Current Climate Change Reports

, Volume 3, Issue 3, pp 163–173 | Cite as

Southern Ocean Decadal Variability and Predictability

  • Mojib LatifEmail author
  • Torge Martin
  • Annika Reintges
  • Wonsun Park
Decadal Predictability and Prediction (T Delworth, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Decadal Predictability and Prediction


The Southern Ocean featured some remarkable changes during the recent decades. For example, large parts of the Southern Ocean, despite rapidly rising atmospheric greenhouse gas concentrations, depicted a surface cooling since the 1970s, whereas most of the planet has warmed considerably. In contrast, climate models generally simulate Southern Ocean surface warming when driven with observed historical radiative forcing. The mechanisms behind the surface cooling and other prominent changes in the Southern Ocean sector climate during the recent decades, such as expanding sea ice extent, abyssal warming, and CO2 uptake, are still under debate. Observational coverage is sparse, and records are short but rapidly growing, making the Southern Ocean climate system one of the least explored. It is thus difficult to separate current trends from underlying decadal to centennial scale variability. Here, we present the state of the discussion about some of the most perplexing decadal climate trends in the Southern Ocean during the recent decades along with possible mechanisms and contrast these with an internal mode of Southern Ocean variability present in state-of-the art climate models.


Southern Ocean Climate trends Internal variability Atmosphere-ice-ocean interaction Open-ocean deep convection Climate models 



We thank two anonymous reviewers and the editor for their very helpful comments on an earlier version of the manuscript. This work was supported by CLIMPRE InterDec project (01LP1609B) and the PALMOD project (01LP1503D) both funded by the Bundesministerium für Bildung und Forschung (BMBF), Germany. The study is a contribution to the Cluster of Excellence “The Future Ocean” at the University of Kiel (EXC80/2).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Solomon S, Ivy DJ, Kinnison D, Mills MJ, Neely RR III, Schmidt A. Emergence of healing in the Antarctic ozone layer. Science. 2016;353:269–74. doi: 10.1126/science.aae0061.CrossRefGoogle Scholar
  2. 2.
    Philander SG (1990) El Nino, La Nina and the Southern Oscillation. International Geophysical Series, 46, Academic Press, 293 pp.Google Scholar
  3. 3.
    L’Heureux ML, Thompson DWJ. Observed relationships between the El Nino–Southern Oscillation and the extratropical zonal-mean circulation. J Clim. 2006;19:276–87.CrossRefGoogle Scholar
  4. 4.
    Ding Q, Steig EJ, Battisti DS, Wallace JM. Influence of the tropics on the Southern Annular Mode. J Clim. 2012;25:6330–48. doi: 10.1175/JCLI-D-11-00523.1.CrossRefGoogle Scholar
  5. 5.
    Power S, Casey T, Folland C, et al. Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn. 1999;15:319–24. doi: 10.1007/s003820050284.CrossRefGoogle Scholar
  6. 6.
    Meehl GA, Arblaster JM, Bitz CM, Chung CTY, Teng H. Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nat Geosci. 2016;9:590–6. doi: 10.1038/NGEO2751.CrossRefGoogle Scholar
  7. 7.
    Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Amer Meteor Soc. 1997;78:1069–79.CrossRefGoogle Scholar
  8. 8.
    Pezza AB, Simmonds I, Renwick JA. Southern hemisphere cyclones and anticyclones: recent trends and links with decadal variability in the Pacific Ocean. Int J Climatol. 2007;27:1403–19. doi: 10.1002/joc.1477.CrossRefGoogle Scholar
  9. 9.
    Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME. A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett. 2005;32:L20708. doi: 10.1029/2005GL024233.CrossRefGoogle Scholar
  10. 10.
    Li X, Holland DM, Gerber EP, Yoo C. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature. 2014;505:538–42. doi: 10.1038/nature12945.CrossRefGoogle Scholar
  11. 11.
