Ma Y, Wang S, et al. Changes in soil organic and inorganic carbon stocks in deep profiles following cropland abandonment along a precipitation gradient across the Loess Plateau of China. Agric Ecosyst Environ. 2018;258:1–3.CrossRefGoogle Scholar
  86. 86.
    Scharlemann JPW, Tanner EVJ, Hiederer R, Kapos V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014;5:81–91.CrossRefGoogle Scholar
  87. 87.
    Kremen C, Merenlender AM. Landscapes that work for biodiversity and people. Science (80- ). 2018;362:eaau6020.CrossRefGoogle Scholar
  88. 88.
    Schlesinger WH, Amundson R. Managing for soil carbon sequestration: let’s get realistic. Glob Chang Biol. 2019;25:386–9.Google Scholar
  89. 89.
    Chapron G, Epstein Y, López-Bao JV. A rights revolution for nature: introduction of legal rights for nature could protect natural systems from destruction. Science (80- ). 2019;363:1392–3.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Carbon Management and Sequestration CenterThe Ohio State UniversityColumbusUSA

Personalised recommendations