Skip to main content

Advertisement

Log in

Developments in Simulating and Parameterizing Interactions Between the Southern Ocean and the Antarctic Ice Sheet

  • Glaciology and Climate Change (T Payne, Section Editor)
  • Published:
Current Climate Change Reports Aims and scope Submit manuscript

Abstract

Recent advances in both ocean modeling and melt parameterization in ice-sheet models point the way toward coupled ice sheet–ocean modeling, which is needed to quantify Antarctic mass loss and the resulting sea-level rise. The latest Antarctic ocean modeling shows that complex interactions between the atmosphere, sea ice, icebergs, bathymetric features, and ocean circulation on many scales determine which water masses reach ice-shelf cavities and how much heat is available to melt ice. Meanwhile, parameterizations of basal melting in standalone ice-sheet models have evolved from simplified, depth-dependent functions to more sophisticated models, accounting for ice-shelf basal topography, and the evolution of the sub-ice-shelf buoyant flow. The focus of recent work has been on better understanding processes or adding new model capabilities, but a broader community effort is needed in validating models against observations and producing melt-rate projections. Given time, community efforts in coupled ice sheet–ocean modeling, already underway, will tackle the considerable challenges involved in building, initializing, constraining, and performing projections with coupled models, leading to reduced uncertainties in Antarctica’s contribution to future sea-level rise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Abernathey RP, Cerovecki I, Holland PR, Newsom E, Mazloff M, Talley LD. Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nat Geosci. 2016;9(8):596–601. https://doi.org/10.1038/ngeo2749.

    Article  CAS  Google Scholar 

  2. Alley RB, Anandakrishnan S, Christianson K, Horgan HJ, Muto A, Parizek BR, Pollard D, et al (2015) Oceanic forcing of ice-sheet retreat: West Antarctica and more. Annu Rev Earth Planet Sci 43:207–231, https://doi.org/10.1146/annurev-earth-060614-105344.

  3. Amundson JM, Fahnestock M, Truffer M, Brown J, Lüthi MP, Motyka RJ. Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland. J Geophys Res: Earth Surf. 2010; 115(F1). https://doi.org/10.1029/2009JF001405

  4. Arthern RJ, Williams CR. The sensitivity of West Antarctica to the submarine melting feedback. Geophys Res Lett. 2017;44(5):2352–9. https://doi.org/10.1002/2017GL072514.

    Google Scholar 

  5. Arzeno IB, Beardsley RC, Limeburner R, Owens B, Padman L, Springer SR, et al (2014) Ocean variability contributing to basal melt rate near the ice front of Ross Ice Shelf, Antarctica. J Geophys Res Ocean 119(7):4214–4233, https://doi.org/10.1002/2014JC009792.

  6. • Asay-Davis XS, Cornford SL, Durand G, Galton-Fenzi BK, Gladstone RM, Gudmundsson GH, et al (2016) Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP+), ISOMIP v. 2 (ISOMIP+) and MISOMIP v. 1 (MISOMIP1). Geosci Model Dev 9(7):2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, New experiments that play an important role in structuring community modeling efforts, exploring model difference, and providing a platform for future process studies .

  7. Berger S, Drews R, Helm V, Sun S, Pattyn F. Detecting high spatial variability of ice-shelf basal mass balance (Roi Baudouin ice shelf, Antarctica). Cryosph Dis. 2017; 1–22. https://doi.org/10.5194/tc-2017-41

  8. Biddle LC, Heywood KJ, Kaiser J, Jenkins A. Glacial meltwater identification in the Amundsen Sea. J Phys Oceanogr. 2017; 933–954. https://doi.org/10.1175/JPO-D-16-0221.1

  9. Bintanja R, Van Oldenborgh G, Drijfhout S, Wouters B, Katsman C. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat Geosci. 2013;6(5):376–9. https://doi.org/10.1038/NGEO1767.

    Article  CAS  Google Scholar 

  10. Bintanja R, Van Oldenborgh GJ, Katsman CA. The effect of increased fresh water from Antarctic ice shelves on future trends in Antarctic sea ice. Ann Glaciol. 2015;56(69):120–6. https://doi.org/10.3189/2015AoG69A001.

    Article  Google Scholar 

  11. de Boer B, Stocchi P, Whitehouse PL, van de Wal RSW. Current state and future perspectives on coupled ice-sheet sea-level modelling. Quat Sci Rev. 2017;169:13–28. https://doi.org/10.1016/j.quascirev.2017.05.013.

    Article  Google Scholar 

  12. Christianson K, Bushuk M, Dutrieux P, Parizek BR, Joughin IR, Alley RB, et al. Sensitivity of Pine Island Glacier to observed ocean forcing. Geophysical Research Letters. 2016; 43(20). https://doi.org/10.1002/2016GL070500

  13. Cornford SL, Martin DF, Payne AJ, Ng EG, Le Brocq AM, Gladstone RM, et al (2015) Century-scale simulations of the response of the West Antarctic Ice Sheet to a warming climate. Cryosphere 9(4):1579–1600, https://doi.org/10.5194/tc-9-1579-2015.

