Current Climate Change Reports

, Volume 3, Issue 3, pp 174–184

Progress in Numerical Modeling of Antarctic Ice-Sheet Dynamics

  • Frank Pattyn
  • Lionel Favier
  • Sainan Sun
  • Gaël Durand
Glaciology and Climate Change (T Payne, Section Editor)
Part of the following topical collections:
  1. This article is part of the Topical Collection on Glaciology and Climate Change

Abstract

Numerical modeling of the Antarctic ice sheet has gone through a paradigm shift over the last decade. While initially models focussed on long-time diffusive response to surface mass balance changes, processes occurring at the marine boundary of the ice sheet are progressively incorporated in newly developed state-of-the-art ice-sheet models. These models now exhibit fast, short-term volume changes, in line with current observations of mass loss. Coupling with ocean models is currently on its way and applied to key areas of the Antarctic ice sheet. New model intercomparisons have been launched, focusing on ice/ocean interaction (MISMIP+, MISOMIP) or ice-sheet model initialization and multi-ensemble projections (ISMIP6). Nevertheless, the inclusion of new processes pertaining to ice-shelf calving, evolution of basal friction, and other processes, also increase uncertainties in the contribution of the Antarctic ice sheet to future sea-level rise.

Keywords

Ice-sheet modeling Antarctica Marine ice Sheet instability 

References

  1. 1.
    Aitken ARA, Roberts JL, van Ommen TD, Young DA, Golledge NR, Greenbaum JS, Blankenship DD, Siegert MJ. Repeated large- scale retreat and advance of Totten Glacier indicated by inland bed erosion. Nature. 2016;533(7603):385–9. doi:10.1038/nature17447.
  2. 2.
    Albrecht T, Levermann A. Spontaneous ice-front retreat caused by disintegration of adjacent ice shelf in Antarctica. Earth Planet Sci Lett. 2014;393:26–30. doi:10.1016/j.epsl.2014.02.034.CrossRefGoogle Scholar
  3. 3.
    Anandakrishnan S, Alley RB. Tidal forcing of basal seismicity of ice stream c, west antarctica, observed far inland. J Geophys Res Solid Earth. 1997;102(B7):15183–96. doi:10.1029/97JB01073.CrossRefGoogle Scholar
  4. 4.
    Arthern RJ, Gudmundsson GH. Initialization of ice-sheet forecasts viewed as an inverse Robin problem. J Glaciol. 2010;56 (197):527–33. doi:10.3189/002214310792447699.CrossRefGoogle Scholar
  5. 5.
    Arthern RJ, Hindmarsh RCa. Determining the contribution of Antarctica to sea-level rise using data assimilation methods. Philos Transact A Math Phys Eng Sci. 2006;364(1844):1841–65. doi:10.1098/rsta.2006.1801.CrossRefGoogle Scholar
  6. 6.
    Arthern RJ, Williams CR. The sensitivity of West Antarctica to the submarine melting feedback. Geophys Res Lett. 2017;1–8. doi:10.1002/2017GL072514.
  7. 7.
    Asay-Davis XS, Cornford SL, Durand G, Galton-Fenzi BK, Gladstone RM, Hilmar Gudmundsson G, Hattermann T, Holland DM, Holland D, Holland PR, Martin DF, Mathiot P, Pattyn F, Seroussi H. Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1). Geosci Model Dev. 2016;9(7):2471–97. doi:10.5194/gmd-9-2471-2016.CrossRefGoogle Scholar
  8. 8.
    Åström JA, Riikilä TI, Tallinen T, Zwinger T, Benn D, Moore JC, Timonen J. A particle based simulation model for glacier dynamics. Cryosphere. 2013;7(5):1591–602. doi:10.5194/tc-7-1591-2013.CrossRefGoogle Scholar
  9. 9.
    Åström JA, Vallot D, Schäfer M, Welty EZ, Neel SO, Bartholomaus TC, Liu Y, Riikilä T, Zwinger T, Timonen J, Moore JC. Termini of calving glaciers as self-organized critical systems. Nat Geosci. 2014;7:874–8. doi:10.1038/NGEO2290.CrossRefGoogle Scholar
  10. 10.
    Bassis J, Ma Y. Evolution of basal crevasses links ice shelf stability to ocean forcing. Earth Planet Sci Lett. 2015;409:203–11. doi:10.1016/j.epsl.2014.11.003.CrossRefGoogle Scholar
  11. 11.
    Bassis JN, Jacobs S. Diverse calving patterns linked to glacier geometry. Nat Geosci. 2013;6(10):833–6. doi:10.1038/ngeo1887.CrossRefGoogle Scholar
  12. 12.
    Bassis JN, Walker CC. Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice. Proc. R. Soc. Lond. A Math. Phys. Sci. 2012;468(2140):913–31. doi:10.1098/rspa.2011.0422.CrossRefGoogle Scholar
  13. 13.
    Beckmann A, Goosse H. A parameterization of ice shelf-ocean interaction for climate models. Ocean Model. 2002;5(2):157–70. doi:10.1016/S1463-5003(02)00019-7.CrossRefGoogle Scholar
  14. 14.
