Solomon S, Ivy DJ, Kinnison D, Mills MJ, Neely RR III, Schmidt A. Emergence of healing in the Antarctic ozone layer. Science. 2016;353:269–74. doi:10.1126/science.aae0061.
CAS
Article
Google Scholar
Philander SG (1990) El Nino, La Nina and the Southern Oscillation. International Geophysical Series, 46, Academic Press, 293 pp.
L’Heureux ML, Thompson DWJ. Observed relationships between the El Nino–Southern Oscillation and the extratropical zonal-mean circulation. J Clim. 2006;19:276–87.
Article
Google Scholar
Ding Q, Steig EJ, Battisti DS, Wallace JM. Influence of the tropics on the Southern Annular Mode. J Clim. 2012;25:6330–48. doi:10.1175/JCLI-D-11-00523.1.
Article
Google Scholar
Power S, Casey T, Folland C, et al. Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn. 1999;15:319–24. doi:10.1007/s003820050284.
Article
Google Scholar
Meehl GA, Arblaster JM, Bitz CM, Chung CTY, Teng H. Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nat Geosci. 2016;9:590–6. doi:10.1038/NGEO2751.
CAS
Article
Google Scholar
Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Amer Meteor Soc. 1997;78:1069–79.
Article
Google Scholar
Pezza AB, Simmonds I, Renwick JA. Southern hemisphere cyclones and anticyclones: recent trends and links with decadal variability in the Pacific Ocean. Int J Climatol. 2007;27:1403–19. doi:10.1002/joc.1477.
Article
Google Scholar
Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME. A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett. 2005;32:L20708. doi:10.1029/2005GL024233.
Article
Google Scholar
Li X, Holland DM, Gerber EP, Yoo C. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature. 2014;505:538–42. doi:10.1038/nature12945.
CAS
Article
Google Scholar
Simpkins GR, McGregor S, Taschetto AS, Ciasto LM, England MH. Tropical connections to climatic change in the extratropical Southern Hemisphere: the role of Atlantic SST trends. J Clim. 2014;27:4923–36. doi:10.1175/JCLI-D-13-00615.1.
Article
Google Scholar
Thompson DWJ, Solomon S. Interpretation of recent Southern Hemisphere climate change. Science. 2002;296:895–9.
CAS
Article
Google Scholar
Marshall GJ. Trends in the Southern Annular Mode from observations and reanalyses. J Clim. 2003;16:4134–43.
Article
Google Scholar
Visbeck M. A station-based Southern Annular Mode index from 1884 to 2005. J Clim. 2009;22:940–50. doi:10.1175/2008JCLI2260.1.
Article
Google Scholar
Meredith MP, Hogg AM. Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode. Geophys Res Lett. 2006;33:L16608. doi:10.1029/2006GL026499.
Article
Google Scholar
Sen Gupta A, England MH. Coupled ocean–atmosphere feedback in the Southern Annular Mode. J Clim. 2007;20:3677–92. doi:10.1175/JCLI4200.1.
Article
Google Scholar
White WB, Peterson RG. An Antarctic circumpolar wave in surface pressure, wind, temperature, and sea ice extent. Nature. 1996;380:699–702.
CAS
Article
Google Scholar
White WB, Chen S-C, Peterson RG. The Antarctic circumpolar wave: a beta effect in ocean–atmosphere coupling over the Southern Ocean. J Phys Oceanogr. 1998;28:2345–61. doi:10.1175/1520-0485(1998)028<2345:TACWAB>2.0.CO;2.
Article
Google Scholar
Giarolla E, Matano RP. The low-frequency variability of the Southern Ocean circulation. J Clim. 2013;26:6081–91. doi:10.1175/JCLI-D-12-00293.1.
Article
Google Scholar
Le Quéré C, Rödenbeck C, Buitenhuis ET, Conway TJ, Langenfelds R, Gomez A, et al. Saturation of the southern ocean CO2 sink due to recent climate change. Science. 2007;316:1735–8. doi:10.1126/science.1136188.