  14. Dansereau V, Heimbach P, Losch M. Simulation of subice shelf melt rates in a general circulation model: velocity-dependent transfer and the role of friction. Journal of Geophysical Research: Oceans. 2014;119(3):1765–90. https://doi.org/10.1002/2013JC008846.

    Google Scholar 

  15. • De Rydt J, Gudmundsson GH. Coupled ice shelf-ocean modeling and complex grounding line retreat from a seabed ridge. J Geophys Res Earth Surf. 2016;121(5):865–80. https://doi.org/10.1002/2015JF003791. First to quantify inaccuracy of a simple melt parameterization compared with melt rates from a full 3D ocean model

    Article  Google Scholar 

  16. •• De Rydt J, Holland PR, Dutrieux P, Jenkins A. Geometric and oceanographic controls on melting beneath Pine Island Glacier. J Geophys Res Ocean. 2014;119(4):2420–38. https://doi.org/10.1002/2013JC009513. Showed the strong influence of interactions between thermocline depth and a sub-ice-shelf ridge on basal melting

    Article  Google Scholar 

  17. DeConto RM, Pollard D. Contribution of Antarctica to past and future sea-level rise. Nature. 2016;531(7596):591–7. https://doi.org/10.1038/nature17145.

    Article  CAS  Google Scholar 

  18. Depoorter M, Bamber J, Griggs J, Lenaerts J, Ligtenberg S, Van den Broeke M, et al (2013) Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 502(7469):89–92, https://doi.org/10.1038/nature12567.

  19. Dinniman M, Asay-Davis X, Galton-Fenzi B, Holland P, Jenkins A, Timmermann R. Modeling ice shelf/ocean interaction in Antarctica: a review. Oceanography. 2016;29(4):144–53. https://doi.org/10.5670/oceanog.2016.106.

    Article  Google Scholar 

  20. Dinniman MS, Klinck JM, Bai LS, Bromwich DH, Hines KM, Holland DM. The effect of atmospheric forcing resolution on delivery of ocean heat to the Antarctic floating ice shelves. J Clim. 2015;28(15):6067–85. https://doi.org/10.1175/JCLI-D-14-00374.1.

    Article  Google Scholar 

  21. Dutrieux P, Vaughan DG, Corr HFJ, Jenkins A, Holland PR, Joughin I, et al. Pine Island glacier ice shelf melt distributed at kilometre scales. Cryosphere. 2013;7(5):1543–1555. https://doi.org/10.5194/tc-7-1543-2013.

  22. • Dutrieux P, De Rydt J, Jenkins A, Holland PR, Ha HK, Lee SH, et al (2014) Strong sensitivity of Pine Island ice-shelf melting to climatic variability. Science 343(6167):174–178, https://doi.org/10.1126/science.1244341, Among the best works comparing observations and modeling, showing the causes of interannual variability of melt below PIG.

  23. Favier L, Durand G, Cornford SL, Gudmundsson GH, Gagliardini O, Gillet-Chaulet F, et al (2014) Retreat of Pine Island Glacier controlled by marine ice-sheet instability. Nat Clim Chang 4(2):117–121, https://doi.org/10.1038/nclimate2094.

  24. Favier L, Pattyn F, Berger S, Drews R. Dynamic influence of pinning points on marine ice-sheet stability: a numerical study in Dronning Maud Land, East Antarctica. Cryosphere. 2016;10(6):2623. https://doi.org/10.5194/tc-10-2623-2016.

    Article  Google Scholar 

  25. Fogwill CJ, Phipps SJ, Turney CSM, Golledge NR. Sensitivity of the Southern Ocean to enhanced regional Antarctic ice sheet meltwater input. Earth’s Future. 2015;3(10):317–29. https://doi.org/10.1002/2015EF000306.

    Article  Google Scholar 

  26. Foldvik A, Gammelsrød T, Østerhus S, Fahrbach E, Rohardt G, Schröder M, et al. Ice shelf water overflow and bottom water formation in the southern Weddell Sea. J Geophys Res: Oceans. 2004; 109(C2). https://doi.org/10.1029/2003JC002008.

  27. Fretwell P, Pritchard HD, Vaughan DG, et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere. 2013;7(1):375–93. https://doi.org/10.5194/tc-7-375-2013.

    Article  Google Scholar 

  28. Galton-Fenzi BK. Modeling ice-shelf/ocean interactions. PhD thesis, University of Tasmania. 2009.

  29. Golledge NR, Kowalewski DE, Naish TR, Levy RH, Fogwill CJ, Gasson EG. The multi-millennial Antarctic commitment to future sea-level rise. Nature. 2015;526(7573):421–5. https://doi.org/10.1038/nature15706.

    Article  CAS  Google Scholar 

  30. Golledge NR, Levy RH, McKay RM, Naish TR. East Antarctic ice sheet most vulnerable to Weddell Sea warming. Geophys Res Lett. 2017; https://doi.org/10.1002/2016GL072422.

