Influence of Fire on the Carbon Cycle and Climate

Abstract

Purpose of Review

Understanding of how fire affects the carbon cycle and climate is crucial for climate change adaptation and mitigation strategies. As those are often based on Earth system model simulations, we identify recent progress and research needs that can improve the model representation of fire and its impacts.

Recent Findings

New constraints of fire effects on the carbon cycle and climate are provided by the quantification of the carbon ages and effects of vegetation types and traits. For global scale modelling, the low understanding of the human–fire relationship is limiting.

Summary

Recent developments allow improvements in Earth system models with respect to the influences of vegetation on climate, peatland burning and the pyrogenic carbon cycle. Better understanding of human influences is required. Given the impacts of fire on carbon storage and climate, thorough understanding of the effects of fire in the Earth system is crucial to support climate change mitigation and adaptation.

This is a preview of subscription content, log in to check access.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Grassi G, House J, Dentener F, Federici S, den Elzen M, Penman J. The key role of forests in meeting climate targets requires science for credible mitigation. Nat Clim Chang. 2017;7:220–6.

    Article  Google Scholar 

  2. 2.

    Crutzen PJ, Andreae MO. Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science. 1990;250:1669–78.

    CAS  Article  Google Scholar 

  3. 3.

    Seiler W, Crutzen PJ. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim Chang. 1980;2:207–47.

    CAS  Article  Google Scholar 

  4. 4.

    Bond WJ, Woodward FI, Midgley GF. The global distribution of ecosystems in a world without fire. New Phytol. 2005;165:525–37.

    CAS  Article  Google Scholar 

  5. 5.

    Ward DS, Kloster S, Mahowald NM, Rogers BM, Randerson JT, Hess PG. The changing radiative forcing of fires: global model estimates for past, present and future. Atmos Chem Phys. 2012;12:10857–86.

    CAS  Article  Google Scholar 

  6. 6.

    Chen Y, Randerson JT, Van Der Werf GR, Morton DC, Mu M, Kasibhatla PS. Nitrogen deposition in tropical forests from savanna and deforestation fires. Glob Chang Biol. 2010;16:2024–38.

    Article  Google Scholar 

  7. 7.

    Mahowald NM, Artaxo P, Baker AR, Jickells TD, Okin GS, Randerson JT, et al. Impacts of biomass burning emissions and land use change on Amazonian atmospheric phosphorus cycling and deposition. Glob Biogeochem Cycles. 2005;19. https://doi.org/10.1029/2005GB002541.

  8. 8.

    Voulgarakis A, Field RD. Fire influences on atmospheric composition, air quality and climate. Curr Pollution Rep. 2015;1:70–81.

    Article  Google Scholar 

  9. 9.

    Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, et al. Fire in the Earth system. Science. 2009;324:481–4.

    CAS  Article  Google Scholar 

  10. 10.

    Landry J-S, Matthews HD, Ramankutty N. A global assessment of the carbon cycle and temperature responses to major changes in future fire regime. Clim Chang. 2015;133:179–92.

    Article  Google Scholar 

  11. 11.

    Archibald S, Lehmann CER, Belcher CM, Bond WJ, Bradstock RA, Daniau AL, et al. Biological and geophysical feedbacks with fire in the Earth system. Environ Res Lett. 2018;13:033003.

    Article  Google Scholar 

  12. 12.

    Randerson JT, Liu H, Flanner MG, Chambers SD, Jin Y, Hess PG, et al. The impact of boreal forest fire on climate warming. Science. 2006;314:1130–2.

    CAS  Article  Google Scholar 

  13. 13.

    • Hantson S, Arneth A, Harrison SP, et al. The status and challenge of global fire modelling. Biogeosciences. 2016;13:3359–75 This paper provides an overview of global modelling approaches and their history.

    Article  Google Scholar 

  14. 14.

    Kloster S, Lasslop G. Historical and future fire occurrence (1850 to 2100) simulated in CMIP5 Earth System Models. Glob Planet Change. 2017;150:58–69.

    Article  Google Scholar 

  15. 15.