Article
Google Scholar
Lovenduski NS, Gruber N, Doney SC. Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink. Glob Biogeochem Cycles. 2008;22:GB3016. doi:10.1029/2007GB003139.
Article
Google Scholar
Landschützer P, Gruber N, Haumann FA, Rödenbeck C, Bakker DCE, van Heuven S, et al. The reinvigoration of the Southern Ocean carbon sink. Science. 2015;349:1221–4. doi:10.1126/science.aab2620.
Article
Google Scholar
Thompson, DWJ., Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Climate, 13, 1000–1016.
Reintges A, Martin T, Latif M, Park W. Physical controls of Southern Ocean deep-convection variability in CMIP5 models and the Kiel Climate Model. Geophys Res Lett. 2017;44 doi:10.1002/2017GL074087.
Thompson DWJ, Solomon S, Kushner PJ, England MH, Grise KM, Karoly DJ. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat Geosci. 2011;4:741–9. doi:10.1038/NGEO1296.
CAS
Article
Google Scholar
Son SW, Gerber EP, et al. Impact of stratospheric ozone on Southern Hemisphere circulation change: a multimodel assessment. J Geophys Res-Atmos. 2010;115 doi:10.1029/2010JD014271.
Böning CW, Dispert A, Visbeck M, Rintoul SR, Schwarzkopf FU. The response of the Antarctic Circumpolar Current to recent climate change. Nat Geosci. 2008;1:864–9.
Article
Google Scholar
Patara L, Böning CW, Biastoch A. Multi-decadal trends in Southern Ocean eddy activity in 1/12° ocean model simulations. Geophys Res Lett. 2016;43 doi:10.1002/2016GL069026.
Meredith MP. Understanding the structure of changes in the Southern Ocean eddy field. Geophys Res Lett. 2016;43:5829–32. doi:10.1002/2016GL069677.
Article
Google Scholar
Domingues R, Goni G, Swart S, Dong S. Wind forced variability of the Antarctic Circumpolar Current south of Africa between 1993 and 2010. J Geophys Res-Oceans. 2014;119:1123–45. doi:10.1002/2013JC008908.
Article
Google Scholar
Parkinson CL, Cavalieri DJ. Antarctic sea ice variability and trends, 1979-2010. Cryosphere. 2012;6:871–80. doi:10.5194/tc-6-871-2012.
Cavalieri DJ, Parkinson CL. Arctic sea ice variability and trends, 1979–2010. Cryosphere. 2012;6:881–9. doi:10.5194/tc-6-881-2012.
Article
Google Scholar
Holland PR, Kwok R. Wind-driven trends in Antarctic sea-ice drift. Nat Geosci. 2012;5(12):872–5. doi:10.1038/ngeo1627.
CAS
Article
Google Scholar
Haumann FA, Notz D, Schmidt H. Anthropogenic influence on recent circulation-driven Antarctic sea ice changes. Geophys Res Lett. 2014;41:8429–37. doi:10.1002/2014GL061659.
Article
Google Scholar
Purich A, Cai W, England MH, Cowan T. Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes. Nat Commun. 2015;7:10409. doi:10.1038/ncomms10409.
Article
Google Scholar
Ferreira D, Marshall J, Bitz CM, Solomon S, Plumb A. Antarctic ocean and sea ice response to ozone depletion: a two-time-scale problem. J Clim. 2015;28:1206–26. doi:10.1175/JCLI-D-14-00313.1.
Article
Google Scholar
Kostov Y, Marshall J, Hausmann U, Armour KC, Ferreira D, Holland MM. Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models. Clim Dyn. 2017;48:1595–609. doi:10.1007/s00382-016-3162-z.
Article
Google Scholar
Hosking JS, Orr A, Marshall GJ, Turner J, Phillips T. The influence of the Amundsen-Bellingshausen seas low on the climate of West Antarctica and its repre- sentation in coupled climate model simulations. J Clim. 2013;26:6633–48. doi:10.1175/JCLI-D-12-00813.1.