  31. Gomez N, Pollard D, Mitrovica JX. A 3-D coupled ice sheet-sea level model applied to Antarctica through the last 40 ky. Earth Planet Sci Lett. 2013;384:88–99. https://doi.org/10.1016/j.epsl.2013.09.042.

    Article  CAS  Google Scholar 

  32. Gong Y, Cornford S, Payne A. Modelling the response of the Lambert Glacier–Amery Ice Shelf system, East Antarctica, to uncertain climate forcing over the 21st and 22nd centuries. Cryosphere. 2014;8(3):1057–68. https://doi.org/10.5194/tc-8-1057-2014.

    Article  Google Scholar 

  33. Graham JA, Dinniman MS, Klinck JM. Impact of model resolution for on-shelf heat transport along the West Antarctic Peninsula. Journal of Geophysical Research: Oceans. 2016;121(10):7880–97. https://doi.org/10.1002/2016JC011875.

    Google Scholar 

  34. Greenbaum JS, Blankenship DD, Young DA, Richter TG, Roberts JL, Aitken ARA, et al (2015) Ocean access to a cavity beneath Totten Glacier in East Antarctica. Nat Geosci 8(4):294–298, https://doi.org/10.1038/ngeo2388.

  35. Gudmundsson GH. Ice-shelf buttressing and the stability of marine ice sheets. Cryosphere. 2013;7(2):647–55. https://doi.org/10.5194/tc-7-647-2013.

    Article  Google Scholar 

  36. Gwyther DE, Galton-Fenzi BK, Hunter JR, Roberts JL. Simulated melt rates for the Totten and Dalton ice shelves. Ocean Sci. 2014;10(3):267–79. https://doi.org/10.5194/os-10-267-2014.

    Article  Google Scholar 

  37. Gwyther DE, Galton-Fenzi BK, Dinniman MS, Roberts JL, Hunter JR. The effect of basal friction on melting and freezing in ice shelf ocean models. Ocean Model. 2015;95:38–52. https://doi.org/10.1016/j.ocemod.2015.09.004.

    Article  Google Scholar 

  38. Hansen J, Sato M, Hearty P, Ruedy R, Kelley M, Masson-Delmotte V, et al. Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 C global warming could be dangerous. Atmos Chem Phys. 2016;16(6):3761–812. https://doi.org/10.5194/acp-16-3761-2016.

    Article  CAS  Google Scholar 

  39. Hattermann T, Smedsrud LH, Nøst OA, Lilly JM, Galton-Fenzi BK. Eddy-resolving simulations of the Fimbul Ice Shelf cavity circulation: basal melting and exchange with open ocean. Ocean Model. 2014;82:28–44. https://doi.org/10.1016/j.ocemod.2014.07.004.

    Article  Google Scholar 

  40. Hellmer HH, Olbers DJ. A two-dimensional model for the thermohaline circulation under an ice shelf. Antarct Sci. 1989;1(4):325–36. https://doi.org/10.1017/S0954102089000490.

    Article  Google Scholar 

  41. Hellmer HH, Kauker F, Timmermann R, Determann J, Rae J. Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature. 2012;485(7397):225–8. https://doi.org/10.1016/j.ocemod.2008.10.009.

    Article  CAS  Google Scholar 

  42. •• Hellmer HH, Kauker F, Timmermann R, Hattermann T. The fate of the southern Weddell Sea continental shelf in a warming climate. J Clim. 2017; https://doi.org/10.1175/JCLI-D-16-0420.1. The only recent circum-Antarctic projections of basal melting. Shows hysteretic nature of basal melting, important for both sea-level projections and initialization of ocean models with ice-shelf cavities

  43. Heywood K, Biddle L, Boehme L, Dutrieux P, Fedak M, Jenkins A, et al (2016) Between the devil and the deep Blue Sea: the role of the Amundsen Sea continental shelf in exchanges between ocean and ice shelves. Oceanography 29(4):118–129, https://doi.org/10.5670/oceanog.2016.104.

  44. Hobbs WR, Massom R, Stammerjohn S, Reid P, Williams G, Meier W. A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Glob Planet Chang. 2016;143:228–50. https://doi.org/10.1016/j.gloplacha.2016.06.008.

    Article  Google Scholar 

  45. Holland DM, Jenkins A. Modeling thermodynamic ice-ocean interactions at the base of an ice shelf. J Phys Oceanogr. 1999;29(8):1787–800. https://doi.org/10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2.

    Article  Google Scholar 

  46. Holland PR, Jenkins A, Holland DM. The response of ice shelf basal melting to variations in ocean temperature. J Clim. 2008;21(11):2558–72. https://doi.org/10.1175/2007JCLI1909.1.

    Article  Google Scholar 

  47. Jacobs S, Hellmer H, Doake C, Jenkins A, Frolich R. Melting of ice shelves and the mass balance of Antarctica. J Glaciol. 1992;38(130):375–87.