    Benn DI, Warren CR, Mottram RH. Calving processes and the dynamics of calving glaciers. Earth-Sci Rev. 2007;82(3-4):143–79. doi:10.1016/j.earscirev.2007.02.002.CrossRefGoogle Scholar
  15. 15.
    Berger S, Favier L, Drews R, Derwael JJ, Pattyn F. The control of an uncharted pinning point on the flow of an antarctic ice shelf. J Glaciol. 2016;62(231):37–45. doi:10.1017/jog.2016.7.CrossRefGoogle Scholar
  16. 16.
    Berger S, Drews R, Helm V, Sun S, Pattyn F. Detecting high spatial variability of ice-shelf basal mass balance (roi baudouin ice shelf, antarctica). Cryosphere Discuss. 2017;2017:1–22. doi:10.5194/tc-2017-41.CrossRefGoogle Scholar
  17. 17.
    Berthier E, Scambos TA, Shuman CA. Mass loss of Larsen B tributary glaciers (Antarctic Peninsula) unabated since 2002. Geophys Res Lett. 2012;39(13):1–6. doi:10.1029/2012GL051755.CrossRefGoogle Scholar
  18. 18.
    Bindschadler RA, Nowicki S, Abe-Ouchi A, Aschwanden A, Choi H, Fastook J, Granzow G, Greve R, Gutowski G, Herzfeld U, Jackson C, Johnson J, Khroulev C, Levermann A, Lipscomb WH, Martin MA, Morlighem M, Parizek BR, Pollard D, Price SF, Ren D, Saito F, Sato T, Seddik H, Seroussi H, Takahashi K, Walker R, Wang WL. Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project). J Glaciol. 2013;59(214):195–224. doi:10.3189/2013JoG12J125.CrossRefGoogle Scholar
  19. 19.
    de Boer B, Stocchi P, van de Wal RSW. A fully coupled 3-d ice-sheet–sea-level model: algorithm and applications. Geosci Model Dev. 2014;7(5):2141–56. doi:10.5194/gmd-7-2141-2014.
  20. 20.
    de Boer B, Dolan AM, Bernales J, Gasson E, Goelzer H, Golledge NR, Sutter J, Huybrechts P, Lohmann G, Rogozhina I, Abe-Ouchi A, Saito F. Simulating the antarctic ice sheet in the late-pliocene warm period: Plismip-ant, an ice-sheet model intercomparison project. Cryosphere. 2015;9(3):881–903. doi:10.5194/tc-9-881-2015.
  21. 21.
    Borstad C, Khazendar A, Scheuchl B, Morlighem M, Larour E, Rignot E. A constitutive framework for predicting weakening and reduced buttressing of ice shelves based on observations of the progressive deterioration of the remnant Larsen B Ice Shelf. Geophys Res Lett. 2016;43(5):2027–35. doi:10.1002/2015GL067365.CrossRefGoogle Scholar
  22. 22.
    Borstad CP, Khazendar A, Larour E, Morlighem M, Rignot E, Schodlok MP, Seroussi H. A damage mechanics assessment of the Larsen B ice shelf prior to collapse: Toward a physically-based calving law. Geophys Res Lett. 2012;39(17):L18,502. doi:10.1029/2012GL053317.Google Scholar
  23. 23.
    Borstad CP, Rignot E, Mouginot J, Schodlok MP. Creep deformation and buttressing capacity of damaged ice shelves: theory and application to Larsen C ice shelf. Cryosphere. 2013;7(6):1931–47. doi:10.5194/tc-7-1931-2013.CrossRefGoogle Scholar
  24. 24.
    Bueler E, Brown J. Shallow shelf approximation as a “sliding law” in a thermomechanically coupled ice sheet model. J Geophys Res Earth Surf. 2009;114(F3). doi:10.1029/2008JF001179, f03008.
  25. 25.
    Clark J, Lingle CS. Future sea-level changes due to west antarctic ice sheet fluctuations. Nature. 1977;269:206–9. doi:10.1038/269206a0.CrossRefGoogle Scholar
  26. 26.
    Cook S, Rutt IC, Murray T, Luckman A, Zwinger T, Selmes N, Goldsack A, James TD. Modelling environmental influences on calving at Helheim Glacier in eastern Greenland. Cryosphere. 2014;8(3):827–41. doi:10.5194/tc-8-827-2014.CrossRefGoogle Scholar
  27. 27.
    Cornford SL, MarTsaitin DF, Graves DT, Ranken DF, Le AM, Gladstone RM, Payne AJ, Ng EG, Lipscomb WH, Le Brocq AM, Gladstone R M, Payne AJ, Ng EG, Lipscomb WH. Adaptive mesh, finite volume modeling of marine ice sheets. J Comput Phys. 2013;232(1):529–49. doi:10.1016/j.jcp.2012.08.037.CrossRefGoogle Scholar
  28. 28.
    Cornford SL, Martin DF, Payne AJ, Ng EG, Le Brocq AM, Gladstone RM, Edwards TL, Shannon SR, Agosta C, Van Den Broeke MR, Hellmer HH, Krinner G, Ligtenberg SRM, Timmermann R, Vaughan DG. Century-scale simulations of the response of the West Antarctic Ice Sheet to a warming climate. Cryosphere. 2015;9(4):1579–600. doi:10.5194/tc-9-1579-2015.
