Climate Change and Drought: a Precipitation and Evaporation Perspective

Abstract

Many studies have shown that greenhouse gas (GHG)-induced global warming may lead to increased surface aridity and more droughts in the twenty-first century due to decreased precipitation in the subtropics and increased evaporative demand associated with higher vapor pressure deficit under warmer temperatures. Some recent studies argue that increased water use efficiency by plants under elevated CO2 may reduce the evaporative demand and therefore mitigate the drying. Here we first discuss the model-projected changes in precipitation amount and frequency that affect the surface water balance and aridity and then the changes in actual and potential evapotranspiration under GHG-induced warming. The effects of the GHG-induced warming and changes in plants’ physiology under elevated CO2 on precipitation, soil moisture, and runoff are quantified and compared by analyzing different model experiments with and without the physiologic response. The surface drying effect of GHG-induced warming is found to dominate over the wetting effect of plants’ physiology in response to increasing CO2, leading to similar surface drying patterns in climate model simulations with or without the physiologic response in the twenty-first century. Part of the drying comes from increased dry spells (i.e., more dry days) and a flattening of the histograms of drought indices as GHGs increase, with the latter leading to widespread increases in hydrological drought even over areas with increasing mean runoff. Because of this, the change pattern of the mean cannot be used to represent drought changes. Consistent with the projected drying in the twenty-first century, recent analyses of model experiments suggest wetter land surfaces during the last glacial maximum, which implies that dusty air during cold glacial periods may have resulted from other factors, such as stronger winds and more dust sources, rather than drier land surfaces. Finally, the drying in the subtropics does not appear to be just a transient response to increased GHGs, as the warming and precipitation change patterns do not vary significantly over time in 500-year simulations with increased CO2 contents by a fully coupled climate model.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Adler RF, Gu G, Sapiano M, Wang J-J, Huffman GJ. Global precipitation: means, variations and trends during the satellite era (1979–2014). Surv Geophys. 2017;38:679–99. https://doi.org/10.1007/s10712-017-9416-4.

    Article  Google Scholar 

  2. 2.

    American Meteorological Society (AMS) (2013) Drought—an information statement. [https://www.ametsoc.org/ams/index.cfm/about-ams/ams-statements/statements-of-the-ams-in-force/drought/].

  3. 3.

    Ball JT, Woodrow IE, Berry JA (1987) Progress in photosynthesis research, Biggins J (ed.), Martinus Nijhoff, Dordrecht, The Netherlands, pp. 221–224.

  4. 4.

    Berg A, et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Chang. 2016;6(9):869–74. https://doi.org/10.1038/nclimate3029.

    Article  Google Scholar 

  5. 5.

    Berg A, Sheffield J, Milly P. Divergent surface and total soil moisture projections under global warming. Geophys Res Lett. 2017;44:236–44. https://doi.org/10.1002/2016GL071921.

    Article  Google Scholar 

  6. 6.

    Bonfils C, Anderson G, Santer BD, Phillips TJ, Taylor KE, Cuntz M, et al. Competing influences of anthropogenic warming, ENSO, and plant physiology on future terrestrial aridity. J. Climate. 2017;30:6883–904. https://doi.org/10.1175/JCLI-D-17-0005.1

    Article  Google Scholar 

  7. 7.

    Bonan G, Williams M, Fisher R, Oleson K. Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil–plant–atmosphere continuum. Geosci. Model Dev. 2014;7:2193–222.

    Article  Google Scholar 

  8. 8.

    Burgman RJ, Jang Y. Simulated U.S. drought response to interannual and decadal Pacific SST variability. J. Climate. 2015;28:4688–705.

    Article  Google Scholar 

  9. 9.

    Burke EJ. Understanding the sensitivity of different drought metrics to the drivers of drought under increased atmospheric CO2. J. Hydrometeor. 2011;12:1378–94. https://doi.org/10.1175/2011JHM1386.1.

    Article  Google Scholar 

  10. 10.