    Article  Google Scholar 

  48. Jacobs SS, Giulivi CF. Large multidecadal salinity trends near the Pacific-Antarctic continental margin. J Clim. 2010;23(17):4508–24. https://doi.org/10.1175/2010JCLI3284.1.

    Article  Google Scholar 

  49. Jacobs SS, Giulivi CF, Mele PA. Freshening of the Ross Sea during the late 20th century. Science. 2002;297(5580):386–9. https://doi.org/10.1126/science.1069574.

    Article  CAS  Google Scholar 

  50. Jenkins A. Scaling laws for the melt rate and overturning circulation beneath ice shelves derived from simple plume theory. EGU General Assembly Conference Abstracts. 2014;16:13755.

    Google Scholar 

  51. • Jenkins A. A simple model of the ice Shelf–Ocean boundary layer and current. J Phys Oceanogr. 2016;46(6):1785–803. https://doi.org/10.1175/JPO-D-15-0194.1. New understanding of the sub-ice-shelf boundary layer that points the way toward improved parameterizations

    Article  Google Scholar 

  52. Jenkins A, Nicholls KW, Corr HF. Observation and parameterization of ablation at the base of Ronne Ice Shelf, Antarctica. J Phys Oceanogr. 2010;40(10):2298–312. https://doi.org/10.1175/2010JPO4317.1.

    Article  Google Scholar 

  53. Joughin I, Smith BE, Medley B. Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science. 2014;344(6185):735–8. https://doi.org/10.1126/science.1249055.

    Article  CAS  Google Scholar 

  54. Jourdain NC, Mathiot P, Merino N, Durand G, Le Sommer J, Spence P, et al (2017) Ocean circulation and sea-ice thinning induced by melting ice shelves in the Amundsen Sea. J Geophys Res Ocean https://doi.org/10.1002/2016JC012509.

  55. Kalén O, Assmann KM, Wåhlin AK, Ha HK, Kim TW, Lee SH. Is the oceanic heat flux on the central Amundsen sea shelf caused by barotropic or baroclinic currents? Deep-Sea Res II Top Stud Oceanogr. 2016;123:7–15. https://doi.org/10.1016/j.dsr2.2015.07.014.

    Article  Google Scholar 

  56. Khazendar A, Schodlok M, Fenty I, Ligtenberg S, Rignot E, Van den Broeke M. Observed thinning of Totten Glacier is linked to coastal polynya variability. Nat Comm. 2013; 4, https://doi.org/10.1038/ncomms3857.

  57. Khazendar A, Rignot E, Schroeder DM, Seroussi H, Schodlok MP, Scheuchl B, et al. Rapid submarine ice melting in the grounding zones of ice shelves in west Antarctica. Nat Comm. 2016; 7, https://doi.org/10.1038/ncomms13243.

  58. Kim I, Hahm D, Rhee TS, Kim TW, Kim CS, Lee S. The distribution of glacial meltwater in the Amundsen Sea, Antarctica, revealed by dissolved helium and neon. Journal of Geophysical Research: Oceans. 2016; https://doi.org/10.1002/2015JC011211.

  59. Krinner G, Favier V, Amory C, Galle H, Beaumet J, Agosta C. Antarctica-Regional Climate and Surface Mass Budget. Curr Clim Change Rep. 2017. https://doi.org/10.1007/s40641-017-0072-z.

  60. Kusahara K, Hasumi H. Pathways of basal meltwater from Antarctic ice shelves: a model study. Journal of Geophysical Research: Oceans. 2014;119(9):5690–704. https://doi.org/10.1038/ncomms13243.

    Google Scholar 

  61. Kusahara K, Hasumi H, Fraser AD, Aoki S, Shimada K, Williams GD, et al (2017) Modeling ocean–cryosphere interactions off Adélie and George V Land, East Antarctica. J Clim 30(1):163–188, https://doi.org/10.1175/JCLI-D-15-0808.1.

  62. • Lazeroms WMJ, Jenkins A, Gudmundsson GH, van de Wal RSW. Modelling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes. Cryosph Discuss. 2017; 1–29, https://doi.org/10.5194/tc-2017-58. Significant improvement in how basal melt rates are parameterized in ice sheet models, accounting for the slope of ice basal topography and depth above grounding line, not just local depth.

  63. • Little CM, Urban NM. CMIP5 temperature biases and 21st century warming around the Antarctic coast. Ann Glaciol. 2016;57(73):69–78. https://doi.org/10.1017/aog.2016.25. Important analysis of the limitation of using CMIP5 models for projections of Antarctic basal melting (also potentially applicable to CMIP6 models)

    Article  Google Scholar 

  64. Losch M. Modeling ice shelf cavities in a z coordinate ocean general circulation model. J Geophys Res. 2008;113(C8):1–15. https://doi.org/10.1029/2007JC004368.

