Climate Change and Drought: the Soil Moisture Perspective


Purpose of review

We review the extensive and sometimes conflicting recent literature on drought changes under global warming. We focus on soil moisture deficits, which are indicative of associated impacts on ecosystems. Soil moisture is a key state variable of the land surface, reflecting complex interactions between the water, energy, and carbon cycles.

Recent findings

Offline projections relying on soil moisture proxy metrics indicate dramatic future drought increases, often interpreted as primarily driven by warming-induced increases in evaporative demand. However, such results appear inconsistent with other trends in the land–atmosphere system, including soil moisture, vegetation, and evapotranspiration. Recent studies begin to explain these discrepancies, highlighting the importance of soil–vegetation–atmosphere coupling, unaccounted for in offline projections.


Future changes in soil moisture droughts should preferably be assessed with prognostic model outputs rather than offline heuristics and be interpreted in the context of the coupled soil–vegetation–atmosphere system.

This is a preview of subscription content, access via your institution.

Fig. 1


Papers of particular interest, published recently, have been highlighted as:• Of importance • Of major importance

  1. 1.

    Howitt R, Medellín-Azuara J, MacEwan D, Lund JR, Sumner D. Economic analysis of the 2014 drought for California agriculture. University of California, Center for Watershed Sciences: Davis; 2014.

    Google Scholar 

  2. 2.

    Mann ME, Gleick PH. Climate change and California drought in the 21st century. Proc Natl Acad Sci. 2015;112(13):3858–9.

    Article  CAS  Google Scholar 

  3. 3.

    Amos CB, Audet P, Hammond WC, Bürgmann R, Johanson IA, Blewitt G. Uplift and seismicity driven by groundwater depletion in central California. Nature. 2014;509(7501):483–6.

    Article  CAS  Google Scholar 

  4. 4.

    Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag. 2010;259(4):660–84.

    Article  Google Scholar 

  5. 5.

    Maharatna A. Food scarcity and migration: an overview. Soc Res Int Q. 2014;81(2):277–98.

    Google Scholar 

  6. 6.

    Grolle J. Historical case studies of famines and migrations in the West African Sahel and their possible relevance now and in the future. Popul Environ. 2015;37(2):181–206.

    Article  Google Scholar 

  7. 7.

    Gleick PH. Water, drought, climate change, and conflict in Syria. Weather Clim Soc. 2014;6(3):331–40.

    Article  Google Scholar 

  8. 8.

    Giannini A, Saravanan R, Chang P. Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science. 2003;302(5647):1027–30.

    Article  CAS  Google Scholar 

  9. 9.

    Seager R, Hoerling M. Atmosphere and ocean origins of North American droughts. J Clim. 2014;27(12):4581–606.

    Article  Google Scholar 

  10. 10.

    Schubert SD, Stewart RE, Wang H, Barlow M, Berbery EH, Cai W, et al. Global meteorological drought: a synthesis of current understanding with a focus on SST drivers of precipitation deficits. J Clim. 2016;29(11):3989–4019.

    Article  Google Scholar 

  11. 11.

    IPCC. Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [JT Houghton, Y Ding, DJ Griggs, M Noguer, PJ Van der Linden, X Dai, K Maskell, and CA Johnson (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA; 2001, 881pp.

  12. 12.

    IPCC. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen, J Boschung, A Nauels, Y Xia, V Bex and PM Midgley (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA; 2013, 1535 pp,

  13. 13.

    Lott FC, Christidis N, Stott PA. Can the 2011 East African drought be attributed to human-induced climate change? Geophys Res Lett. 2013;40(6):1177–81.

    Article  Google Scholar 

  14. 14.

    • Diffenbaugh NS, Swain DL, Touma D. Anthropogenic warming has increased drought risk in California. Proc Natl Acad Sci. 2015;112(13):3931–6. This paper relies on calculations of the PDSI to argue that warming has increased drought intensity in California, including the recent 2012–2014 event.

    Article  CAS  Google Scholar 

  15. 15.

    Williams AP, Seager R, Abatzoglou JT, Cook BI, Smerdon JE, Cook ER. Contribution of anthropogenic warming to California drought during 2012–2014. Geophys Res Lett. 2015;42(16):6819–28.