    Rabin SS, Melton JR, Lasslop G, Bachelet D, Forrest M, Hantson S, et al. The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions. Geosci Model Dev. 2017;10:1175–97.

    CAS  Article  Google Scholar 

  16. 16.

    Forkel M, Andela N, Harrison SP, Lasslop G, van Marle M, Chuvieco E, et al. Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences. 2019;16(1):57–76. https://doi.org/10.5194/bg-16-57-2019.

  17. 17.

    Li F, Bond-Lamberty B, Levis S. Quantifying the role of fire in the Earth system—part 2: impact on the net carbon balance of global terrestrial ecosystems for the 20th century. Biogeosciences. 2014;11:1345–60.

    Article  CAS  Google Scholar 

  18. 18.

    Yue C, Ciais P, Cadule P, Thonicke K, van Leeuwen TT. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE—part 2: carbon emissions and the role of fires in the global carbon balance. Geosci Model Dev. 2015;8:1321–38.

    CAS  Article  Google Scholar 

  19. 19.

    Poulter B, Cadule P, Cheiney A, Ciais P, Hodson E, Peylin P, et al. Sensitivity of global terrestrial carbon cycle dynamics to variability in satellite-observed burned area. Glob Biogeochem Cycles. 2015;29:207–22.

    CAS  Article  Google Scholar 

  20. 20.

    Yang J, Tian H, Tao B, Ren W, Lu C, Pan S, et al. Century-scale patterns and trends of global pyrogenic carbon emissions and fire influences on terrestrial carbon balance. Glob Biogeochem Cycles. 2015;29:1549–66.

    CAS  Article  Google Scholar 

  21. 21.

    Higgins SI, Scheiter S. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature. 2012;488:209–12.

    CAS  Article  Google Scholar 

  22. 22.

    Baudena M, Dekker SC, van Bodegom PM, Cuesta B, Higgins SI, Lehsten V, et al. Forests, savannas, and grasslands: bridging the knowledge gap between ecology and Dynamic Global Vegetation Models. Biogeosciences. 2015;12:1833–48.

    Article  Google Scholar 

  23. 23.

    Lasslop G, Brovkin V, Reick CH, Bathiany S, Kloster S. Multiple stable states of tree cover in a global land surface model due to a fire-vegetation feedback. Geophys Res Lett. 2016;43:6324–31.

    Article  Google Scholar 

  24. 24.

    Yue C, Ciais P, Zhu D, Wang T, Peng SS, Piao SL. How have past fire disturbances contributed to the current carbon balance of boreal ecosystems? Biogeosciences. 2016;13:675–90.

    CAS  Article  Google Scholar 

  25. 25.

    Braakhekke MC, Rebel KT, Dekker SC, Smith B, Beusen AHW, Wassen MJ. Nitrogen leaching from natural ecosystems under global change: a modelling study. Earth Syst Dynam. 2017;8:1121–39.

    Article  Google Scholar 

  26. 26.

    • Bauters M, Drake TW, Verbeeck H, et al. High fire-derived nitrogen deposition on central African forests. Proc Natl Acad Sci USA. 2018;115:549–54 This study provides observations of nitrogen redistribution, a high nitrogen deposition flux in a central African forest and attribute the deposition to fire emissions.

    CAS  Article  Google Scholar 

  27. 27.

    Wang R, Balkanski Y, Boucher O, Ciais P, Peñuelas J, Tao S. Significant contribution of combustion-related emissions to the atmospheric phosphorus budget. Nat Geosci. 2015;8:48–54.

    CAS  Article  Google Scholar 

  28. 28.

    Pacifico F, Folberth GA, Sitch S, Haywood JM, Rizzo LV, Malavelle FF, et al. Biomass burning related ozone damage on vegetation over the Amazon forest: a model sensitivity study. Atmos Chem Phys. 2015;15:2791–804.

    CAS  Article  Google Scholar 

  29. 29.

    Yue X, Strada S, Unger N, Wang A. Future inhibition of ecosystem productivity by increasing wildfire pollution over boreal North America. Atmos Chem Phys. 2017;17:13699–719.

    CAS  Article  Google Scholar 

  30. 30.