    Burke EJ, Brown SJ. Evaluating uncertainties in the projection of future drought. J. Hydrometeor. 2008;9:292–9.

    Article  Google Scholar 

  11. 11.

    Burls NJ, Fedorov AV. Wetter subtropics in a warmer world: contrasting past and future hydrological cycles. Proceed Nat Acad Sci. 2017;28:12,888–93. https://doi.org/10.1073/pnas.1703421114.

    Article  CAS  Google Scholar 

  12. 12.

    Byrne MP, O’Gorman PA. Understanding decreases in land relative humidity with global warming: conceptual model and GCM simulations. J Climate. 2016;29:9045–61. https://doi.org/10.1175/JCLI-D-16-0351.1.

    Article  Google Scholar 

  13. 13.

    Chou C, Neelin JD, Chen C-A, Tu J-Y. Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Climate. 2009;22:1982–2005. https://doi.org/10.1175/2008JCLI2471.1.

    Article  Google Scholar 

  14. 14.

    Collins M et al. (2013) Long-term climate change: projections, commitments and irreversibility. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  15. 15.

    Cook BI, Smerdon JE, Seager R, Coats S. Global warming and 21st century drying. Climate Dyn. 2014;43:2607–27.

    Article  Google Scholar 

  16. 16.

    Cook BI, Cook ER, Smerdon JE, Seager R, Williams AP, Coats S, et al. North American megadroughts in the Common Era: reconstructions and simulations. WIREs Clim Change. 2016;7:411–32. https://doi.org/10.1002/wcc.394.

    Article  Google Scholar 

  17. 17.

    Dai A. Recent climatology, variability and trends in global surface humidity. J. Climate. 2006;19:3589–606.

    Article  Google Scholar 

  18. 18.

    Dai A. Drought under global warming: a review. WIREs. Clim Change. 2011a;2:45–65.

    Google Scholar 

  19. 19.

    Dai A. Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J Geophys Res. 2011b;116:D12115.

    Article  Google Scholar 

  20. 20.

    Dai A. Increasing drought under global warming in observations and models. Nature. Clim Change. 2013a;3:52–8.

    Article  Google Scholar 

  21. 21.

    Dai A. (2013b) The influence of the inter-decadal Pacific Oscillation on U.S. precipitation during 1923–2010. Climate Dynamics, 41: 633–646. DOI https://doi.org/10.1007/s00382-012-1446-5.

  22. 22.

    Dai A (2016a) Future warming patterns linked to today’s climate variability. Sci Rep, 6: 19110, doi:https://doi.org/10.1038/srep19110.

  23. 23.

    Dai A (2016b) Historical and future changes in streamflow and continental runoff: a review. Chapter 2 of terrestrial water cycle and climate change: natural and human-induced impacts, Geophysical Monograph 221, edited by Qiuhong Tang and Taikan Oki, AGU, John Wiley & Sons, pp. 17–37.

  24. 24.

    Dai A, Fung IY, Del Genio AD. Surface observed global land precipitation variations during 1900–1988. J Clim. 1997;10:2943–62.

    Article  Google Scholar 

  25. 25.

    Dai A, Wigley TML. Global patterns of ENSO-induced precipitation. Geophys Res Lett. 2000;27:1283–6.

    Article  Google Scholar 

  26. 26.

    Dai A, Trenberth KE, Qian T. A global dataset of Palmer Drought Severity Index for 1870–2002: relationship with soil moisture and effects of surface warming. J Hydrometeorol. 2004;5:1117–30. https://doi.org/10.1175/JHM-386.1.

    Article  Google Scholar 

  27. 27.

    Dai A, Zhao T. Uncertainties in historical changes and future projections of drought. Part I: estimates of historical drought changes. Climatic Change. 2017;144:519–33. https://doi.org/10.1007/s10584-016-1705-2.

    Article  Google Scholar 

  28. 28.