    Article  Google Scholar 

  65. Marsh R, Ivchenko V, Skliris N, Alderson S, Bigg GR, Madec G, et al. NEMO–ICB (v1. 0): interactive icebergs in the NEMO ocean model globally configured at eddy-permitting resolution. Geosci Model Dev. 2015;8(5):1547–62. https://doi.org/10.5194/gmd-8-1547-2015.

    Article  Google Scholar 

  66. Martin D, Asay-Davis X, Cornford S, Price S, Ng E, Collins W. A tale of two forcings: present-day coupled Antarctic Ice-sheet/Southern Ocean dynamics using the POPSICLES model. EGU General Assembly Conference Abstracts. 2015;17:7564.

    Google Scholar 

  67. • Mathiot P, Jenkins A, Harris C, Madec G. Explicit representation and parametrised impacts of under ice shelf seas in the z coordinate ocean model NEMO 3.6. Geosci Model Dev. 2017;10:2849–74. https://doi.org/10.5194/gmd-10-2849-2017. Excellent description new model capability and validation against observed melt rates. Novel method for parameterizing melt fluxes in models that do not include ice-shelf cavities

    Article  Google Scholar 

  68. Mazloff MR, Heimbach P, Wunsch C. An eddy-permitting Southern Ocean state estimate. J Phys Oceanogr. 2010;40(5):880–99. https://doi.org/10.1175/2009JPO4236.1.

    Article  Google Scholar 

  69. Mazur A, Wåhlin A, Krezel A. An object-based SAR image iceberg detection algorithm applied to the Amundsen Sea. Remote Sens Environ. 2017;189:67–83. https://doi.org/10.1016/j.rse.2016.11.013.

    Article  Google Scholar 

  70. McPhee MG, Maykut GA, Morison JH. Dynamics and thermodynamics of the ice/upper ocean system in the marginal ice zone of the Greenland Sea. J Geophys Res. 1987;92(C7):7017–31. https://doi.org/10.1029/JC092iC07p07017.

    Article  Google Scholar 

  71. Menemenlis D, Fukumori I, Lee T. Using Green’s functions to calibrate an ocean general circulation model. Mon Weather Rev. 2005;133(5):1224–40. https://doi.org/10.1175/MWR2912.1.

    Article  Google Scholar 

  72. Mengel M, Levermann A. Ice plug prevents irreversible discharge from East Antarctica. Nat Clim Chang. 2014;4(6):451–5. https://doi.org/10.1038/NCLIMATE2226.

    Article  Google Scholar 

  73. Mengel M, Feldmann J, Levermann A. Linear sea-level response to abrupt ocean warming of major West Antarctic ice basin. Nat Clim Chang. 2016;6(1):71. https://doi.org/10.1038/NCLIMATE2808.

    Article  Google Scholar 

  74. Merino N, Le Sommer J, Durand G, Jourdain NC, Madec G, Mathiot P, et al (2016) Antarctic icebergs melt over the Southern Ocean: climatology and impact on sea ice. Ocean Model 104:99–110, https://doi.org/10.1016/j.ocemod.2016.05.001.

  75. Millan R, Rignot E, Bernier V, Morlighem M, Dutrieux P. Bathymetry of the Amundsen Sea Embayment sector of West Antarctica from Operation IceBridge gravity and other data. Geophys Res Lett. 2017;44(3):1360–8. https://doi.org/10.1002/2016GL072071.

    Article  Google Scholar 

  76. Moholdt G, Padman L, Fricker HA. Basal mass budget of Ross and Filchner-Ronne ice shelves, Antarctica, derived from Lagrangian analysis of ICESat altimetry. J Geophys Res Earth Surf. 2014;119(11):2361–80. https://doi.org/10.1002/2014JF003171.

    Article  Google Scholar 

  77. • Nakayama Y, Ohshima KI, Matsumura Y, Fukamachi Y, Hasumi H. A numerical investigation of formation and variability of Antarctic Bottom Water of Cape Darnley, East Antarctica. J Phys Oceanogr. 2014a;44(11):2921–37. https://doi.org/10.1175/JPO-D-14-0069.1. Among the most thorough analyses of parameter sensitivity in ocean models with ice shelves in a realistic context

    Article  Google Scholar 

  78. Nakayama Y, Timmermann R, Rodehacke CB, Schröder M, Hellmer HH. Modeling the spreading of glacial meltwater from the Amundsen and Bellingshausen seas. Geophys Res Lett. 2014b;41(22):7942–9. https://doi.org/10.1002/2014GL061600.

    Article  Google Scholar 

  79. Nakayama Y, Timmermann R, Schröder M, Hellmer H. On the difficulty of modeling Circumpolar Deep Water intrusions onto the Amundsen Sea continental shelf. Ocean Model. 2014c; https://doi.org/10.1016/j.ocemod.2014.09.007.