    Simpkins GR, McGregor S, Taschetto AS, Ciasto LM, England MH. Tropical connections to climatic change in the extratropical Southern Hemisphere: the role of Atlantic SST trends. J Clim. 2014;27:4923–36. doi: 10.1175/JCLI-D-13-00615.1.CrossRefGoogle Scholar
  12. 12.
    Thompson DWJ, Solomon S. Interpretation of recent Southern Hemisphere climate change. Science. 2002;296:895–9.CrossRefGoogle Scholar
  13. 13.
    Marshall GJ. Trends in the Southern Annular Mode from observations and reanalyses. J Clim. 2003;16:4134–43.CrossRefGoogle Scholar
  14. 14.
    Visbeck M. A station-based Southern Annular Mode index from 1884 to 2005. J Clim. 2009;22:940–50. doi: 10.1175/2008JCLI2260.1.CrossRefGoogle Scholar
  15. 15.
    Meredith MP, Hogg AM. Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode. Geophys Res Lett. 2006;33:L16608. doi: 10.1029/2006GL026499.CrossRefGoogle Scholar
  16. 16.
    Sen Gupta A, England MH. Coupled ocean–atmosphere feedback in the Southern Annular Mode. J Clim. 2007;20:3677–92. doi: 10.1175/JCLI4200.1.CrossRefGoogle Scholar
  17. 17.
    White WB, Peterson RG. An Antarctic circumpolar wave in surface pressure, wind, temperature, and sea ice extent. Nature. 1996;380:699–702.CrossRefGoogle Scholar
  18. 18.
    White WB, Chen S-C, Peterson RG. The Antarctic circumpolar wave: a beta effect in ocean–atmosphere coupling over the Southern Ocean. J Phys Oceanogr. 1998;28:2345–61. doi: 10.1175/1520-0485(1998)028<2345:TACWAB>2.0.CO;2.CrossRefGoogle Scholar
  19. 19.
    Giarolla E, Matano RP. The low-frequency variability of the Southern Ocean circulation. J Clim. 2013;26:6081–91. doi: 10.1175/JCLI-D-12-00293.1.CrossRefGoogle Scholar
  20. 20.
    Le Quéré C, Rödenbeck C, Buitenhuis ET, Conway TJ, Langenfelds R, Gomez A, et al. Saturation of the southern ocean CO2 sink due to recent climate change. Science. 2007;316:1735–8. doi: 10.1126/science.1136188.CrossRefGoogle Scholar
  21. 21.
    Lovenduski NS, Gruber N, Doney SC. Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink. Glob Biogeochem Cycles. 2008;22:GB3016. doi: 10.1029/2007GB003139.CrossRefGoogle Scholar
  22. 22.
    Landschützer P, Gruber N, Haumann FA, Rödenbeck C, Bakker DCE, van Heuven S, et al. The reinvigoration of the Southern Ocean carbon sink. Science. 2015;349:1221–4. doi: 10.1126/science.aab2620.CrossRefGoogle Scholar
  23. 23.
    Thompson, DWJ., Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Climate, 13, 1000–1016.Google Scholar
  24. 24.
    Reintges A, Martin T, Latif M, Park W. Physical controls of Southern Ocean deep-convection variability in CMIP5 models and the Kiel Climate Model. Geophys Res Lett. 2017;44 doi: 10.1002/2017GL074087.
  25. 25.
    Thompson DWJ, Solomon S, Kushner PJ, England MH, Grise KM, Karoly DJ. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat Geosci. 2011;4:741–9. doi: 10.1038/NGEO1296.CrossRefGoogle Scholar
  26. 26.
    Son SW, Gerber EP, et al. Impact of stratospheric ozone on Southern Hemisphere circulation change: a multimodel assessment. J Geophys Res-Atmos. 2010;115 doi: 10.1029/2010JD014271.
  27. 27.
    Böning CW, Dispert A, Visbeck M, Rintoul SR, Schwarzkopf FU. The response of the Antarctic Circumpolar Current to recent climate change. Nat Geosci. 2008;1:864–9.CrossRefGoogle Scholar
  28. 28.
