Skip to main content

Advertisement

Log in

What Is Currently Known About the Effects of Climate Change on the Coral Immune Response

  • Corals and Climate Change (C Langdon, Section Editor)
  • Published:
Current Climate Change Reports Aims and scope Submit manuscript

Abstract

It is well documented that climate change has a negative effect on coral reefs worldwide. Recurrent warming events, ocean acidification, and nutrient pollution are some of the hallmarks of climate change; each affects the health of coral, and together, their effects are multiplied. It is hypothesized that a healthy coral will have a strong, highly active immune system when confronted with different stressors. However, there is very little that we understand about how the coral immune system reacts to different climate change stressors. In this review, we will examine what is known about the effects of heat stress, ocean acidification, and nutrient pollution on the coral immune system. We will identify gaps in our knowledge and briefly discuss a path forward to address these gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hughes TP, et al. Climate change, human impacts, and the resilience of coral reefs. Science. 2003;301(5635):929–33.

    Article  CAS  Google Scholar 

  2. Hughes TP, et al. Global warming and recurrent mass bleaching of corals. Nature. 2017;543(7645):373.

    Article  CAS  Google Scholar 

  3. Pandolfi JM, et al. Global trajectories of the long-term decline of coral reef ecosystems. Science. 2003;301(5635):955–8.

    Article  CAS  Google Scholar 

  4. Pandolfi JM, et al. Are U.S. coral reefs on the slippery slope to slime? Science. 2005;307:1725–6.

    Article  CAS  Google Scholar 

  5. Miller J, et al. Coral disease following massive bleaching in 2005 causes 60% decline in coral cover on reefs in the US Virgin Islands. Coral Reefs. 2009;28(4):925–37.

    Article  Google Scholar 

  6. Miller J, et al. Coral bleaching and disease combine to cause extensive mortality on reefs in US Virgin Islands. Coral Reefs. 2006;25(3):418–8.

  7. Muller EM, et al. Bleaching increases likelihood of disease on Acropora palmata (Lamarck) in Hawksnest Bay, St John, US Virgin Islands. Coral Reefs. 2008;27(1):191–5.

    Article  Google Scholar 

  8. Harvell CD, et al. Emerging marine diseases—climate links and anthropogenic factors. Science. 1999;285(5433):1505–10.

    Article  CAS  Google Scholar 

  9. Harvell CD, et al. Ecology—climate warming and disease risks for terrestrial and marine biota. Science. 2002;296(5576):2158–62.

    Article  CAS  Google Scholar 

  10. Harvell D, et al. Coral disease, environmental drivers, and the balance between coral and microbial associates. Oceanography. 2007;20(1):172–95.

    Article  Google Scholar 

  11. Palmer CV, Traylor-Knowles N. Towards an integrated network of coral immune mechanisms. Proc Biol Sci. 2012;279(1745):4106–14.

    Article  CAS  Google Scholar 

  12. Sutherland KP, Porter JW, Torres C. Disease and immunity in Caribbean and Indo-Pacific zooxanthellate corals. Mar Ecol Prog Ser. 2004;266:273–302.

    Article  Google Scholar 

  13. Bosch TC. Cnidarian-microbe interactions and the origin of innate immunity in metazoans. Annu Rev Microbiol. 2013;67:499–518.

    Article  CAS  Google Scholar 

  14. Quistad S, Traylor-Knowles N. Precambrian origins of the TNFR superfamily. Cell Death Discovery. 2016:2(16058).

  15. DeSalvo MK, et al. Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata. Mol Ecol. 2008;17(17):3952–71.

    Article  CAS  Google Scholar 

  16. Smith-Keune C, Dove S. Gene expression of a green fluorescent protein homolog as a host-specific biomarker of heat stress within a reef-building coral. Mar Biotechnol (NY). 2008;10(2):166–80.

    Article  CAS  Google Scholar 

  17. Rodriguez-Lanetty M, Harii S, Hoegh-Guldberg O. Early molecular response of coral larvae to hyperthermal stress. Mol Ecol. 2009;18:5101–14.

    Article  CAS  Google Scholar 

  18. Barshis DJ, et al. A genomic basis for coral resilience to climate change. Proc Natl Acad Sci U S A. 2013; https://doi.org/10.1073/pnas.1210224110.