  80. •• Nakayama Y, Menemenlis D, Schodlok M, Rignot E. Amundsen and Bellingshausen seas simulation with optimized ocean, sea ice, and thermodynamic ice shelf model parameters. J Geophys Res Ocean. 2017; https://doi.org/10.1002/2016JC012538. Leads the way optimizing ocean models with ice-shelf cavities to match observations

  81. Naveira Garabato AC, Forryan A, Dutrieux P, Brannigan L, Biddle LC, Heywood KJ, et al (2017) Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf. Nature 542(7640):219–222, https://doi.org/10.1038/nature20825.

  82. Nicholls KW, Corr HF, Stewart CL, Lok LB, Brennan PV, Vaughan DG. A ground-based radar for measuring vertical strain rates and time-varying basal melt rates in ice sheets and shelves. J Glaciol. 2015;61(230):1079–87. https://doi.org/10.3189/2015JoG15J073.

    Article  Google Scholar 

  83. Nowicki SMJ, Payne A, Larour E, Seroussi H, Goelzer H, Lipscomb W, et al (2016) Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6. Geosci Model Dev 9(12):4521–4545, https://doi.org/10.5194/gmd-9-4521-2016.

  84. Obase T, Abe-Ouchi A, Kusahara K, Hasumi H, Ohgaito R. Responses of basal melting of Antarctic ice shelves to the climatic forcing of the Last Glacial Maximum and CO 2 doubling. J Clim. 2017;30(10):3473–97. https://doi.org/10.1175/JCLI-D-15-0908.1.

    Article  Google Scholar 

  85. Ohshima KI, Fukamachi Y, Williams GD, Nihashi S, Roquet F, Kitade Y, et al. Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya. Nat Geosci. 2013;6(3):235–40. https://doi.org/10.1038/ngeo1738.

    Article  CAS  Google Scholar 

  86. Paolo FS, Fricker HA, Padman L. Volume loss from Antarctic ice shelves is accelerating. Science. 2015;348(6232):327–31. https://doi.org/10.1126/science.aaa0940.

    Article  CAS  Google Scholar 

  87. Pattyn F. Sea-level response to melting of Antarctic ice shelves on multi-centennial time scales with the fast Elementary Thermomechanical Ice Sheet model (f. ETISh v1. 0). Cryosph Discuss. 2017; https://doi.org/10.5194/tc-2017-8.

  88. Pauling AG, Bitz CM, Smith IJ, Langhorne PJ. The response of the Southern Ocean and Antarctic sea ice to freshwater from ice shelves in an earth system model. J Clim. 2016;29(5):1655–72. https://doi.org/10.1175/JCLI-D-15-0501.1.

    Article  Google Scholar 

  89. Phipps SJ, Fogwill CJ, Turney CSM. Impacts of marine instability across the East Antarctic Ice Sheet on Southern Ocean dynamics. Cryosphere. 2016;10(5):2317. https://doi.org/10.5194/tc-2016-111.

    Article  Google Scholar 

  90. Pollard D, DeConto R. Description of a hybrid ice sheet-shelf model, and application to Antarctica. Geosci Model Dev. 2012;5(5):1273. https://doi.org/10.5194/gmd-5-1273-2012.

    Article  Google Scholar 

  91. Pritchard HD, Ligtenberg SRM, Fricker HA, Vaughan DG, van den Broeke MR, Padman L. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature. 2012;484(7395):502–5. https://doi.org/10.1038/nature10968.

    Article  CAS  Google Scholar 

  92. Rackow T, Wesche C, Timmermann R, Hellmer HH, Juricke S, Jung T. A simulation of small to giant Antarctic iceberg evolution: differential impact on climatology estimates. J Geophys Res Ocean. 2017; https://doi.org/10.1002/2016JC012513.

  93. Randall-Goodwin E, Meredith M, Jenkins A, Yager P, Sherrell R, Abrahamsen E, et al. Freshwater distributions and water mass structure in the Amundsen Sea Polynya region, Antarctica. Elementa. 2015; 3. 10.12952/journal.elementa.000065

  94. Reese R, Albrecht T, Mengel M, Asay-Davis X, Winkelmann R. Antarctic sub-shelf melt rates via PICO. Cryosph Discuss. 2017; 1–24. https://doi.org/10.5194/tc-2017-70

  95. Rignot E, Jacobs S, Mouginot J, Scheuchl B. Ice-shelf melting around Antarctica. Science. 2013;341(6143):266–70.

    Article  CAS  Google Scholar 

  96. Rintoul SR, Silvano A, Pena-Molino B, van Wijk E, Rosenberg M, Greenbaum JS, et al (2016) Ocean heat drives rapid basal melt of the Totten Ice Shelf. Sci Adv 2(12):e1601,610. https://doi.org/10.1126/sciadv.1601610.

  97. Rodriguez AR, Mazloff MR, Gille ST. An oceanic heat transport pathway to the Amundsen Sea Embayment. Journal of Geophysical Research: Oceans. 2016;121(5):3337–49. https://doi.org/10.1002/2015JC011402.