  29. 29.
    Cornford SL, Martin DF, Lee V, Payne AJ, Ng EG. Adaptive mesh refinement versus subgrid friction interpolation in simulations of Antarctic ice dynamics. Ann Glaciol. 2016;57(73):1–9. doi:10.1017/aog.2016.13.CrossRefGoogle Scholar
  30. 30.
    De Rydt J, Gudmundsson GH, De Rydt J, Gudmundsson GH. Coupled ice shelf-ocean modeling and complex grounding line retreat from a seabed ridge. J Geophys Res F: Earth Surf. 2016;121(5):865–80. doi:10.1002/2015JF003791.CrossRefGoogle Scholar
  31. 31.
    DeConto RM, Pollard D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature. 2003;421:245–9. doi:10.1038/nature01290.CrossRefGoogle Scholar
  32. 32.
    Deconto RM, Pollard D. Contribution of Antarctica to past and future sea-level rise. Nature. 2016;531(7596):591–7. doi:10.1038/nature17145.
  33. 33.
    Depoorter MA, Bamber JL, Griggs JA, Lenaerts JTM, Ligtenberg SRM, van den Broeke MR, Moholdt G. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature. 2013;502 (7469):89–92. doi:10.1038/nature12567, NIHMS150003.
  34. 34.
    Dinniman M, Asay-Davis X, Galton-Fenzi B, Holland P, Timmermann R. Modeling Ice Shelf/Ocean interaction in Antarctica: a review. Oceanography. 2016;29.Google Scholar
  35. 35.
    Duddu R, Waisman H. A nonlocal continuum damage mechanics approach to simulation of creep fracture in ice sheets. Comput. Mech. 2013;51(6):961–74. doi:10.1007/s00466-012-0778-7.CrossRefGoogle Scholar
  36. 36.
    Dupont TK, Alley RB. 2005. Assessment of the importance of ice-shelf buttressing to ice-sheet flow. Geophys Res Lett. doi:10.1029/2004GL022024.
  37. 37.
    Durand G, Pattyn F. Reducing uncertainties in projections of Antarctic ice mass loss. Cryosphere. 2015;9(6):2043–55. doi:10.5194/tc-9-2043-2015.CrossRefGoogle Scholar
  38. 38.
    Durand G, Gagliardini O, De Fleurian B, Zwinger T, Le Meur E. Marine ice sheet dynamics: Hysteresis and neutral equilibrium. J. Geophys. Res. Solid Earth. 2009;114(3):F03,009. doi:10.1029/2008JF001170.Google Scholar
  39. 39.
    Dutrieux P, Vaughan DG, Corr H F J, Jenkins A, Holland PR, Joughin I, Fleming AH. Pine island glacier ice shelf melt distributed at kilometre scales. Cryosphere. 2013;7(5):1543–55. doi:10.5194/tc-7-1543-2013.CrossRefGoogle Scholar
  40. 40.
    Favier L, Pattyn F. Antarctic ice rise formation, evolution, and stability. Geophys Res Lett. 2015;42(11):2015GL064,195. doi:10.1002/2015GL064195.1.CrossRefGoogle Scholar
  41. 41.
    Favier L, Gagliardini O, Durand G, Zwinger T. A three-dimensional full stokes model of the grounding line dynamics: effect of a pinning point beneath the ice shelf. Cryosphere. 2012;6(1):101–12. doi:10.5194/tc-6-101-2012.CrossRefGoogle Scholar
  42. 42.
    Favier L, Durand G, Cornford SL, Gudmundsson GH, Gagliardini O, Gillet-Chaulet F, Zwinger T, Payne AJ, Le Brocq aM. Retreat of Pine Island Glacier controlled by marine ice-sheet instability. Nat Clim Chang. 2014;5(2):117–21. doi:10.1038/nclimate2094.CrossRefGoogle Scholar
  43. 43.
    Favier L, Pattyn F, Berger S, Drews R. Dynamic influence of pinning points on marine ice-sheet stability: A numerical study in Dronning Maud Land, East Antarctica. Cryosphere. 2016;10(6):2623–35. doi:10.5194/tc-10-2623-2016.CrossRefGoogle Scholar
  44. 44.
    Feldmann J, Levermann A. Collapse of the west antarctic ice sheet after local destabilization of the amundsen basin. Proc Natl Acad Sci. 2015;112(46):14191–6. doi:10.1073/pnas.1512482112.CrossRefGoogle Scholar
  45. 45.
    Feldmann J, Albrecht T, Khroulev C, Pattyn F, Levermann A. Resolution-dependent performance of grounding line motion in a shallow model compared with a full-Stokes model according to the MISMIP3d intercomparison. J Glaciol. 2014;60(220):353–60. doi:10.3189/2014JoG13J093.CrossRefGoogle Scholar
  46. 46.
    Ferrigno JG, Gould WG. Substantial changes in the coastline of Antarctica revealed by satellite imagery. Polar Rec. 1987;23 (146):577. doi:10.1017/S003224740000807X.CrossRefGoogle Scholar
  47. 47.