    Article  Google Scholar 

  16. 16.

    Robock A, Vinnikov KY, Srinivasan G, Entin JK, Hollinger SE, Speranskaya NA, et al. The global soil moisture data bank. Bull Am Meteorol Soc. 2000;81:1281–99.<1281:TGSMDB>2.3.CO;2.

    Article  Google Scholar 

  17. 17.

    Dorigo W, deJeu R, Chung D, Parinussa R, Liu Y, Wagner W, et al. Evaluating global trends (1988–2010) in harmonized multi-satellite surface soil moisture. Geophys Res Lett. 2012;39:L18405.

    Article  Google Scholar 

  18. 18.

    Entekhabi D, Njoku EG, O’Neill PE, Kellogg KH, Crow WT, Edelstein WN, et al. The soil moisture active passive (SMAP) mission. Proc IEEE. 2010;98(5):704–16.

    Article  Google Scholar 

  19. 19.

    Palmer WC. Meteorological drought. Washington, DC: US Department of Commerce, Weather Bureau; 1965.

    Google Scholar 

  20. 20.

    Svoboda M, LeComte D, Hayes M, Heim R, Gleason K, Angel J, et al. The drought monitor. Bull Am Meteorol Soc. 2002;83(8):1181–90.

    Article  Google Scholar 

  21. 21.

    Vicente-Serrano SM, Beguería S, López-Moreno JI. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim. 2010;23(7):1696–718.

    Article  Google Scholar 

  22. 22.

    • Feng S, Fu Q. Expansion of global drylands under a warming climate. Atmos Chem Phys. 2013;13(19):10–081. First study to analyze the P/PET Aridity Index in past and future climate simulations, arguing that it indicates a general expansion of drylands with warming.

    Article  CAS  Google Scholar 

  23. 23.

    Thornthwaite CW. An approach toward a rational classification of climate. Geogr Rev. 1948;38(1):55–94.

    Article  Google Scholar 

  24. 24.

    Dai A, Trenberth KE, Qian T. A global dataset of Palmer Drought Severity Index for 1870–2002: relationship with soil moisture and effects of surface warming. J Hydrometeorol. 2004;5(6):1117–30.

    Article  Google Scholar 

  25. 25.

    Allen RG, Pereira LS, Raes D, Smith M. Crop evapotranspiration—guidelines for computing crop water requirements—FAO irrigation and drainage paper 56. FAO, Rome, 1998;300(9):D05109.

  26. 26.

    Hobbins MT, Dai A, Roderick ML, Farquhar GD. Revisiting the parameterization of potential evaporation as a driver of long-term water balance trends. Geophys Res Lett. 2008;28:35(12).

    Article  Google Scholar 

  27. 27.

    Sheffield J, Goteti G, Wen F, Wood EF. A simulated soil moisture based drought analysis for the United States. J Geophys Res Atmos. 2004;109(D24).

  28. 28.

    • Cook BI, Smerdon JE, Seager R, Coats S. Global warming and 21st century drying. Clim Dyn. 2014;43(9–10):2607–27. This paper details the enhancing effect of warming-driven PET increase on future global trends in offline drought metrics (PDSI, SPEI), intensifying future drought beyond regions of decreased precipitation.

    Article  Google Scholar 

  29. 29.

    • Cook BI, Ault TR, Smerdon JE. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci Adv. 2015;1(1):e1400082. This paper uses PDSI and soil moisture metrics from climate model projections to show that drought risks under climate change are unprecedented over the last millennium in the Southwest USA.

    Article  Google Scholar 

  30. 30.

    Zhao T, Dai A. The magnitude and causes of global drought changes in the twenty-first century under a low–moderate emissions scenario. J Clim. 2015;28(11):4490–512.

    Article  Google Scholar 

  31. 31.

    Cook ER, Seager R, Cane MA, Stahle DW. North American drought: reconstructions, causes, and consequences. Earth Sci Rev. 2007;81(1):93–134.

    Article  Google Scholar 

  32. 32.

    Koster RD, Guo Z, Yang R, Dirmeyer PA, Mitchell K, Puma MJ. On the nature of soil moisture in land surface models. J Clim. 2009;22(16):4322–35.

    Article  Google Scholar 

  33. 33.