    •• Andela N, Morton DC, Giglio L, et al. A human-driven decline in global burned area. Science. 2017;356:1356–62 They report a human-driven decline in global burned area observed by satellites, related to increased intensity of land management.

    CAS  Article  Google Scholar 

  31. 31.

    Erb K-H, Luyssaert S, Meyfroidt P, Pongratz J, Don A, Kloster S, et al. Land management: data availability and process understanding for global change studies. Glob Chang Biol. 2017;23:512–33.

    Article  Google Scholar 

  32. 32.

    Li F, Lawrence DM, Bond-Lamberty B. Human impacts on 20th century fire dynamics and implications for global carbon and water trajectories. Glob Planet Change. 2018;162:18–27.

    Article  Google Scholar 

  33. 33.

    Arora VK, Melton JR. Reduction in global area burned and wildfire emissions since 1930s enhances carbon uptake by land. Nat Commun. 2018;9:1326.

    Article  CAS  Google Scholar 

  34. 34.

    Lasslop G, Kloster S. Human impact on wildfires varies between regions and with vegetation productivity. Environ Res Lett. 2017;12:115011.

    Article  Google Scholar 

  35. 35.

    Landry J-S, Partanen A-I, Damon Matthews H. Carbon cycle and climate effects of forcing from fire-emitted aerosols. Environ Res Lett. 2017;12:025002.

    Article  CAS  Google Scholar 

  36. 36.

    Jiang Y, Lu Z, Liu X, Qian Y, Zhang K, Wang Y, et al. Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5. Atmos Chem Phys. 2016;16:14805–24.

    CAS  Article  Google Scholar 

  37. 37.

    Jacobson MZ. Effects of biomass burning on climate, accounting for heat and moisture fluxes, black and brown carbon, and cloud absorption effects. J Geophys Res Atmos. 2014;119:8980–9002.

    CAS  Article  Google Scholar 

  38. 38.

    Grandey BS, Lee H-H, Wang C. Radiative effects of interannually varying vs. interannually invariant aerosol emissions from fires. Atmos Chem Phys. 2016;16:14495–513.

    CAS  Article  Google Scholar 

  39. 39.

    Voulgarakis A, Marlier ME, Faluvegi G, Shindell DT, Tsigaridis K, Mangeon S. Interannual variability of tropospheric trace gases and aerosols: the role of biomass burning emissions. J Geophys Res Atmos. 2015;120:7157–73.

    CAS  Article  Google Scholar 

  40. 40.

    Thornhill GD, Ryder CL, Highwood EJ, Shaffrey LC, Johnson BT. The effect of South American biomass burning aerosol emissions on the regional climate. Atmos Chem Phys. 2018;18:5321–42.

    CAS  Article  Google Scholar 

  41. 41.

    • Hodnebrog Ø, Myhre G, Forster PM, Sillmann J, Samset BH. Local biomass burning is a dominant cause of the observed precipitation reduction in southern Africa. Nat Commun. 2016;7:11236 This study provides a model-based attribution of precipitation reduction to fire shows that a reduction of local biomass burning aerosol emissions may mitigate reduced rainfall.

    CAS  Article  Google Scholar 

  42. 42.

    Tosca MG, Diner DJ, Garay MJ, Kalashnikova OV. Observational evidence of fire-driven reduction of cloud fraction in tropical Africa. J Geophys Res Atmos. 2014;119:8418–32.

    Article  Google Scholar 

  43. 43.

    Hamilton DS, Hantson S, Scott CE, Kaplan JO, Pringle KJ, Nieradzik LP, et al. Reassessment of pre-industrial fire emissions strongly affects anthropogenic aerosol forcing. Nat Commun. 2018;9:3182.

    CAS  Article  Google Scholar 

  44. 44.

    van der Werf GR, Randerson JT, Giglio L, van Leeuwen TT, Chen Y, Rogers BM, et al. Global fire emissions estimates during 1997–2016. Earth Syst Sci Data. 2017;9:697–720.

    Article  Google Scholar 

  45. 45.

    Reddington CL, Spracklen DV, Artaxo P, Ridley DA, Rizzo LV, Arana A. Analysis of particulate emissions from tropical biomass burning using aglobal aerosol model and long-term surface observations. Atmos Chem Phys. 2016;16:11083–106.