    Dai, A., R.M. Rasmussen, C. Liu, K. Ikeda, and A.F. Prein (2017a) A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations. Clim Dynamics, DOI:https://doi.org/10.1007/s00382-017-3787-6.

  29. 29.

    Dai, A., R.M. Rasmussen, K. Ikeda, and C. Liu (2017b) A new approach to construct representative future forcing data for dynamic downscaling. Clim Dynamics, DOI: https://doi.org/10.1007/s00382-017-3708-8.

  30. 30.

    Dai, A., and C.E. Bloecker (2018) Impacts of internal variability on temperature and precipitation trends in large ensemble simulations by two climate models. Clim Dynamics, DOI: https://doi.org/10.1007/s00382-018-4132-4

  31. 31.

    Delworth TL, Zeng F, Rosati A, Vecchi GA, Wittenberg AT. A link between the hiatus in global warming and North American drought. J Climate. 2015;28:3834–45.

    Article  Google Scholar 

  32. 32.

    Deser C, Phillips AS, Alexander MA, Smoliak BV. Projecting North American climate over the next 50 years: uncertainty due to internal variability. J. Clim. 2014;27:2271–96. https://doi.org/10.1175/JCLI-D-13-00451.1.

    Article  Google Scholar 

  33. 33.

    Dong B, Dai A. The influence of the inter-decadal Pacific Oscillation on temperature and precipitation over the globe. Clim Dynamics. 2015;45:2667–81. https://doi.org/10.1007/s00382-015-2500-x.

    Article  Google Scholar 

  34. 34.

    Feng S, Fu Q. Expansion of global dry lands under warming climate. Atmos Chem Phys. 2013;13:10081–10,094.

    Article  CAS  Google Scholar 

  35. 35.

    Feng S, Hu Q, Huang W, Ho CH, Li R, Tang Z. Projected climate regime shift under future global warming from multi-model, multi-scenario CMIP5 simulations. Global Planet Change. 2014;112:41–52. https://doi.org/10.1016/j.gloplacha.2013.11.002.

    Article  Google Scholar 

  36. 36.

    Ficklin DL, Novick KA. Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere. J Geophys Res Atmos. 2017;122:2061–79. https://doi.org/10.1002/2016JD025855.

    Article  Google Scholar 

  37. 37.

    Findell KL, Delworth TL. Impact of common sea surface temperature anomalies on global drought and pluvial frequency. J Clim. 2010;23:485–503.

    Article  Google Scholar 

  38. 38.

    Fu Q, Feng S. Responses of terrestrial aridity to global warming. J. Geophys. Res. Atmos. 2014;119:7863–75.

    Article  Google Scholar 

  39. 39.

    Fu Q, Lin L, Huang J, Feng S, Gettelman A. Changes in terrestrial aridity for the period 850–2080 from the Community Earth System Model. J. Geop hys. Res. Atmos. 2016;121:2857–73. https://doi.org/10.1002/2015JD024075.

    Article  Google Scholar 

  40. 40.

    Giannini A, Saravanan R, Chang P. Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science. 2003;302:1027–30.

    Article  CAS  Google Scholar 

  41. 41.

    Gu G, Adler RF. Interdecadal variability/long-term changes in global precipitation patterns during the past three decades: global warming and/or Pacific decadal variability? Clim Dyn. 2013;40:3009–22. https://doi.org/10.1007/s00382-012-1443-8.

    Article  Google Scholar 

  42. 42.

    Gu G, Adler RF. Spatial patterns of global precipitation change and variability during 1901–2010. J Clim. 2015;28:4431–53. https://doi.org/10.1175/JCLI-D-14-00201.1.

    Article  Google Scholar 

  43. 43.

    Hartmann DL et al. (2013) Observations: atmosphere and surface. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  44. 44.

    Hartmann DL. Global physical climatology. 2nd ed. Amsterdam: Elsevier; 2016. p. 485.

    Google Scholar 

  45. 45.