    Google Scholar 

  98. Scambos T, Bell R, Alley R, Anandakrishnan S, Bromwich D, Brunt K, et al. How much, how fast?: a science review and outlook for research on the instability of Antarctica’s Thwaites Glacier in the 21st century. Glob Planet Chang. 2017;153:16–34. https://doi.org/10.1016/j.gloplacha.2017.04.008.

  99. Schaffer J, Timmermann R, Arndt JE, Kristensen SS, Mayer C, Morlighem M, et al (2016) A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry. Earth System Science Data 8(2):543–557, https://doi.org/10.5194/essd-8-543-2016.

  100. Scheduikat M, Olbers DJ. A one-dimensional mixed layer model beneath the Ross Ice Shelf with tidally induced vertical mixing. Antarct Sci. 1990;2(1):29–42. https://doi.org/10.1017/S0954102090000049.

    Article  Google Scholar 

  101. Schmidtko S, Heywood KJ, Thompson AF, Aoki S. Multidecadal warming of Antarctic waters. Science. 2014;346(6214):1227–31. https://doi.org/10.1126/science.1256117.

    Article  CAS  Google Scholar 

  102. Schodlok MP, Menemenlis D, Rignot E, Studinger M. Sensitivity of the ice-shelf/ocean system to the sub-ice-shelf cavity shape measured by NAS IceBridge in Pine Island Glacier, West Antarctica. Ann Glaciol. 2012;53(60):156–62. https://doi.org/10.3189/2012AoG60A073.

    Article  Google Scholar 

  103. Schodlok MP, Menemenlis D, Rignot EJ. Ice shelf basal melt rates around Antarctica from simulations and observations. J Geophys Res Ocean. 2016;121:1085–109. https://doi.org/10.1002/2015JC011117.

    Article  Google Scholar 

  104. Seroussi H, Morlighem M, Rignot E, Mouginot J, Larour E, Schodlok M, et al (2014) Sensitivity of the dynamics of Pine Island Glacier, West Antarctica, to climate forcing for the next 50 years. Cryosphere 8(5). https://doi.org/10.5194/tc-8-1699-2014

  105. •• Seroussi H, Nakayama Y, Larour E, Menemenlis D, Morlighem M, Rignot E, et al. (2017) Continued retreat of Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation. Geophys Res Lett 44(12):6191–6199, https://doi.org/10.1002/2017GL072910, Most significant coupled modeling to date in a realistic domain. Shows both the potential for continued rapid retreat of Thwaites Glacier and the inadequacy of a simple melt parameterization to match melt rates from full ocean models.

  106. Silvano A, Rintoul S, Herraiz-Borreguero L. Ocean-ice shelf interaction in East Antarctica. Oceanography. 2016;29(4):130–43. https://doi.org/10.5670/oceanog.2016.105.

    Article  Google Scholar 

  107. • Spence P, Griffies SM, England MH, Hogg AM, Saenko OA, Jourdain NC. Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys Res Lett. 2014;41(13):4601–10. https://doi.org/10.1002/2014GL060613. Identified a key mechanism by which changes in wind forcing seen in CMIP5 models could allow warm CDW onto the continental shelf. Has inspired several follow-up studies in the community

    Article  Google Scholar 

  108. St-Laurent P, Klinck JM, Dinniman MS. Impact of local winter cooling on the melt of Pine Island Glacier, Antarctica. J Geophys Res Ocean. 2015;120(10):6718–32. https://doi.org/10.1002/2015JC010709.

    Article  Google Scholar 

  109. Stammerjohn S, Maksym T, Massom R, Lowry K, Arrigo K, Yuan X, et al. Seasonal sea ice changes in the Amundsen Sea, Antarctica, over the period of 1979–2014. Elementa. 2015; 3. 10.12952/journal.elementa.000055

  110. Stern AA, Adcroft A, Sergienko O. The effects of Antarctic iceberg calving-size distribution in a global climate model. Journal of Geophysical Research: Oceans. 2016;121(8):5773–88. https://doi.org/10.1002/2016JC011835.

    Google Scholar 

  111. Stern AA, Adcroft A, Sergienko O, Marques G. Modeling tabular icebergs submerged in the ocean. J Adv Model Earth Syst. 2017; 1–25. https://doi.org/10.1002/2017MS001002

  112. Stewart AL, Thompson AF. Eddy-mediated transport of warm Circumpolar Deep Water across the Antarctic Shelf Break. Geophys Res Lett. 2015;42(2):432–40. https://doi.org/10.1002/2014GL062281.

    Article  Google Scholar 

  113. Sun S, Cornford S, Gwyther D, Gladstone R, Galton-Fenzi B, Zhao L, et al (2016) Impact of ocean forcing on the Aurora Basin in the 21st and 22nd centuries. Ann Glaciol 57(73):79–86, https://doi.org/10.1017/aog.2016.27.

  114. Swart NC, Fyfe JC. The influence of recent Antarctic ice sheet retreat on simulated sea ice area trends. Geophys Res Lett. 2013;40(16):4328–32. https://doi.org/10.1002/grl.50820.