    CAS  Article  Google Scholar 

  46. 46.

    Veira A, Kloster S, Schutgens NAJ, Kaiser JW. Fire emission heights in the climate system—part 2: impact on transport, black carbon concentrations and radiation. Atmos Chem Phys. 2015;15:7173–93.

    CAS  Article  Google Scholar 

  47. 47.

    Veira A, Lasslop G, Kloster S. Wildfires in a warmer climate: emission fluxes, emission heights, and black carbon concentrations in 2090-2099. J Geophys Res Atmos. 2016;121:3195–223.

    CAS  Article  Google Scholar 

  48. 48.

    Boucher O, Randall D, Artaxo P, et al. Clouds and aerosols. In: Intergovernmental Panel on Climate Change, editor. Climate change 2013—the physical science basis. Cambridge: Cambridge University Press; 2014. p. 571–658.

    Google Scholar 

  49. 49.

    Li F, Lawrence DM, Bond-Lamberty B. Impact of fire on global land surface air temperature and energy budget for the 20th century due to changes within ecosystems. Environ Res Lett. 2017;12:44014.

    Article  Google Scholar 

  50. 50.

    •• Rogers BM, Soja AJ, Goulden ML, Randerson JT. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nature Geosci. 2015;8:228–34 They explain the variation between continents in fire regimes and fire climate impacts in the boreal regions by plant trait variation.

    CAS  Article  Google Scholar 

  51. 51.

    • Yang J, Pan S, Dangal S, Zhang B, Wang S, Tian H. Continental-scale quantification of post-fire vegetation greenness recovery in temperate and boreal North America. Remote Sens Environ. 2017;199:277–90 This study shows that the variation in post-fire recovery can be explained by differences in vegetation composition and fire severity.

    Article  Google Scholar 

  52. 52.

    • Chen D, Loboda TV, He T, Zhang Y, Liang S. Strong cooling induced by stand-replacing fires through albedo in Siberian larch forests. Sci Rep. 2018;8:4821 For stand-replacing fires in Siberia, the impact of fire on albedo induces a similar cooling as in North America.

    Article  CAS  Google Scholar 

  53. 53.

    Chen D, Loboda TV. Surface forcing of non-stand-replacing fires in Siberian larch forests. Environ Res Lett. 2018;13:045008.

    Article  Google Scholar 

  54. 54.

    Liu Z, Ballantyne AP, Cooper LA. Increases in land surface temperature in response to fire in siberian boreal forests and their attribution to biophysical processes. Geophys Res Lett. 2018;45:6485–94.

    Article  Google Scholar 

  55. 55.

    Liu Z, Ballantyne AP, Cooper LA. Biophysical feedback of global forest fires on surface temperature. Nat Commun. 2019;10:214.

    Article  CAS  Google Scholar 

  56. 56.

    Turetsky MR, Kane ES, Harden JW, Ottmar RD, Manies KL, Hoy E, et al. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat Geosci. 2011;4:27–31.

    CAS  Article  Google Scholar 

  57. 57.

    Gibson CM, Turetsky MR, Cottenie K, Kane ES, Houle G, Kasischke ES. Variation in plant community composition and vegetation carbon pools a decade following a severe fire season in interior Alaska. J Veg Sci. 2016;27:1187–97.

    Article  Google Scholar 

  58. 58.

    Trugman AT, Fenton NJ, Bergeron Y, Xu X, Welp LR, Medvigy D. Climate, soil organic layer, and nitrogen jointly drive forest development after fire in the North American boreal zone. J Adv Model Earth Syst. 2016;8:1180–209.

    Article  Google Scholar 

  59. 59.

    Alexander HD, Mack MC, Goetz S, Beck PSA, Belshe EF. Implications of increased deciduous cover on stand structure and aboveground carbon pools of Alaskan boreal forests. Ecosphere. 2012;3:45.

    Article  Google Scholar 

  60. 60.