    Hegerl, G. C. et al. 2007: Understanding and attributing climate change. Climate change 2007: the physical science basis, S. Solomon et al., Eds., Cambridge University Press, 663–745.

  46. 46.

    Hegerl GC, et al. Challenges in quantifying changes in the global water cycle. Bull Am Met Soc. 2015;96:1097–115. https://doi.org/10.1175/BAMS-D-13-00212.1.

    Article  Google Scholar 

  47. 47.

    Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, et al. Global flood risk under climate change. Nat Clim Change. 2013;3:816–21. https://doi.org/10.1038/nclimate1911.

    Article  Google Scholar 

  48. 48.

    Hobbins M, Wood A, McEvoy D, Huntington J, Morton C, Anderson M, Hain C (2016). The evaporative demand drought index. Part I: linking drought evolution to variations in evaporative demand. J Hydrometeorol, 17(6), 1745–1761. doi: https://doi.org/10.1175/JHM-D-15-0121.1

  49. 49.

    Hoerling M, Hurrell J, Eischeid J, Phillips A. Detection and attribution of twentieth-century northern and southern African rainfall change. J. Climate. 2006;19:3989–4008. https://doi.org/10.1175/JCLI3842.1.

    Article  Google Scholar 

  50. 50.

    Hoerling MP, Eischeid J, Perlwitz J. Regional precipitation trends: distinguishing natural variability from anthropogenic forcing. J. Climate. 2010;23:2131–45. https://doi.org/10.1175/2009JCLI3420.1.

    Article  Google Scholar 

  51. 51.

    Hoerling MP, Eischeid J, Kumar A, Leung R, Mariotti A, Mo K, et al. Causes and predictability of the 2012 Great Plains drought. Bull Amer Meteor Soc. 2014;95:269–82.

    Article  Google Scholar 

  52. 52.

    Hu Q, Feng S. AMO- and ENSO-driven summertime circulation and precipitation variations in North America. J Climate. 2012;25:6477–95. https://doi.org/10.1175/JCLI-D-11-00520.1.

    Article  Google Scholar 

  53. 53.

    Hu Q, Veres MC. Atmospheric responses to North Atlantic SST anomalies in idealized experiments. Part II: North Am Precipitation J Climate. 2016;29(2):659–71.

    Google Scholar 

  54. 54.

    Huang J, Y. Li, C. Fu, F. Chen, Q. Fu, A. Dai, M. Shinoda, Z. Ma, W. Guo, Z. Li, L. Zhang, Y. Liu, H. Yu, Y. He, Y. Xie, X. Guan, M. Ji, L. Lin, S. Wang, H. Yan, and G. Wang (2017) Dryland climate change: recent progress and challenges. Rev Geophys 55: 719–778.

  55. 55.

    Huang, D., A. Dai, et al. (2018) Are the transient and equilibrium climate change patterns different in response to increased CO2? To be submitted to Climate Dynamics.

  56. 56.

    Kam J, Sheffield J, Wood EF. Changes in drought risk over the contiguous United States (1901–2012): the influence of the Pacific and Atlantic Oceans. Geophys Res Lett. 2014;41:5897–903.

    Article  Google Scholar 

  57. 57.

    Katul G, Manzoni S, Palmroth S, Oren R. A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. Ann Botany. 2010;105:431–42.

    Article  Google Scholar 

  58. 58.

    Keyantash J, Dracup JA. The quantification of drought: an evaluation of drought indices. Bull Am Met Soc. 2002;83:1167–80.

    Article  Google Scholar 

  59. 59.

    Leuning R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ. 1995;18(4):339–55.

    Article  CAS  Google Scholar 

  60. 60.

    Liu ZY. Dynamics of interdecadal climate variability: a historical perspective. J Clim. 2012;25:1963–95.

    Article  Google Scholar 

  61. 61.

    McGee D, Broecker WS, Winckler G. Gustiness: the driver of glacial dustiness? Quat Sci Rev. 2010;29:2340–50. https://doi.org/10.1016/j.quascirev.2010.06.009.