Article
Google Scholar
Raphael MN, Marshall GJ, Turner J, Fogt RL, Schneider D, Dixon DA, et al. The Amundsen Sea low: variability, change, and impact on Antarctic climate. B Am Meteorol Soc. 2016;97:111–21. doi:10.1175/bams- d-14-00018.1.
Article
Google Scholar
Comiso JC, Gersten RA, Stock LV, Turner J, Perez GJ, Cho K. Positive trend in the Antarctic Sea ice cover and associated changes in surface temperature. J Clim. 2017;30:2251–67. doi:10.1175/JCLI-D-16-0408.1.
Article
Google Scholar
Zhang JL. Increasing Antarctic sea ice under warming atmospheric and oceanic conditions. J Clim. 2007;20:2515–29. doi:10.1175/Jcli4136.1.
Article
Google Scholar
Goosse H, Zunz V. Decadal trends in the Antarctic sea ice extent ultimately controlled by ice-ocean feedback. Cryosphere. 2014;8:453–70. doi:10.5194/tc-8-453-2014.
Article
Google Scholar
Venables HJ, Meredith MP. Feedbacks between ice cover, ocean stratification, and heat content in Ryder Bay, western Antarctic peninsula. J Geophys Res. 2014;119:5323–36. doi:10.1002/2013JC009669.
Article
Google Scholar
Hobbs WR, Massom R, Stammerjohn S, Reid P, Williams G, Meier W. A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Glob Planet Chang. 2016;143:228–50. doi:10.1016/j.gloplacha.2016.06.008.
Article
Google Scholar
Turner J, et al. Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys Res Lett. 2009;36:L08502. doi:10.1029/2009GL037524.
Article
Google Scholar
Sigmond M, Fyfe JC. Has the ozone hole contributed to increased Antarctic sea ice extent? Geophys Res Lett. 2010;37:L18502. doi:10.1029/2010GL044301.
Google Scholar
Previdi M, Polvani LM. Climate system response to stratospheric ozone depletion and recovery. QJR Meteorol Soc. 2014;140:2401–19. doi:10.1002/qj.2330.
Article
Google Scholar
Armour KC, Marshall J, Scott JR, Donohoe A, Newsom ER. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat Geosci. 2016;9:549–55. doi:10.1038/NGEO2731.
CAS
Article
Google Scholar
Polvani LM, Smith KL. Can natural variability explain observed Antarctic sea ice trends? New modeling evidence from CMIP5. Geophys Res Lett. 2013;40:3195–9. doi:10.1002/grl.50578.
Article
Google Scholar
Latif M, Martin T, Park W. Southern Ocean sector centennial climate variability and recent decadal trends. J Clim. 2013;26:7767–82. doi:10.1175/JCLI-D-12-00281.1.
Article
Google Scholar
Wang G, Dommenget D. The leading modes of decadal SST variability in the Southern Ocean in CMIP5 simulations. Clim Dynam. 2016;47:1775–92. doi:10.1007/s00382-015-2932-3.
Article
Google Scholar
Jones JM, Gille ST, et al. Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat Clim Chang. 2016;6:917–26. doi:10.1038/NCLIMATE3103.
Article
Google Scholar
Flato G, Marotzke J, et al. Evaluation of climate models. In: Stocker TF, Qin D, et al., editors. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York, NY: Cambridge University Press; 2013.
Google Scholar
Heuze C, Heywood KJ, Stevens DP, Ridley JK. Southern Ocean bottom water characteristics in CMIP5 models. Geophys Res Lett. 2013;7:1409–14. doi:10.1002/grl.50287.
Article
Google Scholar
Joughin I, Smith BE, Medley B. Marine ice sheet collapse potentially underway for the Thwaites Glacier Basin. West Antarctica Science. 2014; doi:10.1126/science.1249055.
Feldmann J, Levermann A. Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin. PNAS. 2015;112(46):14191–6. doi:10.1073/pnas.1512482112.