    Veraverbeke S, Rogers BM, Goulden ML, Jandt RR, Miller CE, Wiggins EB, et al. Lightning as a major driver of recent large fire years in North American boreal forests. Nat Clim Chang. 2017;7:529–34.

    Article  Google Scholar 

  61. 61.

    Yu Z, Loisel J, Brosseau DP, Beilman DW, Hunt SJ. Global peatland dynamics since the Last Glacial Maximum. Geophys Res Lett. 2010;37. https://doi.org/10.1029/2010GL043584.

  62. 62.

    Page SE, Hooijer A. In the line of fire: the peatlands of Southeast Asia. Philos Trans R Soc Lond Ser B Biol Sci. 2016;371:20150176. https://doi.org/10.1098/rstb.2015.0176.

    CAS  Article  Google Scholar 

  63. 63.

    Turetsky MR, Benscoter B, Page S, Rein G, van der Werf GR, Watts A. Global vulnerability of peatlands to fire and carbon loss. Nat Geosci. 2015;8:11–4.

    CAS  Article  Google Scholar 

  64. 64.

    •• Santín C, Doerr SH, Kane ES, Masiello CA, Ohlson M, de la Rosa JM, et al. Towards a global assessment of pyrogenic carbon from vegetation fires. Glob Chang Biol. 2016;22:76–91 They review the pyrogenic carbon cycle and compiled stocks and fluxes in the global pyrogenic carbon cycle.

    Article  Google Scholar 

  65. 65.

    Dargie GC, Lewis SL, Lawson IT, Mitchard ETA, Page SE, Bocko YE, et al. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature. 2017;542:86–90.

    CAS  Article  Google Scholar 

  66. 66.

    Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S. Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycles. 2009;23. https://doi.org/10.1029/2008GB003327.

  67. 67.

    • Wiggins EB, Czimczik CI, Santos GM, Chen Y, Xu X, Holden SR, et al. Smoke radiocarbon measurements from Indonesian fires provide evidence for burning of millennia-aged peat. Proc Natl Acad Sci USA. 2018;115:12419–24 The quantification of the age of peat burning indicates how low it will take until carbon pools could recover from fire.

    CAS  Article  Google Scholar 

  68. 68.

    Wilkinson SL, Moore PA, Flannigan MD, Wotton BM, Waddington JM. Did enhanced afforestation cause high severity peat burn in the Fort McMurray Horse River wildfire? Environ Res Lett. 2018;13:014018.

    Article  CAS  Google Scholar 

  69. 69.

    Konecny K, Ballhorn U, Navratil P, Jubanski J, Page SE, Tansey K, et al. Variable carbon losses from recurrent fires in drained tropical peatlands. Glob Chang Biol. 2016;22:1469–80.

    Article  Google Scholar 

  70. 70.

    Han J, Tangdamrongsub N, Hwang C, Abidin HZ. Intensified water storage loss by biomass burning in Kalimantan: detection by GRACE. J Geophys Res Solid Earth. 2017. https://doi.org/10.1002/2017JB014129.

  71. 71.

    Gibson CM, Chasmer LE, Thompson DK, Quinton WL, Flannigan MD, Olefeldt D. Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat Commun. 2018;9:3041.

    Article  CAS  Google Scholar 

  72. 72.

    Köster E, Köster K, Berninger F, Prokushkin A, Aaltonen H, Zhou X, et al. Changes in fluxes of carbon dioxide and methane caused by fire in Siberian boreal forest with continuous permafrost. J Environ Manag. 2018;228:405–15.

    Article  CAS  Google Scholar 

  73. 73.

    Song X, Wang G, Hu Z, Ran F, Chen X. Boreal forest soil CO2 and CH4 fluxes following fire and their responses to experimental warming and drying. Sci Total Environ. 2018;644:862–72.

    CAS  Article  Google Scholar 

  74. 74.

    Li F, Levis S, Ward DS. Quantifying the role of fire in the Earth system—part 1: improved global fire modeling in the Community Earth System Model (CESM1). Biogeosciences. 2013;10:2293–314.

    CAS  Article  Google Scholar 

  75. 75.

    Eliseev AV, Mokhov II, Chernokulsky AV. An ensemble approach to simulate CO2 emissions from natural fires. Biogeosciences. 2014;11:3205–23.