  19. Shinzato C, et al. Using the Acropora digitifera genome to understand coral responses to environmental change. Nature. 2011;476(7360):320–3.

    Article  CAS  Google Scholar 

  20. Zhou Z, et al. Suppression of NF-kappaB signal pathway by NLRC3-like protein in stony coral Acropora aculeus under heat stress. Fish Shellfish Immunol. 2017;67:322–30.

    Article  CAS  Google Scholar 

  21. van de Water, J.A.J.M., et al., Comparative immune responses of corals to stressors associated with offshore reef-based tourist platforms. Conservation Physiology, 2015. 3.

  22. Palumbi SR, et al. Mechanisms of reef coral resistance to future climate change. Science. 2014;344(6186):895–8.

    Article  CAS  Google Scholar 

  23. Vidal-Dupiol, J., Adjeroud, M., Roger, E., Foure, L., Duval, D., Mone, Y., Ferrier-Pages, C., Tambutte, E., Tambutte, S., Zoccola, D., Allemand, D., Mitta, G., Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms. BMC Physiology, 2009. 9(14).

  24. Zhou Z, et al. Dual recognition activity of a rhamnose-binding lectin to pathogenic bacteria and zooxanthellae in stony coral Pocillopora damicornis. Developmental & Comparative Immunology. 2017;70:88–93.

    Article  CAS  Google Scholar 

  25. Poole AZ, Kitchen SA, Weis VM. The Role of Complement in Cnidarian-Dinoflagellate Symbiosis and Immune Challenge in the Sea Anemone Aiptasia pallida. Frontiers in Microbiology. 2016;7

  26. Miller DJ, et al. The innate immune repertoire in cnidaria—ancestral complexity and stochastic gene loss. Genome Biol. 2007;8(4):R59.

    Article  Google Scholar 

  27. Kvennefors EC, et al. Analysis of evolutionarily conserved innate immune components in coral links immunity and symbiosis. Dev Comp Immunol. 2010;34(11):1219–29.

    Article  CAS  Google Scholar 

  28. Mydlarz LD, Harvell CD. Peroxidase activity and inducibility in the sea fan coral exposed to a fungal pathogen. Comp Biochem Physiol A Mol Integr Physiol. 2007;146(1):54–62.

    Article  Google Scholar 

  29. Mydlarz LD, Palmer CV. The presence of multiple phenoloxidases in Caribbean reef-building corals. Comp Biochem Physiol A Mol Integr Physiol. 2011;159(4):372–8.

    Article  Google Scholar 

  30. Mydlarz LD, McGinty ES, Harvell CD. What are the physiological and immunological responses of coral to climate warming and disease? J Exp Biol. 2010;213(6):934–45.

    Article  Google Scholar 

  31. Palmer CV. Biological mechanisms of Scleractinian immunity. Newcastle University and James Cook University. 2010;

  32. Palmer CV, et al. Patterns of coral ecological immunology: variation in the responses of Caribbean corals to elevated temperature and a pathogen elicitor. J Exp Biol. 2011;214(Pt 24):4240–9.

    Article  CAS  Google Scholar 

  33. Palmer CV, Mydlarz LD, Willis BL. Evidence of an inflammatory-like response in non-normally pigmented tissues of two scleractinian corals. Proc Biol Sci. 2008;275(1652):2687–93.

    Article  Google Scholar 

  34. Palmer CV, Bythell JC, Willis BL. Enzyme activity demonstrates multiple pathways of innate immunity in Indo-Pacific anthozoans. Proceedings of the Royal Society B-Biological Sciences. 2012;279(1743):3879–87.

    Article  CAS  Google Scholar 

  35. Tchernov D, et al. Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci U S A. 2004;101(37):13531–5.

    Article  CAS  Google Scholar 

  36. Tolleter D, et al. Coral bleaching independent of photosynthetic activity. Curr Biol. 2013;23(18):1782–6.

    Article  CAS  Google Scholar 

  37. Bieri, T., et al., Relative contributions of various cellular mechanisms to loss of algae during cnidarian bleaching. Plos One, 2016. 11(4).

