Adler RF, Gu G, Sapiano M, Wang J-J, Huffman GJ. Global precipitation: means, variations and trends during the satellite era (1979–2014). Surv Geophys. 2017;38:679–99. https://doi.org/10.1007/s10712-017-9416-4.
Article
Google Scholar
American Meteorological Society (AMS) (2013) Drought—an information statement. [https://www.ametsoc.org/ams/index.cfm/about-ams/ams-statements/statements-of-the-ams-in-force/drought/].
Ball JT, Woodrow IE, Berry JA (1987) Progress in photosynthesis research, Biggins J (ed.), Martinus Nijhoff, Dordrecht, The Netherlands, pp. 221–224.
Berg A, et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Chang. 2016;6(9):869–74. https://doi.org/10.1038/nclimate3029.
Article
Google Scholar
Berg A, Sheffield J, Milly P. Divergent surface and total soil moisture projections under global warming. Geophys Res Lett. 2017;44:236–44. https://doi.org/10.1002/2016GL071921.
Article
Google Scholar
Bonfils C, Anderson G, Santer BD, Phillips TJ, Taylor KE, Cuntz M, et al. Competing influences of anthropogenic warming, ENSO, and plant physiology on future terrestrial aridity. J. Climate. 2017;30:6883–904. https://doi.org/10.1175/JCLI-D-17-0005.1
Article
Google Scholar
Bonan G, Williams M, Fisher R, Oleson K. Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil–plant–atmosphere continuum. Geosci. Model Dev. 2014;7:2193–222.
Article
Google Scholar
Burgman RJ, Jang Y. Simulated U.S. drought response to interannual and decadal Pacific SST variability. J. Climate. 2015;28:4688–705.
Article
Google Scholar
Burke EJ. Understanding the sensitivity of different drought metrics to the drivers of drought under increased atmospheric CO2. J. Hydrometeor. 2011;12:1378–94. https://doi.org/10.1175/2011JHM1386.1.
Article
Google Scholar
Burke EJ, Brown SJ. Evaluating uncertainties in the projection of future drought. J. Hydrometeor. 2008;9:292–9.
Article
Google Scholar
Burls NJ, Fedorov AV. Wetter subtropics in a warmer world: contrasting past and future hydrological cycles. Proceed Nat Acad Sci. 2017;28:12,888–93. https://doi.org/10.1073/pnas.1703421114.
Article
CAS
Google Scholar
Byrne MP, O’Gorman PA. Understanding decreases in land relative humidity with global warming: conceptual model and GCM simulations. J Climate. 2016;29:9045–61. https://doi.org/10.1175/JCLI-D-16-0351.1.
Article
Google Scholar
Chou C, Neelin JD, Chen C-A, Tu J-Y. Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Climate. 2009;22:1982–2005. https://doi.org/10.1175/2008JCLI2471.1.
Article
Google Scholar
Collins M et al. (2013) Long-term climate change: projections, commitments and irreversibility. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Cook BI, Smerdon JE, Seager R, Coats S. Global warming and 21st century drying. Climate Dyn. 2014;43:2607–27.
Article
Google Scholar
Cook BI, Cook ER, Smerdon JE, Seager R, Williams AP, Coats S, et al. North American megadroughts in the Common Era: reconstructions and simulations. WIREs Clim Change. 2016;7:411–32. https://doi.org/10.1002/wcc.394.
Article
Google Scholar
Dai A. Recent climatology, variability and trends in global surface humidity. J. Climate. 2006;19:3589–606.
Article
Google Scholar
Dai A. Drought under global warming: a review. WIREs. Clim Change. 2011a;2:45–65.
Google Scholar
Dai A. Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J Geophys Res. 2011b;116:D12115.
Article
Google Scholar
Dai A. Increasing drought under global warming in observations and models. Nature. Clim Change. 2013a;3:52–8.
Article
Google Scholar
Dai A. (2013b) The influence of the inter-decadal Pacific Oscillation on U.S. precipitation during 1923–2010. Climate Dynamics, 41: 633–646. DOI https://doi.org/10.1007/s00382-012-1446-5.
Dai A (2016a) Future warming patterns linked to today’s climate variability. Sci Rep, 6: 19110, doi:https://doi.org/10.1038/srep19110.