    Article  CAS  Google Scholar 

  76. 76.

    Wagner S, Jaffé R, Stubbins A. Dissolved black carbon in aquatic ecosystems. Limnol Oceanogr. 2018;3:168–85.

    CAS  Article  Google Scholar 

  77. 77.

    Bird MI, Wynn JG, Saiz G, Wurster CM, McBeath A. The pyrogenic carbon cycle. Annu Rev Earth Planet Sci. 2015;43:273–98.

    CAS  Article  Google Scholar 

  78. 78.

    Reisser M, Purves RS, Schmidt MWI, Abiven S. Pyrogenic carbon in soils: a literature-based inventory and a global estimation of its content in soil organic carbon and stocks. Front Earth Sci. 2016;4. https://doi.org/10.3389/feart.2016.00080.

  79. 79.

    Bao H, Niggemann J, Luo L, Dittmar T, Kao S-J. Aerosols as a source of dissolved black carbon to the ocean. Nat Commun. 2017;8:510.

    Article  CAS  Google Scholar 

  80. 80.

    Coppola AI, Ziolkowski LA, Masiello CA, Druffel ERM. Aged black carbon in marine sediments and sinking particles. Geophys Res Lett. 2014;41:2427–33.

    CAS  Article  Google Scholar 

  81. 81.

    Coppola AI, Wiedemeier DB, Galy V, Haghipour N, Hanke UM, Nascimento GS, et al. Global-scale evidence for the refractory nature of riverine black carbon. Nat Geosci. 2018;11:584–8.

    CAS  Article  Google Scholar 

  82. 82.

    Marques JSJ, Dittmar T, Niggemann J, Almeida MG, Gomez-Saez GV, Rezende CE. Dissolved black carbon in the headwaters-to-ocean continuum of Paraíba Do Sul River, Brazil. Front Earth Sci doi. 2017;5. https://doi.org/10.3389/feart.2017.00011.

  83. 83.

    Coppola AI, Druffel ERM. Cycling of black carbon in the ocean. Geophys Res Lett. 2016;43:4477–82.

    CAS  Article  Google Scholar 

  84. 84.

    Wang X, Xu C, Druffel EM, Xue Y, Qi Y. Two black carbon pools transported by the Changjiang and Huanghe Rivers in China. Glob Biogeochem Cycles. 2016;30:1778–90.

    CAS  Article  Google Scholar 

  85. 85.

    Roebuck JA, Seidel M, Dittmar T, Jaffé R. Land use controls on the spatial variability of dissolved black carbon in a subtropical watershed. Environ Sci Technol. 2018;52:8104–14.

    CAS  Article  Google Scholar 

  86. 86.

    Fuss S, Lamb WF, Callaghan MW, Hilaire J, Creutzig F, Amann T, et al. Negative emissions—part 2: costs, potentials and side effects. Environ Res Lett. 2018;13:063002.

    Article  CAS  Google Scholar 

  87. 87.

    Landry J-S, Matthews HD. The global pyrogenic carbon cycle and its impact on the level of atmospheric CO2 over past and future centuries. Glob Chang Biol. 2017;23:3205–18.

    Article  Google Scholar 

  88. 88.

    Harrison SP, Bartlein PJ, Brovkin V, Houweling S, Kloster S, Prentice IC. The biomass burning contribution to climate–carbon-cycle feedback. Earth Syst Dynam. 2018;9:663–77.

    Article  Google Scholar 

  89. 89.

    Giglio L, Boschetti L, Roy DP, Humber ML, Justice CO. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens Environ. 2018;217:72–85.

    Article  Google Scholar 

  90. 90.

    Chuvieco E, Lizundia-Loiola J, Pettinari ML, Ramo R, Padilla M, Tansey K, et al. Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies. Earth Syst Sci Data. 2018;10:2015–31.

    Article  Google Scholar 

  91. 91.

    Giglio L, Csiszar I, Justice CO. Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. J Geophys Res. 2006;111. https://doi.org/10.1029/2005JG000142.

  92. 92.