CAS
Article
Google Scholar
Wåhlin AK, Yuan X, Björk G, Nohr C. Inflow of warm circumpolar deep water in the central Amundsen shelf. J Phys Oceanogr. 2010;40:1427–34. doi:10.1175/2010JPO4431.1.
Article
Google Scholar
Khazendar A, Rignot E, Schroeder DM, Seroussi H, Schodlok MP, Scheuchl B, et al. Rapid submarine ice melting in the grounding zones of ice shelves in West Antarctica. Nat Commun. 2016;7 doi:10.1038/ncomms13243.
Christianson K, et al. Sensitivity of Pine Island Glacier to observed ocean forcing. Geophys Res Lett. 2016;43:10,817–25. doi:10.1002/2016GL070500.
Article
Google Scholar
van Wijk EM, Rintoul SR. Freshening drives contraction of Antarctic Bottom Water in the Australian Antarctic Basin. Geophys Res Lett. 2014;41(5):1657–64. doi:10.1002/2013GL058921.
Article
Google Scholar
Fogwill CJ, Phipps SJ, Turney CSM, Golledge NR. Sensitivity of the Southern Ocean to enhanced regional Antarctic ice sheet meltwater input. Earth’s Future. 2015;3:317–29. doi:10.1002/2015EF000306.
Article
Google Scholar
Phipps SJ, Fogwill CJ, Turney CSM. Impacts of marine instability across the East Antarctic Ice Sheet on Southern Ocean dynamic. Cryosphere. 2016;10(5):2317–28. doi:10.5194/tc-10-2317-2016.
Article
Google Scholar
Bintanja R, Van Oldenborgh GJ, Drijfhout SS, Wouters B, Katsman CA. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat Geosci. 2013;6(5):376–9. doi:10.1038/ngeo1767.
CAS
Article
Google Scholar
Swart NC, Fyfe JC. The influence of recent Antarctic ice sheet retreat on simulated sea ice area trends. Geophys Res Lett. 2013;40(16):4328–32. doi:10.1002/grl.50820.
Article
Google Scholar
Bintanja R, Van Oldenborgh GJ, Katsman CA. The effect of increased fresh water from Antarctic ice shelves on future trends in Antarctic sea ice. Ann Glaciol. 2015;56:120–6. doi:10.3189/2015AoG69A001.
Article
Google Scholar
Haumann FA, Gruber N, Münnich M, Frenger I, Kern S. Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature. 2016;537:89–92. doi:10.1038/nature19101.
CAS
Article
Google Scholar
Purkey SG, Johnson GC. Global contraction of Antarctic Bottom Water between the 1980s and 2000s. J Clim. 2012;25:5830–44. doi:10.1175/JCLI-D-11-00612.1.
Article
Google Scholar
Schmidtko S, Heywood KJ, Thompson AF, Aoki A. Multidecadal warming of Antarctic waters. Science. 2014;346:1227–31. doi:10.1126/science.1256117.
CAS
Article
Google Scholar
Desbruyères DG, Purkey SG, McDonagh EL, Johnson GC, King BA. Deep and abyssal ocean warming from 35 years of repeat hydrography. Geophys Res Lett. 2016;43:10356–65. doi:10.1002/2016GL070413.
Article
Google Scholar
Patara L, Böning CW. Abyssal ocean warming around Antarctica strengthens the Atlantic overturning circulation. Geophys Res Lett. 2014;41:3972–8. doi:10.1002/2014GL059923.
Article
Google Scholar
Frölicher T, Sarmiento JL, Paynter DJ, Dunne JP, Krasting JP, Winton M. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J Clim. 2015;28:862–86. doi:10.1175/JCLI-D-14-00117.1.
Article
Google Scholar
Winton M, Griffies SM, Samuels BL, Sarmiento JL, Frölicher TL. Connecting changing ocean circulation with changing climate. J Clim. 2013;26:2268–78. doi:10.1175/JCLI-D-12-00296.1.
Article
Google Scholar
Chen X, Tung K-K. Varying planetary heat sink led to global-warming slowdown and acceleration. Science. 2014;345(6199):897–903. doi:10.1126/science.1254937.