    • Berg A, Sheffield J, Milly PC. Divergent surface and total soil moisture projections under global warming. Geophys Res Lett. 2017;44(1):236–44. This study highlights that projections of root-zone soil moisture from climate models are less negative than surface soil moisture, in particular in northern hemisphere mid-latitudes.

    Article  Google Scholar 

  34. 34.

    Dai A. Increasing drought under global warming in observations and models. Nat Clim Chang. 2013;3(1):52–8.

    Article  Google Scholar 

  35. 35.

    Ault TR, Mankin JS, Cook BI, Smerdon JE. Relative impacts of mitigation, temperature, and precipitation on 21st-century megadrought risk in the American Southwest. Sci Adv. 2016;2(10):e1600873.

    Article  Google Scholar 

  36. 36.

    Allen MR, Ingram WJ. Constraints on future changes in climate and the hydrologic cycle. Nature. 2002;419(6903):224–32.

    Article  CAS  Google Scholar 

  37. 37.

    Pendergrass AG, Hartmann DL. The atmospheric energy constraint on global-mean precipitation change. J Clim. 2014;27(2):757–68.

    Article  Google Scholar 

  38. 38.

    • Fu Q, Feng S. Responses of terrestrial aridity to global warming. J Geophys Res Atmos. 2014;119(13):7863–75. This article details the differential responses of P and PET to warming over land, conducive to increasing aridity trends as diagnosed with P/PET.

    Article  Google Scholar 

  39. 39.

    Orlowsky B, Seneviratne SI. Elusive drought: uncertainty in observed trends and short-and long-term CMIP5 projections. Hydrol Earth Syst Sci. 2013;17(5):1765–81.

    Article  Google Scholar 

  40. 40.

    • Scheff J, Frierson DM. Scaling potential evapotranspiration with greenhouse warming. J Clim. 2014;27(4):1539–58. This article provides a thorough explanation of why PET increases with warming.

    Article  Google Scholar 

  41. 41.

    Scheff J, Frierson DM. Terrestrial aridity and its response to greenhouse warming across CMIP5 climate models. J Clim. 2015;28(14):5583–600.

    Article  Google Scholar 

  42. 42.

    • Sherwood S, Fu Q. A drier future? Science. 2014;343(6172):737–9. This letter argues that PET trends over land are primarily caused by oceanic warming and attendant atmospheric processes.

    Article  CAS  Google Scholar 

  43. 43.

    Joshi MM, Gregory JM, Webb MJ, Sexton DM, Johns TC. Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Clim Dyn. 2008;30(5):455–65.

    Article  Google Scholar 

  44. 44.

    Byrne MP, O'Gorman PA. Link between land-ocean warming contrast and surface relative humidities in simulations with coupled climate models. Geophys Res Lett. 2013;40(19):5223–7.

    Article  Google Scholar 

  45. 45.

    Dai A. Drought under global warming: a review. Wiley Interdiscip Rev Clim Chang. 2011;2(1):45–65.

    Article  Google Scholar 

  46. 46.

    Zhao T, Dai A. Uncertainties in historical changes and future projections of drought. Part II: model-simulated historical and future drought changes. Clim Chang. 2017;144(3):535–48.

    Article  Google Scholar 

  47. 47.

    Lehner F, Coats S, Stocker TF, Pendergrass AG, Sanderson BM, Raible CC, et al. Projected drought risk in 1.5 C and 2 C warmer climates. Geophys Res Lett. 2017;44(14):7419–28.

    Article  Google Scholar 

  48. 48.

    Huang J, Yu H, Guan X, Wang G, Guo R. Accelerated dryland expansion under climate change. Nat Clim Chang. 2016;6(2):166–71.

    Article  Google Scholar 

  49. 49.

    Lin L, Gettelman A, Feng S, Fu Q. Simulated climatology and evolution of aridity in the 21st century. J Geophys Res Atmos. 2015;120(12):5795–815.

    Article  Google Scholar 

  50. 50.

    Fu Q, Lin L, Huang J, Feng S, Gettelman A. Changes in terrestrial aridity for the period 850–2080 from the Community Earth System Model. J Geophys Res Atmos. 2016;121(6):2857–73.

    Article  Google Scholar 

  51. 51.