Dai A (2016b) Historical and future changes in streamflow and continental runoff: a review. Chapter 2 of terrestrial water cycle and climate change: natural and human-induced impacts, Geophysical Monograph 221, edited by Qiuhong Tang and Taikan Oki, AGU, John Wiley & Sons, pp. 17–37.
Dai A, Fung IY, Del Genio AD. Surface observed global land precipitation variations during 1900–1988. J Clim. 1997;10:2943–62.
Article
Google Scholar
Dai A, Wigley TML. Global patterns of ENSO-induced precipitation. Geophys Res Lett. 2000;27:1283–6.
Article
Google Scholar
Dai A, Trenberth KE, Qian T. A global dataset of Palmer Drought Severity Index for 1870–2002: relationship with soil moisture and effects of surface warming. J Hydrometeorol. 2004;5:1117–30. https://doi.org/10.1175/JHM-386.1.
Article
Google Scholar
Dai A, Zhao T. Uncertainties in historical changes and future projections of drought. Part I: estimates of historical drought changes. Climatic Change. 2017;144:519–33. https://doi.org/10.1007/s10584-016-1705-2.
Article
Google Scholar
Dai, A., R.M. Rasmussen, C. Liu, K. Ikeda, and A.F. Prein (2017a) A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations. Clim Dynamics, DOI:https://doi.org/10.1007/s00382-017-3787-6.
Dai, A., R.M. Rasmussen, K. Ikeda, and C. Liu (2017b) A new approach to construct representative future forcing data for dynamic downscaling. Clim Dynamics, DOI: https://doi.org/10.1007/s00382-017-3708-8.
Dai, A., and C.E. Bloecker (2018) Impacts of internal variability on temperature and precipitation trends in large ensemble simulations by two climate models. Clim Dynamics, DOI: https://doi.org/10.1007/s00382-018-4132-4
Delworth TL, Zeng F, Rosati A, Vecchi GA, Wittenberg AT. A link between the hiatus in global warming and North American drought. J Climate. 2015;28:3834–45.
Article
Google Scholar
Deser C, Phillips AS, Alexander MA, Smoliak BV. Projecting North American climate over the next 50 years: uncertainty due to internal variability. J. Clim. 2014;27:2271–96. https://doi.org/10.1175/JCLI-D-13-00451.1.
Article
Google Scholar
Dong B, Dai A. The influence of the inter-decadal Pacific Oscillation on temperature and precipitation over the globe. Clim Dynamics. 2015;45:2667–81. https://doi.org/10.1007/s00382-015-2500-x.
Article
Google Scholar
Feng S, Fu Q. Expansion of global dry lands under warming climate. Atmos Chem Phys. 2013;13:10081–10,094.
Article
CAS
Google Scholar
Feng S, Hu Q, Huang W, Ho CH, Li R, Tang Z. Projected climate regime shift under future global warming from multi-model, multi-scenario CMIP5 simulations. Global Planet Change. 2014;112:41–52. https://doi.org/10.1016/j.gloplacha.2013.11.002.
Article
Google Scholar
Ficklin DL, Novick KA. Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere. J Geophys Res Atmos. 2017;122:2061–79. https://doi.org/10.1002/2016JD025855.
Article
Google Scholar
Findell KL, Delworth TL. Impact of common sea surface temperature anomalies on global drought and pluvial frequency. J Clim. 2010;23:485–503.
Article
Google Scholar
Fu Q, Feng S. Responses of terrestrial aridity to global warming. J. Geophys. Res. Atmos. 2014;119:7863–75.
Article
Google Scholar
Fu Q, Lin L, Huang J, Feng S, Gettelman A. Changes in terrestrial aridity for the period 850–2080 from the Community Earth System Model. J. Geop hys. Res. Atmos. 2016;121:2857–73. https://doi.org/10.1002/2015JD024075.
Article
Google Scholar
Giannini A, Saravanan R, Chang P. Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science. 2003;302:1027–30.
Article
CAS
Google Scholar
Gu G, Adler RF. Interdecadal variability/long-term changes in global precipitation patterns during the past three decades: global warming and/or Pacific decadal variability? Clim Dyn. 2013;40:3009–22. https://doi.org/10.1007/s00382-012-1443-8.
Article
Google Scholar
Gu G, Adler RF. Spatial patterns of global precipitation change and variability during 1901–2010. J Clim. 2015;28:4431–53. https://doi.org/10.1175/JCLI-D-14-00201.1.