  38. Knight JA. Review: free radicals, antioxidants, and the immune system. Ann Clin Lab Sci. 2000;30(2):145–58.

    CAS  Google Scholar 

  39. Lesser MP. Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs. 1997;16(3):187–92.

    Article  Google Scholar 

  40. Palmer CV, Modi CK, Mydlarz LD. Coral fluorescent proteins as antioxidants. PLoS One. 2009;4(10):e7298.

    Article  Google Scholar 

  41. Krueger T, et al. Differential coral bleaching-contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology. 2015;190:15–25.

    Article  CAS  Google Scholar 

  42. Armoza-Zvuloni R, Shaked Y. Release of hydrogen peroxide and antioxidants by the coral Stylophora pistillata to its external milieu. Biogeosciences. 2014;11(17):4587–98.

    Article  CAS  Google Scholar 

  43. Flores-Ramirez LA, Linan-Cabello MA. Relationships among thermal stress, bleaching and oxidative damage in the hermatypic coral, Pocillopora capitata. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology. 2007;146(1–2):194–202.

    Article  Google Scholar 

  44. Griffin SP, Bhagooli R, Weil E. Evaluation of thermal acclimation capacity in corals with different thermal histories based on catalase concentrations and antioxidant potentials. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology. 2006;144(2):155–62.

    Article  Google Scholar 

  45. Palmer CV, Roth MS, Gates RD. Red Fluorescent Protein Responsible for Pigmentation in Trematode-Infected Porites compressa. Biol Bull. 2009;216:68–74.

    Article  CAS  Google Scholar 

  46. Roth MS, Deheyn DD. Effects of cold stress and heat stress on coral fluorescence in reef-building corals. Sci Rep. 2013;3

  47. Dove S, et al. Response of holosymbiont pigments from the scleractinian coral Montipora monasteriata to short-term heat stress. Limnol Oceanogr. 2006;51(2):1149–58.

    Article  Google Scholar 

  48. Sheng YW, et al. Superoxide dismutases and superoxide reductases. Chem Rev. 2014;114(7):3854–918.

    Article  CAS  Google Scholar 

  49. Meyer E, Weis VM. Study of cnidarian-algal symbiosis in the “omics” age. Biol Bull. 2012;223(1):44–65.

    Article  CAS  Google Scholar 

  50. Seneca FO, et al. Patterns of gene expression in a scleractinian coral undergoing natural bleaching. Mar Biotechnol (NY). 2010;12(5):594–604.

    Article  CAS  Google Scholar 

  51. Louis YD, et al. Gene expression biomarkers of heat stress in scleractinian corals: promises and limitations. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology. 2017;191:63–77.

    Article  CAS  Google Scholar 

  52. Csaszar NBM, Seneca FO, van Oppen MJH. Variation in antioxidant gene expression in the scleractinian coral Acropora millepora under laboratory thermal stress. Mar Ecol Prog Ser. 2009;392:93–102.

    Article  CAS  Google Scholar 

  53. Schwarz JA, et al. Coral life history and symbiosis: functional genomic resources for two reef building Caribbean corals, Acropora palmata and Montastraea faveolata. BMC Genomics. 2008;9:97.

    Article  Google Scholar 

  54. Dunn SR. Immunorecognition and immunoreceptors in the Cnidaria. Isj-Invertebrate Survival Journal. 2009;6(1):7–14.

    Google Scholar 

  55. Ocampo ID, et al. The immunotranscriptome of the Caribbean reef-building coral Pseudodiploria strigosa. Immunogenetics. 2015;67(9):515–30.

    Article  CAS  Google Scholar 

  56. Chu H, Mazmanian SK. Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat Immunol. 2013;14(7):668–75.

    Article  CAS  Google Scholar 

  57. Fujita T. Evolution of the lectin-complement pathway and its role in innate immunity. Nat Rev Immunol. 2002;2(5):346–53.

    Article  CAS  Google Scholar 

  58. Sharon N, Lis H. Lectins—cell-agglutinating and sugar-specific proteins. Science. 1972;177(4053):949.

    Article  CAS  Google Scholar 

  59. Franchi L, et al. Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev. 2009;227:106–28.

    Article  CAS  Google Scholar 

  60. Proell, M., et al., The Nod-Like Receptor (NLR) Family: A Tale of Similarities and Differences. Plos One, 2008. 3(4).

  61. Hamada M, et al. The complex NOD-like receptor repertoire of the coral Acropora digitifera includes novel domain combinations. Mol Biol Evol. 2013;30(1):167–76.