    Fretwell P, Pritchard HD, Vaughan DG, Bamber JL, Barrand NE, Bell R, Bianchi C, Bingham RG, Blankenship DD, Casassa G, Catania G, Callens D, Conway H, Cook AJ, Corr HFJ, Damaske D, Damm V, Ferraccioli F, Forsberg R, Fujita S, Gim Y, Gogineni P, Griggs JA, Hindmarsh RCA, Holmlund P, Holt JW, Jacobel RW, Jenkins A, Jokat W, Jordan T, King EC, Kohler J, Krabill W, Riger-Kusk M, Langley KA, Leitchenkov G, Leuschen C, Luyendyk BP, Matsuoka K, Mouginot J, Nitsche FO, Nogi Y, Nost OA, Popov SV, Rignot E, Rippin DM, Rivera A, Roberts J, Ross N, Siegert MJ, Smith AM, Steinhage D, Studinger M, Sun B, Tinto BK, Welch BC, Wilson D, Young DA, Xiangbin C, Zirizzotti A. Bedmap2: improved ice bed, surface and thickness datasets for antarctica. Cryosphere. 2013;7:375–93. doi:10.5194/tc-7-375-2013.CrossRefGoogle Scholar
  48. 48.
    Fürst JJ, Durand G, Gillet-Chaulet F, Tavard L, Rankl M, Braun M, Gagliardini O. The safety band of Antarctic ice shelves. Nat Clim Chang. 2016;6:479–82. doi:10.1038/nclimate2912.CrossRefGoogle Scholar
  49. 49.
    Gagliardini O, Durand G, Zwinger T, Hindmarsh RCA, Meur EL. 2010. Coupling of ice-shelf melting and buttressing is a key process in ice-sheet dynamics. Geophys Res Lett. doi:10.1029/2010GL043334.
  50. 50.
    Gillet-Chaulet F, Gagliardini O, Seddik H, Nodet M, Durand G, Ritz C, Zwinger T, Greve R, Vaughan DG. Greenland ice sheet contribution to sea-level rise from a new-generation ice- sheet model. Cryosphere. 2012;6(6):1561–76. doi:10.5194/tc-6-1561-2012.CrossRefGoogle Scholar
  51. 51.
    Gillet-Chaulet F, Durand G, Gagliardini O, Mosbeux C, Mouginot J, Rémy F, Ritz C. Assimilation of surface velocities acquired between 1996 and 2010 to constrain the form of the basal friction law under Pine Island Glacier. Geophys Res Lett. 43(19):10 2016;321:311–10. doi:10.1002/2016GL069937.Google Scholar
  52. 52.
    Gladstone RM, Payne AJ, Cornford SL. Resolution requirements for grounding-line modelling: Sensitivity to basal drag and ice-shelf buttressing. Ann Glaciol. 2012;53(60):97–105. doi:10.3189/2012AoG60A148.CrossRefGoogle Scholar
  53. 53.
    Gladstone RM, Warner RC, Galton-Fenzi BK, Gagliardini O, Zwinger T, Greve R. Marine ice sheet model performance depends on basal sliding physics and sub-shelf melting. Cryosphere. 2016;0:1–17. doi:10.5194/tc-2016-149.Google Scholar
  54. 54.
    Goldberg D. A variationally derived, depth-integrated approximation to a higher-order glaciological flow model. J Glaciol. 2011;57(201):157–70. doi:10.3189/002214311795306763.CrossRefGoogle Scholar
  55. 55.
    Goldberg D, Holland DM, Schoof C. Grounding line movement and ice shelf buttressing in marine ice sheets. J Geophys Res Earth Surf. 2009;114(4):F04,026. doi:10.1029/2008JF001227.Google Scholar
  56. 56.
    Goldberg DN, Heimbach P. Parameter and state estimation with a time-dependent adjoint marine ice sheet model. Cryosphere. 2013;7(6):1659–78. doi:10.5194/tc-7-1659-2013.CrossRefGoogle Scholar
  57. 57.
    Goldberg DN, Little CM, Sergienko OV, Gnanadesikan A, Hallberg R, Oppenheimer M. Investigation of land ice-ocean interaction with a fully coupled ice-ocean model: 1. Model description and behavior. J Geophys Res Earth Surf. 2012;117(2):1–16. doi:10.1029/2011JF002246.Google Scholar
  58. 58.
    Goldberg DN, Heimbach P, Joughin I, Smith B. Committed retreat of Smith, Pope, and Kohler Glaciers over the next 30 years inferred by transient model calibration. Cryosphere. 2015;9(6):2429–46. doi:10.5194/tc-9-2429-2015.CrossRefGoogle Scholar
  59. 59.
    Goldberg DN, Narayanan SHK, Hascoet L, Utke J. An optimized treatment for algorithmic differentiation of an important glaciological fixed-point problem. Geosci Model Dev. 2016;9(5):1891–904. doi:10.5194/gmd-9-1891-2016.CrossRefGoogle Scholar
  60. 60.
    Golledge NR, Kowalewski DE, Naish TR, Levy RH, Fogwill CJ, Gasson EGW. The multi-millennial Antarctic commitment to future sea-level rise. Nature. 2015;526(7573):421–5. doi:10.1038/nature15706.CrossRefGoogle Scholar
  61. 61.