    Kaiser JW, Heil A, Andreae MO, Benedetti A, Chubarova N, Jones L, et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences. 2012;9:527–54.

    CAS  Article  Google Scholar 

  93. 93.

    Giglio L, Randerson JT, van der Werf GR. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J Geophys Res Biogeosci. 2013;118:317–28.

    Article  Google Scholar 

  94. 94.

    Randerson JT, Chen Y, van der Werf GR, Rogers BM, Morton DC. Global burned area and biomass burning emissions from small fires. J Geophys Res. 2012;117:G04012.

    Article  CAS  Google Scholar 

  95. 95.

    Goodwin NR, Collett LJ. Development of an automated method for mapping fire history captured in Landsat TM and ETM+ time series across Queensland, Australia. Remote Sens Environ. 2014;148:206–21.

    Article  Google Scholar 

  96. 96.

    White JC, Wulder MA, Hermosilla T, Coops NC, Hobart GW. A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sens Environ. 2017;194:303–21.

    Article  Google Scholar 

  97. 97.

    Hawbaker TJ, Vanderhoof MK, Beal Y-J, Takacs JD, Schmidt GL, Falgout JT, et al. Mapping burned areas using dense time-series of Landsat data. Remote Sens Environ. 2017;198:504–22.

    Article  Google Scholar 

  98. 98.

    Verhegghen A, Eva H, Ceccherini G, Achard F, Gond V, Gourlet-Fleury S, et al. The potential of sentinel satellites for burnt area mapping and monitoring in the Congo Basin forests. Remote Sens. 2016;8:986.

    Article  Google Scholar 

  99. 99.

    Roteta E, Bastarrika A, Padilla M, Storm T, Chuvieco E. Development of a Sentinel-2 burned area algorithm: generation of a small fire database for sub-Saharan Africa. Remote Sens Environ. 2019;222:1–17.

    Article  Google Scholar 

  100. 100.

    Laurent P, Mouillot F, Yue C, Ciais P, Moreno MV, Nogueira JMP. FRY, a global database of fire patch functional traits derived from space-borne burned area products. Sci Data. 2018;5:180132.

    CAS  Article  Google Scholar 

  101. 101.

    Andela N, Morton DC, Giglio L, Paugam R, Chen Y, Hantson S, et al. The global fire atlas of individual fire size, duration, speed, and direction. Earth Syst Sci Data Discuss. 2018:1–28. https://doi.org/10.5194/essd-2018-89.

  102. 102.

    Lohberger S, Stängel M, Atwood EC, Siegert F. Spatial evaluation of Indonesia’s 2015 fire-affected area and estimated carbon emissions using Sentinel-1. Glob Chang Biol. 2018;24:644–54.

    Article  Google Scholar 

  103. 103.

    Atwood EC, Englhart S, Lorenz E, Halle W, Wiedemann W, Siegert F. Detection and characterization of low temperature peat fires during the 2015 fire catastrophe in Indonesia using a new high-sensitivity fire monitoring satellite sensor (FireBird). PLoS One. 2016;11:e0159410.

    Article  CAS  Google Scholar 

  104. 104.

    Alonzo M, Morton DC, Cook BD, Andersen H-E, Babcock C, Pattison R. Patterns of canopy and surface layer consumption in a boreal forest fire from repeat airborne lidar. Environ Res Lett. 2017;12:065004.

    Article  Google Scholar 

  105. 105.

    Chasmer LE, Hopkinson CD, Petrone RM, Sitar M. Using multitemporal and multispectral airborne lidar to assess depth of peat loss and correspondence with a new active normalized burn ratio for wildfires. Geophys Res Lett. 2017;44:11,851–9.

    Article  Google Scholar 

  106. 106.

    Simpson J, Wooster M, Smith T, Trivedi M, Vernimmen R, Dedi R, et al. Tropical peatland burn depth and combustion heterogeneity assessed using UAV photogrammetry and airborne lidar. Remote Sens. 2016;8:1000.

    Article  Google Scholar 

  107. 107.

    Prat-Guitart N, Rein G, Hadden RM, Belcher CM, Yearsley JM. Effects of spatial heterogeneity in moisture content on the horizontal spread of peat fires. Sci Total Environ. 2016;572:1422–30.