    Patara L, Böning CW, Biastoch A. Multi-decadal trends in Southern Ocean eddy activity in 1/12° ocean model simulations. Geophys Res Lett. 2016;43 doi: 10.1002/2016GL069026.
  29. 29.
    Meredith MP. Understanding the structure of changes in the Southern Ocean eddy field. Geophys Res Lett. 2016;43:5829–32. doi: 10.1002/2016GL069677.CrossRefGoogle Scholar
  30. 30.
    Domingues R, Goni G, Swart S, Dong S. Wind forced variability of the Antarctic Circumpolar Current south of Africa between 1993 and 2010. J Geophys Res-Oceans. 2014;119:1123–45. doi: 10.1002/2013JC008908.CrossRefGoogle Scholar
  31. 31.
    Parkinson CL, Cavalieri DJ. Antarctic sea ice variability and trends, 1979-2010. Cryosphere. 2012;6:871–80. doi: 10.5194/tc-6-871-2012.
  32. 32.
    Cavalieri DJ, Parkinson CL. Arctic sea ice variability and trends, 1979–2010. Cryosphere. 2012;6:881–9. doi: 10.5194/tc-6-881-2012.CrossRefGoogle Scholar
  33. 33.
    Holland PR, Kwok R. Wind-driven trends in Antarctic sea-ice drift. Nat Geosci. 2012;5(12):872–5. doi: 10.1038/ngeo1627.CrossRefGoogle Scholar
  34. 34.
    Haumann FA, Notz D, Schmidt H. Anthropogenic influence on recent circulation-driven Antarctic sea ice changes. Geophys Res Lett. 2014;41:8429–37. doi: 10.1002/2014GL061659.CrossRefGoogle Scholar
  35. 35.
    Purich A, Cai W, England MH, Cowan T. Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes. Nat Commun. 2015;7:10409. doi: 10.1038/ncomms10409.CrossRefGoogle Scholar
  36. 36.
    Ferreira D, Marshall J, Bitz CM, Solomon S, Plumb A. Antarctic ocean and sea ice response to ozone depletion: a two-time-scale problem. J Clim. 2015;28:1206–26. doi: 10.1175/JCLI-D-14-00313.1.CrossRefGoogle Scholar
  37. 37.
    Kostov Y, Marshall J, Hausmann U, Armour KC, Ferreira D, Holland MM. Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models. Clim Dyn. 2017;48:1595–609. doi: 10.1007/s00382-016-3162-z.CrossRefGoogle Scholar
  38. 38.
    Hosking JS, Orr A, Marshall GJ, Turner J, Phillips T. The influence of the Amundsen-Bellingshausen seas low on the climate of West Antarctica and its repre- sentation in coupled climate model simulations. J Clim. 2013;26:6633–48. doi: 10.1175/JCLI-D-12-00813.1.CrossRefGoogle Scholar
  39. 39.
    Raphael MN, Marshall GJ, Turner J, Fogt RL, Schneider D, Dixon DA, et al. The Amundsen Sea low: variability, change, and impact on Antarctic climate. B Am Meteorol Soc. 2016;97:111–21. doi: 10.1175/bams- d-14-00018.1.CrossRefGoogle Scholar
  40. 40.
    Comiso JC, Gersten RA, Stock LV, Turner J, Perez GJ, Cho K. Positive trend in the Antarctic Sea ice cover and associated changes in surface temperature. J Clim. 2017;30:2251–67. doi: 10.1175/JCLI-D-16-0408.1.CrossRefGoogle Scholar
  41. 41.
    Zhang JL. Increasing Antarctic sea ice under warming atmospheric and oceanic conditions. J Clim. 2007;20:2515–29. doi: 10.1175/Jcli4136.1.CrossRefGoogle Scholar
  42. 42.
    Goosse H, Zunz V. Decadal trends in the Antarctic sea ice extent ultimately controlled by ice-ocean feedback. Cryosphere. 2014;8:453–70. doi: 10.5194/tc-8-453-2014.CrossRefGoogle Scholar
  43. 43.