CAS
Article
Google Scholar
Yan X-H, Boyer T, Trenberth K, Karl TR, Xie S-P, Nieves V, et al. The global warming hiatus: slowdown or redistribution? Earth's Future. 2016;4:472–82. doi:10.1002/2016EF000417.
Article
Google Scholar
Park W, Keenlyside N, Latif M, Ströh A, Redler R, Roeckner E, et al. Tropical Pacific climate and its response to global warming in the Kiel Climate Model. J Clim. 2009;22:71–92. doi:10.1175/2008JCLI2261.1.
Article
Google Scholar
Martin T, Latif M, Park W. Multi-centennial variability controlled by Southern Ocean convection in the Kiel Climate Model. Clim Dynam. 2013;40:2005–22. doi:10.1007/s00382-012-1586-7.
Article
Google Scholar
Park W, Latif M. Multidecadal and multicentennial variability of the meridional overturning circulation. Geophys Res Lett. 2008;35:L22703. doi:10.1029/2008GL035779.
Article
Google Scholar
Martin T, Park W, Latif M. Southern Ocean forcing of the North Atlantic at multi-centennial time scales in the Kiel Climate Model. Deep Sea Res II. 2015;114:39–48. doi:10.1016/j.dsr2.2014.01.018.
Article
Google Scholar
Pedro JB, Martin T, Steig EJ, Jochum M, Park W, Rasmussen SO. Southern Ocean deep convection as a driver of Antarctic warming events. Geophys Res Lett. 2016;43:2192–9. doi:10.1002/2016GL067861.
Article
Google Scholar
Mikolajewicz U, Maier-Reimer E. Internal secular variability in an ocean general circulation model. Clim Dyn. 1990;4:145–56.
Article
Google Scholar
Pierce DW, Barnett TP, Mikolajewicz U. Competing roles of heat and freshwater flux in forcing thermohaline oscillations. J Phys Oceanogr. 1995;25(9):2046–64.
Article
Google Scholar
Moore GWK, Alverson K, Renfrew IA. A reconstruction of the air–sea interaction associated with the Weddell Polynya. J Phys Oceanogr. 2002;32:1685–98. doi:10.1175/1520-0485(2002)032%3C1685:AROTAS%3E2.0.CO;2.
Article
Google Scholar
Gordon AL. Deep Antarctic convection west of Maud rise. J Phys Oceanogr. 1978;8(4):600–12.
Article
Google Scholar
Gordon AL (2001) Bottom water formation. Encyclopedia of ocean sciences, Steele JH, Turekian KK, Thorpe SA, Eds., Academic Press, 334–340. doi:10.1006/rwos.2001.0006.
Zanowski H, Hallberg R, Sarmiento JL. Abyssal ocean warming and salinification after Weddell Polynyas in the GFDL CM2G coupled climate model. J Phys Oceanogr. 2015;45:2755–72. doi:10.1175/JPO-D-15-0109.1.
Article
Google Scholar
de Lavergne C, Palter JB, Galbraith ED, Bernardello R, Marinov I. Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nat Clim Chang. 2014;4(4):278–82. doi:10.1038/nclimate2132.
Article
Google Scholar
Boer GJ, Lambert SJ. Multi-model decadal potential predictability of precipitation and temperature. Geophys Res Lett. 2008;35 doi:10.1029/2008GL033234.
Zhang L, Delworth TL, Jia L (2017a) Diagnosis of decadal predictability of Southern Ocean sea surface temperature in the GFDL CM2.1 model. J Climate. doi:10.1175/JCLI-D-16-0537.1.
Pohlmann H, Botzet M, Latif M, et al. Estimating the decadal predictability of a coupled AOGCM. J Clim. 2004;17:4463–72. doi:10.1175/3209.1.
Article
Google Scholar
Arblaster JM, Meehl GA, Karoly DJ. Future climate change in the Southern Hemisphere: competing effects of ozone and greenhouse gases. Geophys Res Lett. 2011;38:L02701. doi:10.1029/2010GL045384.