    Golledge NR, Levy RH, McKay RM, Naish TR. East Antarctic ice sheet most vulnerable to Weddell Sea warming. Geophys Res Lett. 2017. doi:10.1002/2016GL072422.
  62. 62.
    Gomez N, Pollard D, Mitrovica JX. A 3-d coupled ice sheet – sea level model applied to antarctica through the last 40 ky. Earth Planet Sci Lett. 2013;384:88–99. doi:10.1016/j.epsl.2013.09.042.CrossRefGoogle Scholar
  63. 63.
    Gomez N, Pollard D, Holland D. Sea-level feedback lowers projections of future antarctic ice-sheet mass loss. Nat Commun. 2015;6(8798). doi:10.1038/ncomms9798.
  64. 64.
    Gong Y, Cornford SL, Payne AJ. Modelling the response of the Lambert Glacier-Amery Ice Shelf system, East Antarctica, to uncertain climate forcing over the 21st and 22nd centuries. Cryosphere. 2014;8(3):1057–68. doi:10.5194/tc-8-1057-2014.CrossRefGoogle Scholar
  65. 65.
    Gudmundsson GH, Krug J, Durand G, Favier L, Gagliardini O. The stability of grounding lines on retrograde slopes. Cryosphere. 2012;6(6):1497–505. doi:10.5194/tc-6-1497-2012.CrossRefGoogle Scholar
  66. 66.
    Hindmarsh RCA. Stability of ice rises and uncoupled marine ice sheets. Ann Glaciol. 1996;23:105–14. doi:10.1017/S0260305500013318.CrossRefGoogle Scholar
  67. 67.
    Hindmarsh RCA, Le Meur E. Dynamical processes involved in the retreat of marine ice sheets. J Glaciol. 2001;47(157):271–82. doi:10.3189/172756501781832269.CrossRefGoogle Scholar
  68. 68.
    Huybrechts P. A 3-D model for the Antarctic ice sheet: a sensitivity study on the glacial-interglacial contrast. Climate Dyn. 1990a;5:79–92. doi:10.1007/BF00207423.Google Scholar
  69. 69.
    Huybrechts P. The Antarctic ice sheet during the last glacial-interglacial cycle: a 3D model experiment. Ann Glaciol. 1990b;14:115–9.CrossRefGoogle Scholar
  70. 70.
    Huybrechts P, Oerlemans J. Response of the Antarctic ice sheet to future greenhouse warming. Clim Dyn. 1990;5(2):93–102. doi:10.1007/BF00207424.Google Scholar
  71. 71.
    Huybrechts P, Payne A, The EISMINT Intercomparison Group. The EISMINT benchmarks for testing ice–sheet models. Ann Glaciol. 1996;23:1–12. doi:10.1017/S0260305500013197.CrossRefGoogle Scholar
  72. 72.
    IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change, Working Group I Contribution to the IPCC Fifth Assessment Report (AR5): Cambridge University Press, New York. doi:10.1029/2000JD000115 .
  73. 73.
    Joughin I, Smith BE, Medley B. Marine Ice Sheet Collapse Potentially Underway for the Thwaites Glacier Basin, West Antarctica. Science (New York NY). 2014;344:735–8. doi:10.1126/science.1249055.CrossRefGoogle Scholar
  74. 74.
    Konrad H, Sasgen I, Pollard D, Klemann V. Potential of the solid- earth response for limiting long-term west antarctic ice sheet retreat in a warming climate. Earth Planet Sci Lett. 2015;432:254–64. doi:10.1016/j.epsl.2015.10.008.CrossRefGoogle Scholar
  75. 75.
    Krug J, Weiss J, Gagliardini O, Durand G. Combining damage and fracture mechanics to model calving. Cryosphere. 2014;8(6):2101–17. doi:10.5194/tc-8-2101-2014.CrossRefGoogle Scholar
  76. 76.
    Lazeroms WMJ, Jenkins A, Gudmundsson GH, van de Wal RSW. Modelling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes. Cryosphere Discuss. 2017;1–29. doi:10.5194/tc-2017-58.
  77. 77.
    Leguy GR, Asay-Davis XS, Lipscomb WH. Parameterization of basal friction near grounding lines in a one-dimensional ice sheet model. Cryosphere. 2014;8(4):1239–59. doi:10.5194/tc-8-1239-2014.CrossRefGoogle Scholar
  78. 78.
    MacAyeal DR. The basal stress distribution of Ice Stream E, Antarctica, inferred by control methods. J Geophys Res. 1992;97(B1):595. doi:10.1029/91JB02454.CrossRefGoogle Scholar
  79. 79.
    Matsuoka K, Hindmarsh RCA, Moholdt G, Bentley M J, Pritchard HD, Brown J, Conway H, Drews R, Durand G, Goldberg D, Hattermann T, Kingslake J, Lenaerts JTM, Martin C, Mulvaney R, Nic holls KW, Pattyn F, Ross N, Scambos T, Whitehouse PL. Antarctic ice rises and rumples: their properties and significance for ice-sheet dynamics and evolution. Earth Sci Rev. 2015;150:724–745. doi:10.1016/j.earscirev.2015.09.004.CrossRefGoogle Scholar
  80. 80.