Article
Google Scholar
Hartmann DL et al. (2013) Observations: atmosphere and surface. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Hartmann DL. Global physical climatology. 2nd ed. Amsterdam: Elsevier; 2016. p. 485.
Google Scholar
Hegerl, G. C. et al. 2007: Understanding and attributing climate change. Climate change 2007: the physical science basis, S. Solomon et al., Eds., Cambridge University Press, 663–745.
Hegerl GC, et al. Challenges in quantifying changes in the global water cycle. Bull Am Met Soc. 2015;96:1097–115. https://doi.org/10.1175/BAMS-D-13-00212.1.
Article
Google Scholar
Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, et al. Global flood risk under climate change. Nat Clim Change. 2013;3:816–21. https://doi.org/10.1038/nclimate1911.
Article
Google Scholar
Hobbins M, Wood A, McEvoy D, Huntington J, Morton C, Anderson M, Hain C (2016). The evaporative demand drought index. Part I: linking drought evolution to variations in evaporative demand. J Hydrometeorol, 17(6), 1745–1761. doi: https://doi.org/10.1175/JHM-D-15-0121.1
Hoerling M, Hurrell J, Eischeid J, Phillips A. Detection and attribution of twentieth-century northern and southern African rainfall change. J. Climate. 2006;19:3989–4008. https://doi.org/10.1175/JCLI3842.1.
Article
Google Scholar
Hoerling MP, Eischeid J, Perlwitz J. Regional precipitation trends: distinguishing natural variability from anthropogenic forcing. J. Climate. 2010;23:2131–45. https://doi.org/10.1175/2009JCLI3420.1.
Article
Google Scholar
Hoerling MP, Eischeid J, Kumar A, Leung R, Mariotti A, Mo K, et al. Causes and predictability of the 2012 Great Plains drought. Bull Amer Meteor Soc. 2014;95:269–82.
Article
Google Scholar
Hu Q, Feng S. AMO- and ENSO-driven summertime circulation and precipitation variations in North America. J Climate. 2012;25:6477–95. https://doi.org/10.1175/JCLI-D-11-00520.1.
Article
Google Scholar
Hu Q, Veres MC. Atmospheric responses to North Atlantic SST anomalies in idealized experiments. Part II: North Am Precipitation J Climate. 2016;29(2):659–71.
Google Scholar
Huang J, Y. Li, C. Fu, F. Chen, Q. Fu, A. Dai, M. Shinoda, Z. Ma, W. Guo, Z. Li, L. Zhang, Y. Liu, H. Yu, Y. He, Y. Xie, X. Guan, M. Ji, L. Lin, S. Wang, H. Yan, and G. Wang (2017) Dryland climate change: recent progress and challenges. Rev Geophys 55: 719–778.
Huang, D., A. Dai, et al. (2018) Are the transient and equilibrium climate change patterns different in response to increased CO2? To be submitted to Climate Dynamics.
Kam J, Sheffield J, Wood EF. Changes in drought risk over the contiguous United States (1901–2012): the influence of the Pacific and Atlantic Oceans. Geophys Res Lett. 2014;41:5897–903.
Article
Google Scholar
Katul G, Manzoni S, Palmroth S, Oren R. A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. Ann Botany. 2010;105:431–42.
Article
Google Scholar
Keyantash J, Dracup JA. The quantification of drought: an evaluation of drought indices. Bull Am Met Soc. 2002;83:1167–80.
Article
Google Scholar
Leuning R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ. 1995;18(4):339–55.
Article
CAS
Google Scholar
Liu ZY. Dynamics of interdecadal climate variability: a historical perspective. J Clim. 2012;25:1963–95.
Article
Google Scholar
McGee D, Broecker WS, Winckler G. Gustiness: the driver of glacial dustiness? Quat Sci Rev. 2010;29:2340–50. https://doi.org/10.1016/j.quascirev.2010.06.009.
Article
Google Scholar
Medlyn BE, et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob Change Biol. 2011;2134–2144(2011):17.
Google Scholar
Meehl, G.A., T.F. Stocker, W.D. Collins, P. Friedlingstein, A.T. Gaye, J.M. Gregory, A. Kitoh, R. Knutti, J.M. Murphy, A. Noda, S.C.B. Raper, I.G. Watterson, A.J. Weaver and Z.-C. Zhao (2007): Global climate projections. In: Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Milly PCD, Dunne KA. Potential evapotranspiration and continental drying. Nat Clim Change. 2016;6:946–9. https://doi.org/10.1038/NCLIMATE3046.