    Article  Google Scholar 

  62. 62.

    Medlyn BE, et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob Change Biol. 2011;2134–2144(2011):17.

    Google Scholar 

  63. 63.

    Meehl, G.A., T.F. Stocker, W.D. Collins, P. Friedlingstein, A.T. Gaye, J.M. Gregory, A. Kitoh, R. Knutti, J.M. Murphy, A. Noda, S.C.B. Raper, I.G. Watterson, A.J. Weaver and Z.-C. Zhao (2007): Global climate projections. In: Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  64. 64.

    Milly PCD, Dunne KA. Potential evapotranspiration and continental drying. Nat Clim Change. 2016;6:946–9. https://doi.org/10.1038/NCLIMATE3046.

    Article  Google Scholar 

  65. 65.

    Mishra AK, Singh VP. A review of drought concepts. J Hydrol. 2010;391:202–16. https://doi.org/10.1016/j.jhydrol.2010.07.012.

    Article  Google Scholar 

  66. 66.

    Mo KC, Lettenmaier DP. Heat wave flash droughts in decline. Geophys Res Lett. 2015;42:2823–9. https://doi.org/10.1002/2015GL064018.

    Article  Google Scholar 

  67. 67.

    Mo KC, Lettenmaier DP. Precipitation deficit flash droughts over the United States. J Hydrometeorol. 2016;17:1169–84.

    Article  Google Scholar 

  68. 68.

    Muhs DR. The geologic records of dust in the Quaternary. Aeolian Res. 2013;9:3–48. https://doi.org/10.1016/j.aeolia.2012.08.001.

    Article  Google Scholar 

  69. 69.

    Namias J. Some causes of United States drought. J Clim Appl Meteor. 1983;22:30–9.

    Article  Google Scholar 

  70. 70.

    Novick K, et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat Clim Chang. 2016;6(11):1023–7. https://doi.org/10.1038/nclimate3114.

    Article  CAS  Google Scholar 

  71. 71.

    Palmer WC (1965) Meteorological drought. Research Paper No. 45, US Dept. of Commerce, pp. 58 . [Available from http://www.ncdc.noaa.gov/oa/climate/research/drought/palmer.pdf].

  72. 72.

    Petit JR, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature. 1999;399:429–36. https://doi.org/10.1038/20859.

    Article  CAS  Google Scholar 

  73. 73.

    Prentice IC, et al. Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa. J. Biogeogr. 2000;27:507–19. https://doi.org/10.1046/j.1365-2699.2000.00425.x.

    Article  Google Scholar 

  74. 74.

    Prentice IC, Harrison SP, Bartlein PJ. Global vegetation and terrestrial carbon cycle changes after the last ice age. New Phytol. 2011;189:988–98. https://doi.org/10.1111/j.1469-8137.2010.03620.x.

    Article  CAS  Google Scholar 

  75. 75.

    Prudhomme C, et al. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc Natl Acad Sci USA. 2014;111(9):3262–7.

    Article  CAS  Google Scholar 

  76. 76.

    Qian T, Dai A, Trenberth KE, Oleson KW. Simulation of global land surface conditions from 1948-2004 Part I: forcing data and evaluation. J Hydrometeorol. 2006;7:953–75.

    Article  Google Scholar 

  77. 77.

    Rasmussen K L, Prein A F, Rasmussen R M, Ikeda K, and Liu C (2017) Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States. Climate Dynamics, doi: https://doi.org/10.1007/s00382-017-4000-7.

  78. 78.

    Routson CC, Woodhouse CA, Overpeck JT, Betancourt JL, McKay NP. Teleconnected ocean forcing of Western North American droughts and pluvials during the last millennium. Quaternary Science Reviews. 2016;146:238–50.

    Article  Google Scholar 

  79. 79.