    Mengel M, Levermann A. Ice plug prevents irreversible discharge from East Antarctica. Nat Clim Chang. 2014;27:1–5. doi:10.1038/NCLIMATE2226.Google Scholar
  81. 81.
    Mercer JH. West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster. Nature. 1978;271(5643):321–5. doi:10.1038/271321a0.CrossRefGoogle Scholar
  82. 82.
    Moholdt G, Padman L, Fricker HA. Basal mass budget of ross and filchner-ronne ice shelves, antarctica, derived from lagrangian analysis of icesat altimetry. J Geophys Res Earth Surf. 2014;119 (11):2361–80. doi:10.1002/2014JF003171, 2014JF003171.CrossRefGoogle Scholar
  83. 83.
    Morlighem M, Rignot E, Seroussi H, Larour E, Ben Dhia H, Aubry D. Spatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica. Geophys Res Lett. 2010;37(14):1–6. doi:10.1029/2010GL043853.CrossRefGoogle Scholar
  84. 84.
    Morlighem M, Seroussi H, Larour E, Rignot E. Inversion of basal friction in Antarctica using exact and incomplete adjoints of a higher-order model. J Geophys Res Earth Surf. 2013;118 (3):1746–53. doi:10.1002/jgrf.20125.CrossRefGoogle Scholar
  85. 85.
    Nias IJ, Cornford SL, Payne AJ. Contrasting the Modelled sensitivity of the Amundsen Sea Embayment ice streams. J Glaciol. 2016;62(233):552–62. doi:10.1017/jog.2016.40.CrossRefGoogle Scholar
  86. 86.
    Nick FM, Van Der Veen CJ, Vieli A, Benn DI. A physically based calving model applied to marine outlet glaciers and implications for the glacier dynamics. J Glaciol. 2010;56(199):781–94. doi:10.3189/002214310794457344.
  87. 87.
    Nick FM, Vieli A, Andersen ML, Joughin I, Payne A, Edwards TL, Pattyn F, Van De Wal RSW. Future sea-level rise from Greenland’s main outlet glaciers in a warming climate. Nature. 2013; 497(7448):235–8. doi:10.1038/nature12068.
  88. 88.
    Nowicki S, Bindschadler RA, Abe-Ouchi A, Aschwanden A, Bueler E, Choi H, Fastook J, Granzow G, Greve R, Gutowski G, Herzfeld U, Jackson C, Johnson J, Khroulev C, Larour E, Levermann A, Lipscomb WH, Martin MA, Morlighem M, Parizek BR, Pollard D, Price SF, Ren D, Rignot E, Saito F, Sato T, Seddik H, Seroussi H, Takahashi K, Walker R, Wang WL. Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project I: Antarctica. J Geophys Res Earth Surf. 2013;118 (2):1025–44. doi:10.1002/jgrf.20076.CrossRefGoogle Scholar
  89. 89.
    Nowicki SMJ, Payne A, Larour E, Seroussi H, Goelzer H, Lipscomb W, Gregory J, Abe-Ouchi A, Shepherd A. Ice sheet model intercomparison project (ismip6) contribution to cmip6. Geosci Model Dev. 2016;9(12):4521–45. doi:10.5194/gmd-9-4521-2016.CrossRefGoogle Scholar
  90. 90.
    Nye JF. The Distribution of Stress and Velocity in Glaciers and Ice-Sheets. Proc R Soc A: Mathematical Phys Eng Sci. 1957;239 (1216):113–33. doi:10.1098/rspa.1957.0026.CrossRefGoogle Scholar
  91. 91.
    Nye JF. The sliding of glaciers. J Glaciol. 1996;3:293–8. doi:10.1007/978-94-015-8705-119.Google Scholar
  92. 92.
    Paolo FS, Fricker HA, Padman L. Volume loss from Antarctic ice shelves is accelerating. Science. 2015;348(6232):327–32. doi:10.1126/science.aaa0940.CrossRefGoogle Scholar
  93. 93.
    Pattyn F. Sea-level response to melting of Antarctic ice shelves on multi-centennial time scales with the fast Elementary Thermomechanical Ice Sheet model (f.ETISh v1.0). Cryosphere Discuss (January). 2017;1–52. doi:10.5194/tc-2017-8.
  94. 94.
    Pattyn F, Durand G. Why marine ice sheet model predictions may diverge in estimating future sea level rise. Geophys Res Lett. 2013;40(16):4316–20. doi:10.1002/grl.50824.CrossRefGoogle Scholar
  95. 95.
    Pattyn F, Huyghe A, De Brabander S, De Smedt B. 2006. Role of transition zones in marine ice sheet dynamics. J Geophys Res. doi:10.1029/2005JF000394.
  96. 96.
    Pattyn F, Schoof C, Perichon L, Hindmarsh RCA, Bueler E, De Fleurian B, Durand G, Gagliardini O, Gladstone R, Goldberg D, Gudmundsson GH, Huybrechts P, Lee V, Nick FM, Payne AJ, Pollard D, Rybak O, Saito F, Vieli A. Results of the marine ice sheet model intercomparison project, MISMIP. Cryosphere. 2012;6(3):573–88. doi:10.5194/tc-6-573-2012.CrossRefGoogle Scholar
  97. 97.