    Huang J, Li Y, Fu C, Chen F, Fu Q, Dai A, et al. Dryland climate change: recent progress and challenges. Rev Geophys. 2017;55:719–78.

    Article  Google Scholar 

  52. 52.

    Park CE, Jeong SJ, Joshi M, Osborn TJ, Ho CH, Piao S, et al. Keeping global warming within 1.5° C constrains emergence of aridification. Nat Clim Chang. 2018;1:1.

    Google Scholar 

  53. 53.

    Cheng S, Huang J, Ji F, Lin L. Uncertainties of soil moisture in historical simulations and future projections. J Geophys Res Atmos. 2017;122(4):2239–53.

    Article  Google Scholar 

  54. 54.

    Haywood AM, Dowsett HJ, Dolan AM. Integrating geological archives and climate models for the mid-Pliocene warm period. Nat Commun. 2016;7:10646.

    Article  CAS  Google Scholar 

  55. 55.

    Haywood AM, Hill DJ, Dolan AM, Otto-Bliesner BL, Bragg F, Chan WL, et al. Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project. Clim Past. 2013;9(1):191–209.

    Article  Google Scholar 

  56. 56.

    Salzmann U, Williams M, Haywood AM, Johnson AL, Kender S, Zalasiewicz J. Climate and environment of a Pliocene warm world. Palaeogeogr Palaeoclimatol Palaeoecol. 2011;309(1):1–8.

    Article  Google Scholar 

  57. 57.

    Behl RJ. Glacial demise and methane’s rise. Proc Natl Acad Sci. 2011;108(15):5925–6.

    Article  Google Scholar 

  58. 58.

    Gerhart LM, Ward JK. Plant responses to low [CO2] of the past. New Phytol. 2010;188(3):674–95.

    Article  Google Scholar 

  59. 59.

    Scheff J, Seager R, Liu H, Coats S. Are glacials dry? Consequences for paleoclimatology and for greenhouse warming. J Clim. 2017;30(17):6593–609.

    Article  Google Scholar 

  60. 60.

    • Roderick ML, Greve P, Farquhar GD. On the assessment of aridity with changes in atmospheric CO2. Water Resour Res. 2015;51(7):5450–63. This is one the first papers to discuss the notion of “Aridity Paradox” and take issue with the view that a warmer world is necessarily drier over land.

    Article  CAS  Google Scholar 

  61. 61.

    Berghuijs WR, Larsen JR, van Emmerik TH, Woods RA. A global assessment of runoff sensitivity to changes in precipitation, potential evaporation, and other factors. Water Resour Res. 2017;53(10):8475–86.

    Article  Google Scholar 

  62. 62.

    Mahowald N, Lo F, Zheng Y, Harrison L, Funk C, Lombardozzi D, et al. Projections of leaf area index in earth system models. Earth Syst Dyn. 2016;7(1):211–29.

    Article  Google Scholar 

  63. 63.

    Greve P, Roderick ML, Seneviratne SI. Simulated changes in aridity from the last glacial maximum to 4xCO2. Environ Res Lett. 2017;12(11):114021.

    Article  Google Scholar 

  64. 64.

    Sheffield J, Wood EF. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn. 2008;31(1):79–105.

    Article  Google Scholar 

  65. 65.

    •• Berg A, Findell K, Lintner B, Giannini A, Seneviratne SI, Van Den Hurk B, Lorenz R, Pitman A, Hagemann S, Meier A, Cheruy F. Land-atmosphere feedbacks amplify aridity increase over land under global warming. Nat Clim Chang. 2016;869–874. This study shows that future positive trends in PET are partly due to feedbacks on climate of decrease soil moisture and decreased stomatal conductance. Land–atmosphere feedbacks are thus important contributors to projected trends in atmospheric aridity.

  66. 66.

    Burke EJ. Understanding the sensitivity of different drought metrics to the drivers of drought under increased atmospheric CO2. J Hydrometeorol. 2011;12(6):1378–94.

    Article  Google Scholar 

  67. 67.

    Hoerling MP, Eischeid JK, Quan XW, Diaz HF, Webb RS, Dole RM, et al. Is a transition to semipermanent drought conditions imminent in the US Great Plains? J Clim. 2012;25(24):8380–6.