    CAS  Article  Google Scholar 

  108. 108.

    Huang X, Rein G. Downward spread of smouldering peat fire: the role of moisture, density and oxygen supply. Int J Wildland Fire. 2017;26:907.

    Article  Google Scholar 

  109. 109.

    Lukenbach MC, Hokanson KJ, Moore PA, Devito KJ, Kettridge N, Thompson DK, et al. Hydrological controls on deep burning in a northern forested peatland. Hydrol Process. 2015;29:4114–24.

    Article  Google Scholar 

  110. 110.

    Glukhova TV, Sirin AA. Losses of soil carbon upon a fire on a drained forested raised bog. Eurasian Soil Sc. 2018;51:542–9.

    CAS  Article  Google Scholar 

  111. 111.

    Stavros EN, Coen J, Peterson B, Singh H, Kennedy K, Ramirez C, et al. Use of imaging spectroscopy and LIDAR to characterize fuels for fire behavior prediction. Remote Sensing Applications: Society and Environment. 2018;11:41–50.

    Article  Google Scholar 

  112. 112.

    Veraverbeke S, Dennison P, Gitas I, Hulley G, Kalashnikova O, Katagis T, et al. Hyperspectral remote sensing of fire: state-of-the-art and future perspectives. Remote Sens Environ. 2018;216:105–21.

    Article  Google Scholar 

  113. 113.

    van Leeuwen TT, van der Werf GR, Hoffmann AA, Detmers RG, Rücker G, French NHF, et al. Biomass burning fuel consumption rates: a field measurement database. Biogeosciences. 2014;11:7305–29.

    Article  Google Scholar 

  114. 114.

    Rogers BM, Veraverbeke S, Azzari G, Czimczik CI, Holden SR, Mouteva GO, et al. Quantifying fire-wide carbon emissions in interior Alaska using field measurements and Landsat imagery. J Geophys Res Biogeosci. 2014;119:1608–29.

    CAS  Article  Google Scholar 

  115. 115.

    Walker XJ, Rogers BM, Baltzer JL, Cumming SG, Day NJ, Goetz SJ, et al. Cross-scale controls on carbon emissions from boreal forest megafires. Glob Chang Biol. 2018;24:4251–65. https://doi.org/10.1111/gcb.14287.

    Article  Google Scholar 

  116. 116.

    Wiggins EB, Veraverbeke S, Henderson JM, Karion A, Miller JB, Lindaas J, et al. The influence of daily meteorology on boreal fire emissions and regional trace gas variability. J Geophys Res Biogeosci. 2016;121:2793–810.

    CAS  Article  Google Scholar 

  117. 117.

    Marlon JR, Kelly R, Daniau A-L, Vannière B, Power MJ, Bartlein P, et al. Reconstructions of biomass burning from sediment-charcoal records to improve data–model comparisons. Biogeosciences. 2016;13:3225–44.

    Article  Google Scholar 

  118. 118.

    van Marle MJE, Kloster S, Magi BI, Marlon JR, Daniau AL, Field RD, et al. Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015). Geosci Model Dev. 2017;10:3329–57.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge feedback and suggestions on the manuscript from Fang Li and Daniel Ward, the editor and two reviewers.

Funding

Gitta Lasslop is funded by the German Research Foundation. Sander Veraverbeke received support from the Netherlands Organisation for Scientific Research (NWO) through his Vidi grant ‘Fires pushing trees North’. Alysha Coppola received funding from the University of Zurich for Forschungskredit post-doctoral fellowship. Chao Yue received support from the China One Thousand Youth Programme.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gitta Lasslop.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Carbon Cycle and Climate

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lasslop, G., Coppola, A.I., Voulgarakis, A. et al. Influence of Fire on the Carbon Cycle and Climate. Curr Clim Change Rep 5, 112–123 (2019). https://doi.org/10.1007/s40641-019-00128-9

Download citation

Keywords

  • Fire
  • Carbon cycle
  • Climate
  • Peatlands
  • Pyrogenic carbon
  • Vegetation traits