    Article  CAS  Google Scholar 

  62. Libro, S. and S.V. Vollmer, Genetic Signature of Resistance to White Band Disease in the Caribbean Staghorn Coral Acropora cervicornis. Plos One, 2016. 11(1).

  63. Carroll MC. The role of complement and complement receptors in induction and regulation of immunity. Annu Rev Immunol. 1998;16:545–68.

    Article  CAS  Google Scholar 

  64. Brown T, Bourne D, Rodriguez-Lanetty M. Transcriptional activation of c3 and hsp70 as part of the immune response of Acropora millepora to bacterial challenges. PLoS One. 2013:8(7).

  65. Pinzon JH, et al. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. R Soc Open Sci. 2015;2(4):140214.

    Article  Google Scholar 

  66. Vidal-Dupiol, J., et al., Thermal Stress Triggers Broad Pocillopora damicornis Transcriptomic remodeling, while Vibrio coralliilyticus infection induces a more targeted immuno-suppression response. Plos One, 2014. 9(9).

  67. Cerenius L, Lee BL, Soderhall K. The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol. 2008;29(6):263–71.

    Article  CAS  Google Scholar 

  68. Palmer CV, Bythell JC, Willis BL. Levels of immunity parameters underpin bleaching and disease susceptibility of reef corals. FASEB J. 2010;24(6):1935–46.

    Article  CAS  Google Scholar 

  69. Banin E, et al. Proline-rich peptide from the coral pathogen Vibrio shiloi that inhibits photosynthesis of zooxanthellae. Appl Environ Microbiol. 2001;67(4):1536–41.

    Article  CAS  Google Scholar 

  70. Vidal-Dupiol J, et al. Innate immune responses of a scleractinian coral to vibriosis. J Biol Chem. 2011;286(25):22688–98.

    Article  CAS  Google Scholar 

  71. Destoumieux-Garzon D, et al. Antimicrobial peptides in marine invertebrate health and disease. Philosophical Transactions of the Royal Society B-Biological Sciences. 2016:371(1695).

  72. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415(6870):389–95.

    Article  CAS  Google Scholar 

  73. Krediet, C.J., et al., Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proceedings of the Royal Society B-Biological Sciences, 2013. 280(1755).

  74. Collette Y, et al. A co-evolution perspective of the TNFSF and TNFRSF families in the immune system. Trends Immunol. 2003;24(7):387–94.

    Article  CAS  Google Scholar 

  75. Shen HM, Pervaiz S. TNF receptor superfamily-induced cell death: redox-dependent execution. FASEB J. 2006;20(10):1589–98.

    Article  CAS  Google Scholar 

  76. Gaur U, Aggarwal BB. Regulation of proliferation, survival and apoptosis by members of the TNF superfamily. Biochem Pharmacol. 2003;66(8):1403–8.

    Article  CAS  Google Scholar 

  77. MacEwan DJ. TNF receptor subtype signalling: differences and cellular consequences. Cell Signal. 2002;14(6):477–92.

    Article  CAS  Google Scholar 

  78. Quistad SD, et al. Evolution of TNF-induced apoptosis reveals 550 My of functional conservation. Proc Natl Acad Sci U S A. 2014;111(26):9567–72.

    Article  CAS  Google Scholar 

  79. Traylor-Knowles N, Rose NH, Palumbi SR. The cell specificity of gene expression in the response to heat stress in corals. J Exp Biol. 2017;220(10):1837–45.

    Article  Google Scholar 

  80. Kleypas JA, et al. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science. 1999;284(5411):118–20.

    Article  CAS  Google Scholar 

  81. Carreiro-Silva M, et al. Molecular mechanisms underlying the physiological responses of the cold-water coral Desmophyllum dianthus to ocean acidification. Coral Reefs. 2014;33(2):465–76.

    Article  Google Scholar 

  82. Kaniewska P, et al. Major cellular and physiological impacts of ocean acidification on a reef building coral. PLoS One. 2012;7(4):e34659.