    Article  Google Scholar 

  68. 68.

    Burke EJ, Brown SJ. Evaluating uncertainties in the projection of future drought. J Hydrometeorol. 2008;9(2):292–9.

    Article  Google Scholar 

  69. 69.

    Taylor IH, Burke E, McColl L, Falloon PD, Harris GR, McNeall D. The impact of climate mitigation on projections of future drought. Hydrol Earth Syst Sci. 2013;17(6):2339–58.

    Article  Google Scholar 

  70. 70.

    Sheffield J, Wood EF, Roderick ML. Little change in global drought over the past 60 years. Nature. 2012;491(7424):435–8.

    Article  CAS  Google Scholar 

  71. 71.

    Schrier G, Barichivich J, Briffa KR, Jones PD. A scPDSI-based global data set of dry and wet spells for 1901–2009. J Geophys Res Atmos. 2013;118(10):4025–48.

    Article  Google Scholar 

  72. 72.

    • Trenberth KE, Dai A, Van Der Schrier G, Jones PD, Barichivich J, Briffa KR, et al. Global warming and changes in drought. Nat Clim Chang. 2014;4(1):17–22. This article reviews and explains the inconsistencies in estimates of historical drought trends based on PSI calculations, highlighting the role of PDSI calibration, PET formulation, and rainfall forcing.

    Article  Google Scholar 

  73. 73.

    Liu YY, Dorigo WA, Parinussa RM, de Jeu RA, Wagner W, McCabe MF, et al. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens Environ. 2012;123:280–97.

    Article  Google Scholar 

  74. 74.

    Dorigo W, Chung D, Gruber A, Hahn S, Mistelbauer T, Parinussa R, et al. [Hydrological cycle] soil moisture [in “State of the climate in 2016”]. Bull Am Meteorol Soc. 2017;98(8):30–2.

    Article  Google Scholar 

  75. 75.

    Feng H, Zhang M. Global land moisture trends: drier in dry and wetter in wet over land. Sci Rep. 2015;5:18018.

    Article  CAS  Google Scholar 

  76. 76.

    Hao Z, AghaKouchak A, Nakhjiri N, Farahmand A. Global integrated drought monitoring and prediction system. Scientific Data. 2014;1:140001.

    Article  Google Scholar 

  77. 77.

    Robock A, Mu M, Vinnikov K, Trofimova IV, Adamenko TI. Forty-five years of observed soil moisture in the Ukraine: no summer desiccation (yet). Geophys Res Lett 2005;32(3).

  78. 78.

    Zhu Z, Piao S, Myneni RB, Huang M, Zeng Z, Canadell JG, et al. Greening of the earth and its drivers. Nat Clim Chang. 2016;6(8):791–5.

    Article  CAS  Google Scholar 

  79. 79.

    Fensholt R, Langanke T, Rasmussen K, Reenberg A, Prince SD, Tucker C, et al. Greenness in semi-arid areas across the globe 1981–2007—an earth observing satellite based analysis of trends and drivers. Remote Sens Environ. 2012;121:144–58.

    Article  Google Scholar 

  80. 80.

    Campbell JE, Berry JA, Seibt U, Smith SJ, Montzka SA, Launois T, et al. Large historical growth in global terrestrial gross primary production. Nature. 2017;544(7648):84–7.

    Article  CAS  Google Scholar 

  81. 81.

    Cook BI, Cook ER, Smerdon JE, Seager R, Williams AP, Coats S, et al. North American megadroughts in the common era: reconstructions and simulations. Wiley Interdiscip Rev Clim Chang. 2016;7(3):411–32.

    Article  Google Scholar 

  82. 82.

    Bouchet RJ. Evapotranspiration réelle et potentielle, signification climatique. IAHS Publ. 1963 Aug;62:134–42.

    Google Scholar 

  83. 83.

    Berg A, Lintner BR, Findell K, Seneviratne SI, van den Hurk B, Ducharne A, et al. Interannual coupling between summertime surface temperature and precipitation over land: processes and implications for climate change. J Clim. 2015;28(3):1308–28.

    Article  Google Scholar 

  84. 84.