    Pattyn F, Perichon L, Durand G, Favier L, Gagliardini O, Hindmarsh RCA, Zwinger T, Albrecht T, Cornford S, Docquier D, Fürst JJ, Goldberg D, Gudmundsson GH, Humbert A, Hütten M, Huybrechts P, Jouvet G, Kleiner T, Larour E, Martin D, Morlighem M, Payne AJ, Pollard D, Rückamp M, Rybak O, Seroussi H, Thoma M, Wilkens N. Grounding-line migration in plan-view marine ice-sheet models: Results of the ice2sea MISMIP3d intercomparison. J Glaciol. 2013;59(215):410–22. doi:10.3189/2013JoG12J129.CrossRefGoogle Scholar
  98. 98.
    Payne AJ, Huybrechts P, Abe-Ouchi A, Calov R, Fastook JL, Greve R, Marshall SJ, Marsiat I, Ritz C, Tarasov L, Thomassen M. Results from the EISMINT model intercomparsion: the effects of thermomechanical coupling. J Glaciol. 2000;46(153):227–38. doi:10.3189/172756500781832891.CrossRefGoogle Scholar
  99. 99.
    Pollard D, Deconto RM. Description of a hybrid ice sheet-shelf model, and application to Antarctica. Geosci Model Dev. 2012;5(5):1273–95. doi:10.5194/gmd-5-1273-2012.CrossRefGoogle Scholar
  100. 100.
    Pollard D, DeConto RM, Alley RB. Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure. Earth Planet Sci Lett. 2015;412:112–21. doi:10.1016/j.epsl.2014.12.035.CrossRefGoogle Scholar
  101. 101.
    Pollard D, Chang W, Haran M, Applegate P, DeConto R. Large ensemble modeling of the last deglacial retreat of the West Antarctic Ice Sheet: Comparison of simple and advanced statistical techniques. Geosci Model Dev. 2016;9(5):1697–723. doi:10.5194/gmd-9-1697-2016.CrossRefGoogle Scholar
  102. 102.
    Pralong A, Funk M. Dynamic damage model of crevasse opening and application to glacier calving. J Geophys Res B: Solid Earth. 2005;110(1):1–12. doi:10.1029/2004JB003104.Google Scholar
  103. 103.
    Rignot E, Jacobs S, Mouginot J, Scheuchl B. Ice-shelf melting around Antarctica. Science. 2013;341(6143):266–70. doi:10.1126/science.1235798.CrossRefGoogle Scholar
  104. 104.
    Rignot EJ. Fast recession of a West Antarctic Glacier. Science. 1998;281(5376):549–51. doi:10.1126/science.281.5376.549.CrossRefGoogle Scholar
  105. 105.
    Ritz C, Rommelaere V, Dumas C. Modeling the evolution of the Antarctic ice sheet over the last 420000 years: Implications for altitude changes in the Vostok region. J Geophys Res. 2001;106(D23):31943–64. doi:10.1029/2001JD900232.CrossRefGoogle Scholar
  106. 106.
    Ritz C, Edwards TL, Durand G, Payne AJ, Peyaud V, Hindmarsh RCA. Potential sea-level rise from Antarctic ice-sheet instability constrained by observations. Nature. 2015;528(7580):115–8. doi:10.1038/nature16147, NIHMS150003.Google Scholar
  107. 107.
    Rosier SHR, Gudmundsson GH. Tidal controls on the flow of ice streams. Geophys Res Lett. 2016;43. doi:10.1002/2016GL068220.
  108. 108.
    Rosier SHR, Gudmundsson GH, Green JAM. Insights into ice stream dynamics through modelling their response to tidal forcing. Cryosphere. 2014;8(5):1763–75. doi:10.5194/tc-8-1763-2014.CrossRefGoogle Scholar
  109. 109.
    Rosier SHR, Gudmundsson GH, Green JaM. Temporal variations in the flow of a large Antarctic ice stream controlled by tidally induced changes in the subglacial water system. Cryosphere. 2015;9(4):1649–61. doi:10.5194/tc-9-1649-2015.CrossRefGoogle Scholar
  110. 110.
    Scambos TA, Bohlander JA, Shuman CA, Skvarca P. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys Res Lett. 2004;31(18):2001–4. doi:10.1029/2004GL020670.CrossRefGoogle Scholar
  111. 111.
    Schoof C. Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. J Geophys Res Earth Surf. 2007;112(3):F03S28. doi:10.1029/2006JF000664.Google Scholar
  112. 112.
    Schoof C, Hindmarsh R. Thin-film flows with wall slip: an asymptotic analysis of higher order glacier flow models. Quart J Mech Appl Math. 2010;63(1):73–114. doi:10.1093/qjmam/hbp025.CrossRefGoogle Scholar
  113. 113.
    Sergienko OV. Basal channels on ice shelves. J Geophys Res Earth Surf. 2013;118(3):1342–55. doi:10.1002/jgrf.20105.CrossRefGoogle Scholar
  114. 114.
    Seroussi H, Morlighem M, Larour E, Rignot E, Khazendar A. Hydrostatic grounding line parameterization in ice sheet models. Cryosphere. 2014a;8(6):2075–87. doi:10.5194/tc-8-2075-2014.CrossRefGoogle Scholar
  115. 115.