    Article  Google Scholar 

  115. Thoma M, Determann J, Grosfeld K, Goeller S, Hellmer HH. Future sea-level rise due to projected ocean warming beneath the Filchner Ronne Ice Shelf: a coupled model study. Earth Planet Sci Lett. 2015;431:217–24. https://doi.org/10.1016/j.epsl.2015.09.013.

    Article  CAS  Google Scholar 

  116. Timmermann R, Hellmer HH. Southern Ocean warming and increased ice shelf basal melting in the twenty-first and twenty-second centuries based on coupled ice-ocean finite-element modelling. Ocean Dyn. 2013;63(9–10):1011–26. https://doi.org/10.1007/s10236-013-0642-0.

    Article  Google Scholar 

  117. Timmermann R, Wang Q, Hellmer H. Ice-shelf basal melting in a global finite-element sea-ice/ice-shelf/ocean model. Ann Glaciol. 2012;53(60):303–14. https://doi.org/10.3189/2012AoG60A156.

    Article  Google Scholar 

  118. Tournadre J, Bouhier N, Girard-Ardhuin F, Rémy F. Large icebergs characteristics from altimeter waveforms analysis. Journal of Geophysical Research: Oceans. 2015;120(3):1954–74. https://doi.org/10.1002/2014JC010502.

    Google Scholar 

  119. Tournadre J, Bouhier N, Girard-Ardhuin F, Rémy F. Antarctic icebergs distributions 1992–2014. Journal of Geophysical Research: Oceans. 2016;121(1):327–49. https://doi.org/10.1002/2015JC011178.

    Google Scholar 

  120. Turner J, Orr A, Gudmundsson GH, Jenkins A, Bingham RG, Hillenbrand CD, et al (2017) Atmosphere-Ocean-ice interactions in the Amundsen Sea Embayment, West Antarctica. Rev Geophys https://doi.org/10.1002/2016RG000532.

  121. Webber BG, Heywood KJ, Stevens DP, Dutrieux P, Abrahamsen EP, Jenkins A, et al. Mechanisms driving variability in the ocean forcing of Pine Island Glacier. Nat Comm. 2017; 8. https://doi.org/10.1038/ncomms14507

  122. Weertman J. Stability of the junction of an ice sheet and an ice shelf. J Glaciol. 1974;13(67):3–11.

    Article  Google Scholar 

  123. Wesche C, Dierking W. Near-coastal circum-Antarctic iceberg size distributions determined from Synthetic Aperture Radar images. Remote Sens Environ. 2015;156:561–9. https://doi.org/10.1016/j.rse.2014.10.025.

    Article  Google Scholar 

  124. Winkelmann R, Levermann A, Ridgwell A, Caldeira K. Combustion of available fossil fuel resources sufficient to eliminate the Antarctic ice sheet. Sci Adv. 2015;1(8):e1500, 589. https://doi.org/10.1126/sciadv.1500589.

    Article  Google Scholar 

  125. Wright AP, Le Brocq AM, Cornford SL, Bingham RG, Corr HFJ, Ferraccioli F, et al (2014) Sensitivity of the Weddell Sea sector ice streams to sub-shelf melting and surface accumulation. Cryosphere 8(6):2119–2134, https://doi.org/10.5194/tc-8-2119-2014.

  126. Zhang X, Thompson AF, Flexas MM, Roquet F, Bornemann H. Circulation and meltwater distribution in the Bellingshausen sea: from shelf break to coast. Geophys Res Lett. 2016;43(12):6402–9. https://doi.org/10.1002/2016GL068998.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank two anonymous reviewers for their helpful comments and suggestions, which have greatly improved this work.

Funding

XAD is supported by the US Department of Energy, Office of Science, and Office of Biological and Environmental Research under award no. DE-SC0013038. NJ is funded by CNRS and the French National Research Agency (ANR) through the TROIS-AS (ANR-15-CE01-0005-01) project. NJ is involved in Labex OSUG@2020 (ANR10 LABX56) and is an Associate Investigator of the ARC Centre of Excellence for Climate System Science. YN is supported by an appointment to the NASA Postdoctoral Program; the NASA Cryosphere program; and the NASA Modeling, Analysis, and Prediction program. POPSICLES simulations presented in Fig. 2 used computing resources of the National Energy Research Scientific Computing Center (NERSC; supported by the Office of Science of the US Department of Energy under Contract DE-AC02-05CH11231).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xylar S. Asay-Davis.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there are no financial or personal relationships with any third party whose interests could be positively or negatively influenced by the article’s content.

Additional information

This article is part of the Topical Collection on Glaciology and Climate Change

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asay-Davis, X.S., Jourdain, N.C. & Nakayama, Y. Developments in Simulating and Parameterizing Interactions Between the Southern Ocean and the Antarctic Ice Sheet. Curr Clim Change Rep 3, 316–329 (2017). https://doi.org/10.1007/s40641-017-0071-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40641-017-0071-0

Keywords

Navigation