    Vogel MM, Orth R, Cheruy F, Hagemann S, Lorenz R, Hurk BJ, et al. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophys Res Lett. 2017;44(3):1511–9.

    Article  Google Scholar 

  85. 85.

    Wolf S, Yin D, Roderick ML. Using radiative signatures to diagnose the cause of warming during the 2013–2014 Californian drought. J Hydrol. 2017;553:408–18.

    Article  Google Scholar 

  86. 86.

    Cheng L, Hoerling M, AghaKouchak A, Livneh B, Quan XW, Eischeid J. How has human-induced climate change affected California drought risk? J Clim. 2016;29(1):111–20.

    Article  Google Scholar 

  87. 87.

    Livneh B, Hoerling MP. The physics of drought in the US central great plains. J Clim. 2016;29(18):6783–804.

    Article  Google Scholar 

  88. 88.

    Field CB, Jackson RB, Mooney HA. Stomatal responses to increased CO2: implications from the plant to the global scale. Plant Cell Environ. 1995;18(10):1214–25.

    Article  Google Scholar 

  89. 89.

    •• Milly PC, Dunne KA. Potential evapotranspiration and continental drying. Nat Clim Chang. 2016;6(10):946–9. This study shows that most PET estimators, including Penman–Monteith, overestimate future evaporative demand, in part because they neglect changes in stomatal conductance with higher atmospheric CO2.. Net radiation is proposed as the best estimator of future PET.

    Article  Google Scholar 

  90. 90.

    Skinner CB, Poulsen CJ, Chadwick R, Diffenbaugh NS, Fiorella RP. The role of plant CO2 physiological forcing in shaping future daily-scale precipitation. J Clim. 2017;30(7):2319–40.

    Article  Google Scholar 

  91. 91.

    Cao L, Bala G, Caldeira K, Nemani R, Ban-Weiss G. Importance of carbon dioxide physiological forcing to future climate change. Proc Natl Acad Sci. 2010;107(21):9513–8.

    Article  Google Scholar 

  92. 92.

    •• Swann AL, Hoffman FM, Koven CD, Randerson JT. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc Natl Acad Sci. 2016;113(36):10019–24. This paper comprehensively shows that part of the future decrease in PDSI reflects the feedback on climate of decreased plant stomatal conductance and transpiration with higher atmospheric CO2. PDSI and plant soil water stress are thus partially decoupled in the future.

    Article  CAS  Google Scholar 

  93. 93.

    Greve P, Seneviratne SI. Assessment of future changes in water availability and aridity. Geophys Res Lett. 2015;42(13):5493–9.

    Article  CAS  Google Scholar 

  94. 94.

    Roderick ML, Sun F, Lim WH, Farquhar GD. A general framework for understanding the response of the water cycle to global warming over land and ocean. Hydrol Earth Syst Sci. 2014;18:1575–89.

    Article  Google Scholar 

  95. 95.

    • Mankin JS, Smerdon JE, Cook BI, Williams AP, Seager R. The curious case of projected twenty-first-century drying but greening in the American West. J Clim. 2017;30(21):8689–710. This article highlights that in certain models and regions, increased vegetation with higher atmospheric CO2 and climate change can lead to reduced soil moisture and runoff, leading to a seemingly paradoxically greener but drier world.

    Article  Google Scholar 

  96. 96.

    Milly PC, Dunne KA. A hydrologic drying bias in water-resource impact analyses of anthropogenic climate change. J Am Water Resour Assoc. 2017;53(4):822–38.

    Article  Google Scholar 

  97. 97.

    Bony S, Stevens B, Frierson DM, Jakob C, Kageyama M, Pincus R, et al. Clouds, circulation and climate sensitivity. Nat Geosci. 2015 Apr;8(4):261–8.

    Article  CAS  Google Scholar 

  98. 98.

    Peñuelas J, Ciais P, Canadell JG, Janssens IA, Fernández-Martínez M, Carnicer J, et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat Ecol Evol. 2017;1(10):1438–45.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Alexis Berg.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

This article is part of the Topical Collection on Climate Change and Drought

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berg, A., Sheffield, J. Climate Change and Drought: the Soil Moisture Perspective. Curr Clim Change Rep 4, 180–191 (2018).

Download citation


  • Drought
  • Climate change
  • Soil moisture