    Article  CAS  Google Scholar 

  83. Kenkel CD, et al. Functional genomic analysis of corals from natural CO2 -seeps reveals core molecular responses involved in acclimatization to ocean acidification. Glob Chang Biol. 2017;

  84. Gilmore TD. Introduction to NF-kappa B: players, pathways, perspectives. Oncogene. 2006;25(51):6680–4.

    Article  CAS  Google Scholar 

  85. Bradley JR, Pober JS. Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene. 2001;20(44):6482–91.

    Article  CAS  Google Scholar 

  86. Alieva NO, et al. Diversity and evolution of coral fluorescent proteins. PLoS One. 2008;3(7):e2680.

    Article  Google Scholar 

  87. Moya A, et al. Rapid acclimation of juvenile corals to CO2-mediated acidification by upregulation of heat shock protein and Bcl-2 genes. Mol Ecol. 2015;24(2):438–52.

    Article  CAS  Google Scholar 

  88. Kaniewska, P., et al., Transcriptomic Changes in Coral Holobionts Provide Insights into Physiological Challenges of Future Climate and Ocean Change. Plos One, 2015. 10(10).

  89. Koop K, et al. ENCORE: the effect of nutrient enrichment on coral reefs. Synthesis of results and conclusions. Mar Pollut Bull. 2001;42(2):91–120.

    Article  CAS  Google Scholar 

  90. Rosic N, et al. Early transcriptional changes in the reef-building coral Acropora aspera in response to thermal and nutrient stress. Bmc Genomics. 2014;15

  91. Lin, Z.Y., et al., Transcriptome profiling of Galaxea fascicularis and its endosymbiont Symbiodinium reveals chronic eutrophication tolerance pathways and metabolic mutualism between partners. Scientific Reports, 2017. 7.

  92. Yuan C, et al. Effects of elevated ammonium on the transcriptome of the stony coral Pocillopora damicornis. Mar Pollut Bull. 2017;114(1):46–52.

    Article  CAS  Google Scholar 

  93. Zhou Z, et al. Elevated ammonium reduces the negative effect of heat stress on the stony coral Pocillopora damicornis. Mar Pollut Bull. 2017;118(1–2):319–27.

    Article  CAS  Google Scholar 

  94. Libro, S., S.T. Kaluziak, and S.V. Vollmer, RNA-seq Profiles of Immune Related Genes in the Staghorn Coral Acropora cervicornis Infected with White Band Disease. PLoS One, 2013. 8(11).

  95. Kvennefors EC, et al. An ancient and variable mannose-binding lectin from the coral Acropora millepora binds both pathogens and symbionts. Dev Comp Immunol. 2008;32(12):1582–92.

    Article  CAS  Google Scholar 

  96. Hayes ML, Eytan RI, Hellberg ME. High amino acid diversity and positive selection at a putative coral immunity gene (tachylectin-2). BMC Evol Biol. 2010;10:150.

    Article  Google Scholar 

  97. Anderson, D.A., et al., RNA-Seq of the Caribbean reef-building coral Orbicella faveolata (Scleractinia-Merulinidae) under bleaching and disease stress expands models of coral innate immunity. Peerj, 2016. 4.

  98. Oliver, E., et al., Coral-associated bacterial extracts inhibit cellular NF-κB pathway. Cogent Environmental Science, 2017. 3(1).

  99. Mayfield AB, et al. Evaluating the temporal stability of stress-activated protein kinase and cytoskeleton gene expression in the Pacific reef corals Pocillopora damicornis and Seriatopora hystrix. J Exp Mar Biol Ecol. 2010;395(1–2):215–22.

    Article  Google Scholar 

  100. Poole AZ, Weis VM. TIR-domain-containing protein repertoire of nine anthozoan species reveals coral-specific expansions and uncharacterized proteins. Dev Comp Immunol. 2014;46(2):480–8.

    Article  CAS  Google Scholar 

  101. Dove S, Hoegh-Guldberg O, Lesser M. All-protein chromophores isolated from corals, quench superoxide radicals. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology. 2006;143(4):S132–2.

Download references

Acknowledgements

Authors would like to thank Dr. Chris Langdon for the invitation to write this review, the reviewers for their helpful suggestions, and April Mann for assistance in editing of revisions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikki Traylor-Knowles.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

This article is part of the Topical Collection on Corals and Climate Change

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Traylor-Knowles, N., Connelly, M.T. What Is Currently Known About the Effects of Climate Change on the Coral Immune Response. Curr Clim Change Rep 3, 252–260 (2017). https://doi.org/10.1007/s40641-017-0077-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40641-017-0077-7

Keywords

Navigation