Article
Google Scholar
Mishra AK, Singh VP. A review of drought concepts. J Hydrol. 2010;391:202–16. https://doi.org/10.1016/j.jhydrol.2010.07.012.
Article
Google Scholar
Mo KC, Lettenmaier DP. Heat wave flash droughts in decline. Geophys Res Lett. 2015;42:2823–9. https://doi.org/10.1002/2015GL064018.
Article
Google Scholar
Mo KC, Lettenmaier DP. Precipitation deficit flash droughts over the United States. J Hydrometeorol. 2016;17:1169–84.
Article
Google Scholar
Muhs DR. The geologic records of dust in the Quaternary. Aeolian Res. 2013;9:3–48. https://doi.org/10.1016/j.aeolia.2012.08.001.
Article
Google Scholar
Namias J. Some causes of United States drought. J Clim Appl Meteor. 1983;22:30–9.
Article
Google Scholar
Novick K, et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat Clim Chang. 2016;6(11):1023–7. https://doi.org/10.1038/nclimate3114.
Article
CAS
Google Scholar
Palmer WC (1965) Meteorological drought. Research Paper No. 45, US Dept. of Commerce, pp. 58 . [Available from http://www.ncdc.noaa.gov/oa/climate/research/drought/palmer.pdf].
Petit JR, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature. 1999;399:429–36. https://doi.org/10.1038/20859.
Article
CAS
Google Scholar
Prentice IC, et al. Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa. J. Biogeogr. 2000;27:507–19. https://doi.org/10.1046/j.1365-2699.2000.00425.x.
Article
Google Scholar
Prentice IC, Harrison SP, Bartlein PJ. Global vegetation and terrestrial carbon cycle changes after the last ice age. New Phytol. 2011;189:988–98. https://doi.org/10.1111/j.1469-8137.2010.03620.x.
Article
CAS
Google Scholar
Prudhomme C, et al. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc Natl Acad Sci USA. 2014;111(9):3262–7.
Article
CAS
Google Scholar
Qian T, Dai A, Trenberth KE, Oleson KW. Simulation of global land surface conditions from 1948-2004 Part I: forcing data and evaluation. J Hydrometeorol. 2006;7:953–75.
Article
Google Scholar
Rasmussen K L, Prein A F, Rasmussen R M, Ikeda K, and Liu C (2017) Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States. Climate Dynamics, doi: https://doi.org/10.1007/s00382-017-4000-7.
Routson CC, Woodhouse CA, Overpeck JT, Betancourt JL, McKay NP. Teleconnected ocean forcing of Western North American droughts and pluvials during the last millennium. Quaternary Science Reviews. 2016;146:238–50.
Article
Google Scholar
Scheff J, Frierson DMW. Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones. Geophys. Res. Lett. 2012;39:L18704. https://doi.org/10.1029/2012GL052910.
Article
Google Scholar
Scheff J, Frierson DMW. Scaling potential evapotranspiration with greenhouse warming. J Clim. 2014;27:1539–58. https://doi.org/10.1175/JCLI-D-13-00233.1.
Article
Google Scholar
Scheff J, Frierson DMW. Terrestrial aridity and its response to greenhouse warming across CMIP5 climate models. J Clim. 2015;28:5583–600.
Article
Google Scholar
Scheff J, Seager R, Liu H, Coats S. Are glacials dry? Consequences for paleoclimatology and for greenhouse warming. J. Climate. 2017;30:6593–609. https://doi.org/10.1175/JCLI-D-16-0854.1.
Article
Google Scholar
Schubert SD, Gutzler D, Wang HL, Dai A, Delworth T, et al. A US CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: overview and results. J Clim. 2009;22:5251–72.
Article
Google Scholar
Schubert SD, et al. Global meteorological drought: a synthesis of current understanding with a focus on SST drivers of precipitation deficits. J Clim. 2016;29:3989–4019.
Article
Google Scholar
Sheffield J, Wood EF. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn. 2008;31:79–105.
Article
Google Scholar
Sheffield J, Wood EF, Roderick ML. Little change in global drought over the past 60 years. Nature. 2012;491(7424):435–8.