Article
Google Scholar
Schneider D, Reusch D. Antarctic and Southern Ocean surface temperatures in CMIP5 models in the context of the surface energy budget. J Clim. 2016;29:1689–716. doi:10.1175/JCLI-D-15-0429.1.
Article
Google Scholar
McCoy DT, Hartmann DL, Zelinka MD, Ceppi P, Grosvenor DP. Mixed-phase cloud physics and Southern Ocean cloud feedback in climate models. J Geophys Res Atmos. 2015;120:9539–54. doi:10.1002/2015JD023603.
Article
Google Scholar
Wang C, Zhang L, Lee S-K, Wu L, Mechoso CR. A global perspective on CMIP5 climate model biases. Nat Clim Ch. 2014;4:201–5. doi:10.1038/nclimate2118.
Article
Google Scholar
Bi DH, Budd WF, Hirst AC, Wu XR. Response of the antarctic circumpolar current transport to global warming in a coupled model. Geophys Res Lett. 2002;29 doi:10.1029/2002GL015919.
Saenko OA, Fyfe JC, England MH. On the response of the oceanic wind-driven circulation to atmospheric CO2 increase. Clim Dynam. 2005;25:415–26. doi:10.1007/s00382-005-0032-5.
Article
Google Scholar
Fyfe JC, Saenko OA. Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys Res Lett. 2006;33 doi:10.1029/2005GL025332.
Hallberg R, Gnanadesikan A. The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: results from the modeling eddies in the Southern Ocean (MESO) project. J Phys Oceanogr. 2006;36:2232–52. doi:10.1175/JPO2980.1.
Article
Google Scholar
Hogg AM, Meredith MP, Blundell JR, Wilson C. Eddy heat flux in the Southern Ocean: response to variable wind forcing. J Clim. 2008;21:608–20. doi:10.1175/2007JCLI1925.1.
Article
Google Scholar
Screen JA, Gillett NP, Stevens DP, Marshall GJ, Roscoe HK. The role of eddies in the Southern Ocean temperature response to the Southern Annular Mode. J Clim. 2009;22:806–18. doi:10.1175/2008JCLI2416.1.
Article
Google Scholar
Yang XY, Huang RX, Wang J, Wang DX. Delayed baroclinic response of the Antarctic circumpolar current to surface wind stress. Sci China Ser D. 2008;51:1036–43. doi:10.1007/s11430-008-0074-8.
Article
Google Scholar
Wang Z, Kuhlbrodt T, Meredith MP. On the response of the Antarctic Circumpolar Current transport to climate change in coupled climate models. J Geophys Res-Oceans. 2011;116 doi:10.1029/2010JC006757.
Zhou G, Latif M, Greatbatch RJ, Park W. Atmospheric response to the North Pacific enabled by daily sea surface temperature variability. Geophys Rese Lett. 2015;42:7732–9. doi:10.1002/2015GL065356.
Article
Google Scholar
Ma X, et al. Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature. 2016;535:533–7. doi:10.1038/nature18640.
CAS
Article
Google Scholar
Bordbar MH, Martin T, Latif M, Park W. Effects of long-term variability on projections of twenty-first-century dynamic sea level. Nat Clim Chang. 2015;5:343–7. doi:10.1038/nclimate2569.
Article
Google Scholar
Zhang L, Delworth TL, Zeng F. The impact of multidecadal Atlantic meridional overturning circulation variations on the Southern Ocean. Clim Dynam. 2017b; doi:10.1007/s00382-016-3190-8.
Arblaster JM, Meehl GA. Contributions of external forcings to Southern Annular Mode trends. J Clim. 2006;19:2896–905. doi:10.1175/JCLI3774.1.
Article
Google Scholar
Pope A, Wagner P, Johnson R, Shutler JD, Baeseman J, Newman L. Community review of Southern Ocean satellite data needs. Antarct Sci. 2017;29(2):97–138. doi:10.1017/S0954102016000390.
Article
Google Scholar