    Scheff J, Frierson DMW. Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones. Geophys. Res. Lett. 2012;39:L18704. https://doi.org/10.1029/2012GL052910.

    Article  Google Scholar 

  80. 80.

    Scheff J, Frierson DMW. Scaling potential evapotranspiration with greenhouse warming. J Clim. 2014;27:1539–58. https://doi.org/10.1175/JCLI-D-13-00233.1.

    Article  Google Scholar 

  81. 81.

    Scheff J, Frierson DMW. Terrestrial aridity and its response to greenhouse warming across CMIP5 climate models. J Clim. 2015;28:5583–600.

    Article  Google Scholar 

  82. 82.

    Scheff J, Seager R, Liu H, Coats S. Are glacials dry? Consequences for paleoclimatology and for greenhouse warming. J. Climate. 2017;30:6593–609. https://doi.org/10.1175/JCLI-D-16-0854.1.

    Article  Google Scholar 

  83. 83.

    Schubert SD, Gutzler D, Wang HL, Dai A, Delworth T, et al. A US CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: overview and results. J Clim. 2009;22:5251–72.

    Article  Google Scholar 

  84. 84.

    Schubert SD, et al. Global meteorological drought: a synthesis of current understanding with a focus on SST drivers of precipitation deficits. J Clim. 2016;29:3989–4019.

    Article  Google Scholar 

  85. 85.

    Sheffield J, Wood EF. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn. 2008;31:79–105.

    Article  Google Scholar 

  86. 86.

    Sheffield J, Wood EF, Roderick ML. Little change in global drought over the past 60 years. Nature. 2012;491(7424):435–8.

    Article  CAS  Google Scholar 

  87. 87.

    Seager R, Kushnir Y, Herweijer C, Naik N, Velez J. Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J Clim. 2005;18:4068–91.

    Article  Google Scholar 

  88. 88.

    Seager R, Hoerling M. Atmosphere and ocean origins of North American droughts. J Clim. 2014;27(12):4581–606.

    Article  Google Scholar 

  89. 89.

    Seager R, Ting M. Decadal drought variability over North America: mechanisms and predictability. Curr Clim Change Rep. 2017;3:141–9.

    Article  Google Scholar 

  90. 90.

    Sun Y, Solomon S, Dai A, Portmann R. How often will it rain? J Climate. 2007;20:4801–18.

    Article  Google Scholar 

  91. 91.

    Sun Q, Miao C, AghaKouchak A, Duan Q. Century-scale causal relationships between global dry/wet conditions and the state of the Pacific and Atlantic Oceans. Geophys Res Lett. 2016;43(12):6528–37. https://doi.org/10.1002/2016GL069628.

    Article  Google Scholar 

  92. 92.

    Swann ALS, Hoffman FM, Koven CD, Randerson JT. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc Natl Acad Sci USA. 2016;113:10019–10,024. https://doi.org/10.1073/pnas.1604581113.

    Article  CAS  Google Scholar 

  93. 93.

    Trenberth KE. Changes in precipitation with climate change. Clime Res. 2011;47:123–38. https://doi.org/10.3354/cr00953.

    Article  Google Scholar 

  94. 94.

    Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons (2003) The changing character of precipitation. Bull Amer Meteorol Soc., 84, 1205–1217.

  95. 95.

    Trenberth KE, Branstator GW, Arkin PA. Origins of the 1988 North American drought. Science. 1988;242:1640–6.

    Article  CAS  Google Scholar 

  96. 96.

    Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, et al. Global warming and changes in drought. Nature Climate Change. 2014;4:17–22.

    Article  Google Scholar 

  97. 97.

    van der Schrier G, Jones PD, Briffa KR. The sensitivity of the PDSI to the Thornthwaite and Penman-Monteith parameterizations for potential evapotranspiration. J Geophys Res Atmos. 2011;116:D03106. https://doi.org/10.1029/2010JD015001.