Article
CAS
Google Scholar
Seager R, Kushnir Y, Herweijer C, Naik N, Velez J. Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J Clim. 2005;18:4068–91.
Article
Google Scholar
Seager R, Hoerling M. Atmosphere and ocean origins of North American droughts. J Clim. 2014;27(12):4581–606.
Article
Google Scholar
Seager R, Ting M. Decadal drought variability over North America: mechanisms and predictability. Curr Clim Change Rep. 2017;3:141–9.
Article
Google Scholar
Sun Y, Solomon S, Dai A, Portmann R. How often will it rain? J Climate. 2007;20:4801–18.
Article
Google Scholar
Sun Q, Miao C, AghaKouchak A, Duan Q. Century-scale causal relationships between global dry/wet conditions and the state of the Pacific and Atlantic Oceans. Geophys Res Lett. 2016;43(12):6528–37. https://doi.org/10.1002/2016GL069628.
Article
Google Scholar
Swann ALS, Hoffman FM, Koven CD, Randerson JT. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc Natl Acad Sci USA. 2016;113:10019–10,024. https://doi.org/10.1073/pnas.1604581113.
Article
CAS
Google Scholar
Trenberth KE. Changes in precipitation with climate change. Clime Res. 2011;47:123–38. https://doi.org/10.3354/cr00953.
Article
Google Scholar
Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons (2003) The changing character of precipitation. Bull Amer Meteorol Soc., 84, 1205–1217.
Trenberth KE, Branstator GW, Arkin PA. Origins of the 1988 North American drought. Science. 1988;242:1640–6.
Article
CAS
Google Scholar
Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, et al. Global warming and changes in drought. Nature Climate Change. 2014;4:17–22.
Article
Google Scholar
van der Schrier G, Jones PD, Briffa KR. The sensitivity of the PDSI to the Thornthwaite and Penman-Monteith parameterizations for potential evapotranspiration. J Geophys Res Atmos. 2011;116:D03106. https://doi.org/10.1029/2010JD015001.
Article
Google Scholar
van der Schrier G, Barichivich J, Briffa KR, Jones PD. A scPDSI-based global data set of dry and wet spells for 1901–2009. J Geophys Res Atmos. 2013;118:4025–48. https://doi.org/10.1002/jgrd.50355.
Article
Google Scholar
Vicente-Serrano SM, Beguería S, López-Moreno JI. A multi-scalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index—SPEI. J Clim. 2010;23:1696–718.
Article
Google Scholar
Xie S, Deser C, Vecchi GA, Ma J, Teng H, Wittenberg AT. Global warming pattern formation: sea surface temperature and rainfall. J Clim. 2010;23:966–86. https://doi.org/10.1175/2009JCLI3329.1.
Article
Google Scholar
Zhao T, Dai A. The magnitude and causes of global drought changes in the 21st century under a low–low-moderate emissions scenario. J Clim. 2015;28:4490–512.
Article
Google Scholar
Zhao T, Dai A. Uncertainties in historical changes and future projections of drought. Part II: model-simulated historical and future drought changes. Clim Change. 2017;144:535–48. https://doi.org/10.1007/s10584-016-1742-x.
Article
Google Scholar
Zhao S, Deng Y, and Black RX (2017) Observed and simulated spring and summer dryness in the United States: the impact of the Pacific Sea surface temperature and beyond. J Geophys Res, 122. doi: https://doi.org/10.1002/2017JD027279
Wang GL. Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th assessment. Clim Dyn. 2005;25:739–53.
Article
Google Scholar
Wang L, Yuan X, Xie Z, Wu P, Li Y. Increasing flash droughts over China during the recent global warming hiatus. Sci Rep. 2016;6:30571. https://doi.org/10.1038/srep30571.
Article
CAS
Google Scholar
Wilhite DA (2000) Drought as a natural hazard: concepts and definitions. In Droughts: a global assessment, Wilhite DA (Ed.), Routledge, pp.3–18.
Willett KM, Jones PD, Gillett NP, Thorne PW. Recent changes in surface humidity: development of the HadCRUH dataset. J Clim. 2008;21:5364–83.
Article
Google Scholar
Williams AP, Seager R, Abatzoglou JT, Cook BI, Smerdon JE, Cook ER. Contribution of anthropogenic warming to California drought during 2012–2014. Geophys Res Lett. 2015;42(16):6819–28. https://doi.org/10.1002/2015GL064924.
Article
Google Scholar