    Seroussi H, Morlighem M, Rignot E, Mouginot J, Larour E, Schodlok M, Khazendar A. Sensitivity of the dynamics of Pine Island Glacier, West Antarctica, to climate forcing for the next 50 years. Cryosphere. 2014b;8(5):1699–710. doi:10.5194/tc-8-1699-2014.CrossRefGoogle Scholar
  116. 116.
    Seroussi H, Nakayama Y, Larour E, Menemenlis D, Morlighem M, Rignot E, Khazendar A. Continued retreat of Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation. Geophys Res Lett. 2017. doi:10.1002/2017GL072910.
  117. 117.
    Shepherd A, Wingham DJ, Mansley JAD. Inland thinning of the amundsen sea sector, west antarctica. Geophys Res Lett. 2002;29(10):2–1–2–4. doi:10.1029/2001GL014183.CrossRefGoogle Scholar
  118. 118.
    Shepherd A, Ivins ER, Geruo A, Barletta VR, Bentley MJ, Bettadpur S, Briggs KH, Bromwich DH, Forsberg R, Galin N, Horwath M, Jacobs S, Joughin I, King MA, Lenaerts JTM, Li J, Ligtenberg SRM, Luckman A, Luthcke SB, McMillan M, Meister R, Milne G, Mouginot J, Muir A, Nicolas JP, Paden J, Payne J, Pritchard H, Rignot E, Rott H, Sorensen LS, Scambos TA, Scheuchl B, Schrama EJO, Smith B, Sundal AV, van Angelen JH, van de Berg WJ, van den Broeke MR, Vaughan DG, Velicogna I, Wahr J, Whitehouse PL, Wingham DJ, Yi D, Young D, Zwally HJ. A Reconciled Estimate of Ice-Sheet Mass Balance. Science. 2012;338(6111):1183–9. doi:10.1126/science.1228102.
  119. 119.
    Sun S, Cornford SL, Gwyther DE, Gladstone RM, Galton-Fenzi BK, Zhao L, Moore JC. Impact of ocean forcing on the Aurora Basin in the 21st and 22nd centuries. Ann Glaciol. 2016;57(73):79–86. doi:10.1017/aog.2016.27.CrossRefGoogle Scholar
  120. 120.
    Sun S, Cornford S, Gladstone R, Zhao L, Moore J. Ice shelf fracture parameterization in an ice sheet model. Cryosphere Discuss (April). 2017;1–23. doi:10.5194/tc-2017-53.
  121. 121.
    Thomas RH, Bentley CR. A model for Holocene retreat of the West Antarctic Ice Sheet. Quat Res. 1978;10(2):150–70. doi:10.1016/0033-5894(78)90098-4.CrossRefGoogle Scholar
  122. 122.
    Tsai VC, Stewart AL, Thompson AF. Marine ice-sheet profiles and stability under Coulomb basal conditions. J Glaciol. 2015;61(226):205–15. doi:10.3189/2015JoG14J221.CrossRefGoogle Scholar
  123. 123.
    Vieli A, Payne AJ. Assessing the ability of numerical ice sheet models to simulate grounding line migration. J Geophys Res Earth Surf. 2005;110;(F1) doi:10.1029/2004JF000202, f01003.
  124. 124.
    Walker RT, Holland DM. A two-dimensional coupled model for ice shelf–ocean interaction. Ocean Model. 2007;17(2):123–39. doi:10.1016/j.ocemod.2007.01.001.CrossRefGoogle Scholar
  125. 125.
    Walker RT, Holland DM, Parizek BR, Alley RB, Nowicki SMJ, Jenkins A. Efficient flowline simulations of ice-shelf/ocean interactions: sensitivity studies with a fully coupled model. J Phys Oceanogr. 2013;43:2200–10. doi:10.1175/JPO-D-13-037.1.CrossRefGoogle Scholar
  126. 126.
    Weertman J. Stability of the junction of an ice sheet and an ice shelf. J Glaciol. 1974;13(67):3–11. doi:10.3198/1974JoG13-67-3-11.CrossRefGoogle Scholar
  127. 127.
    Wingham DJ, Ridout AJ, Scharroo R, Arthern RJ, Shum CK. Antarctic elevation change from 1992 to 1996. Science. 1998;282(5388):456–8. doi:10.1126/science.282.5388.456.CrossRefGoogle Scholar
  128. 128.
    Winkelmann R, Martin MA, Haseloff M, Albrecht T, Bueler E, Khroulev C, Levermann A. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 1: model description. Cryosphere. 2011;5(3):715–26. doi:10.5194/tc-5-715-2011.CrossRefGoogle Scholar
  129. 129.
    Winkelmann R, Levermann A, Ridgwell A, Caldeira K. Combustion of available fossil fuel resources sufficient to eliminate the antarctic ice sheet. Sci Adv. 2015;1(8).doi:10.1126/sciadv.1500589.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratoire de GlaciologieUniversité libre de BruxellesBruxellesBelgium
  2. 2.Institut des Géosciences de l’Environnement (IGE)Université Grenoble-AlpesGrenobleFrance

Personalised recommendations