    Article  Google Scholar 

  98. 98.

    van der Schrier G, Barichivich J, Briffa KR, Jones PD. A scPDSI-based global data set of dry and wet spells for 1901–2009. J Geophys Res Atmos. 2013;118:4025–48. https://doi.org/10.1002/jgrd.50355.

    Article  Google Scholar 

  99. 99.

    Vicente-Serrano SM, Beguería S, López-Moreno JI. A multi-scalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index—SPEI. J Clim. 2010;23:1696–718.

    Article  Google Scholar 

  100. 100.

    Xie S, Deser C, Vecchi GA, Ma J, Teng H, Wittenberg AT. Global warming pattern formation: sea surface temperature and rainfall. J Clim. 2010;23:966–86. https://doi.org/10.1175/2009JCLI3329.1.

    Article  Google Scholar 

  101. 101.

    Zhao T, Dai A. The magnitude and causes of global drought changes in the 21st century under a low–low-moderate emissions scenario. J Clim. 2015;28:4490–512.

    Article  Google Scholar 

  102. 102.

    Zhao T, Dai A. Uncertainties in historical changes and future projections of drought. Part II: model-simulated historical and future drought changes. Clim Change. 2017;144:535–48. https://doi.org/10.1007/s10584-016-1742-x.

    Article  Google Scholar 

  103. 103.

    Zhao S, Deng Y, and Black RX (2017) Observed and simulated spring and summer dryness in the United States: the impact of the Pacific Sea surface temperature and beyond. J Geophys Res, 122. doi: https://doi.org/10.1002/2017JD027279

  104. 104.

    Wang GL. Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th assessment. Clim Dyn. 2005;25:739–53.

    Article  Google Scholar 

  105. 105.

    Wang L, Yuan X, Xie Z, Wu P, Li Y. Increasing flash droughts over China during the recent global warming hiatus. Sci Rep. 2016;6:30571. https://doi.org/10.1038/srep30571.

    Article  CAS  Google Scholar 

  106. 106.

    Wilhite DA (2000) Drought as a natural hazard: concepts and definitions. In Droughts: a global assessment, Wilhite DA (Ed.), Routledge, pp.3–18.

  107. 107.

    Willett KM, Jones PD, Gillett NP, Thorne PW. Recent changes in surface humidity: development of the HadCRUH dataset. J Clim. 2008;21:5364–83.

    Article  Google Scholar 

  108. 108.

    Williams AP, Seager R, Abatzoglou JT, Cook BI, Smerdon JE, Cook ER. Contribution of anthropogenic warming to California drought during 2012–2014. Geophys Res Lett. 2015;42(16):6819–28. https://doi.org/10.1002/2015GL064924.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the CMIP5 modeling groups and NCAR CESM project, the Program for Climate Model Diagnosis and Intercomparison, and the WCRP’s Working Group on Coupled Modelling for their roles in making available the WCRP CMIP multi-model datasets. We thank Dr. Abby Swann of the University of Washington for sharing some of her downloaded CMIP5 model data that were used in Fig. 4.

Funding

A. Dai acknowledges the funding support from the U.S. National Science Foundation (Grant #AGS-1353740 and #OISE-1743738), the U.S. Department of Energy’s Office of Science (Award No. DE-SC0012602), and the U.S. National Oceanic and Atmospheric Administration (Award No. NA15OAR4310086).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aiguo Dai.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Human and Animal Rights and Informed Consent

This study does not involve human and animal rights in any way.

Additional information

This article is part of the Topical Collection on Climate Change and Drought

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dai, A., Zhao, T. & Chen, J. Climate Change and Drought: a Precipitation and Evaporation Perspective. Curr Clim Change Rep 4, 301–312 (2018). https://doi.org/10.1007/s40641-018-0101-6

Download citation

Keywords

  • Global warming
  • Climate projection
  • Drought
  • Precipitation
  • Evapotranspiration
  • Soil moisture
  • Runoff
  • Water use efficiency
  • Stomatal conductance
  • Last glacial maximum