    Venables HJ, Meredith MP. Feedbacks between ice cover, ocean stratification, and heat content in Ryder Bay, western Antarctic peninsula. J Geophys Res. 2014;119:5323–36. doi: 10.1002/2013JC009669.CrossRefGoogle Scholar
  44. 44.
    Hobbs WR, Massom R, Stammerjohn S, Reid P, Williams G, Meier W. A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Glob Planet Chang. 2016;143:228–50. doi: 10.1016/j.gloplacha.2016.06.008.CrossRefGoogle Scholar
  45. 45.
    Turner J, et al. Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys Res Lett. 2009;36:L08502. doi: 10.1029/2009GL037524.CrossRefGoogle Scholar
  46. 46.
    Sigmond M, Fyfe JC. Has the ozone hole contributed to increased Antarctic sea ice extent? Geophys Res Lett. 2010;37:L18502. doi: 10.1029/2010GL044301.Google Scholar
  47. 47.
    Previdi M, Polvani LM. Climate system response to stratospheric ozone depletion and recovery. QJR Meteorol Soc. 2014;140:2401–19. doi: 10.1002/qj.2330.CrossRefGoogle Scholar
  48. 48.
    Armour KC, Marshall J, Scott JR, Donohoe A, Newsom ER. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat Geosci. 2016;9:549–55. doi: 10.1038/NGEO2731.CrossRefGoogle Scholar
  49. 49.
    Polvani LM, Smith KL. Can natural variability explain observed Antarctic sea ice trends? New modeling evidence from CMIP5. Geophys Res Lett. 2013;40:3195–9. doi: 10.1002/grl.50578.CrossRefGoogle Scholar
  50. 50.
    Latif M, Martin T, Park W. Southern Ocean sector centennial climate variability and recent decadal trends. J Clim. 2013;26:7767–82. doi: 10.1175/JCLI-D-12-00281.1.CrossRefGoogle Scholar
  51. 51.
    Wang G, Dommenget D. The leading modes of decadal SST variability in the Southern Ocean in CMIP5 simulations. Clim Dynam. 2016;47:1775–92. doi: 10.1007/s00382-015-2932-3.CrossRefGoogle Scholar
  52. 52.
    Jones JM, Gille ST, et al. Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat Clim Chang. 2016;6:917–26. doi: 10.1038/NCLIMATE3103.CrossRefGoogle Scholar
  53. 53.
    Flato G, Marotzke J, et al. Evaluation of climate models. In: Stocker TF, Qin D, et al., editors. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York, NY: Cambridge University Press; 2013.Google Scholar
  54. 54.
    Heuze C, Heywood KJ, Stevens DP, Ridley JK. Southern Ocean bottom water characteristics in CMIP5 models. Geophys Res Lett. 2013;7:1409–14. doi: 10.1002/grl.50287.CrossRefGoogle Scholar
  55. 55.
    Joughin I, Smith BE, Medley B. Marine ice sheet collapse potentially underway for the Thwaites Glacier Basin. West Antarctica Science. 2014; doi: 10.1126/science.1249055.
  56. 56.
    Feldmann J, Levermann A. Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin. PNAS. 2015;112(46):14191–6. doi: 10.1073/pnas.1512482112.CrossRefGoogle Scholar
  57. 57.
    Wåhlin AK, Yuan X, Björk G, Nohr C. Inflow of warm circumpolar deep water in the central Amundsen shelf. J Phys Oceanogr. 2010;40:1427–34. doi: 10.1175/2010JPO4431.1.CrossRefGoogle Scholar
  58. 58.
    Khazendar A, Rignot E, Schroeder DM, Seroussi H, Schodlok MP, Scheuchl B, et al. Rapid submarine ice melting in the grounding zones of ice shelves in West Antarctica. Nat Commun. 2016;7 doi: 10.1038/ncomms13243.
  59. 59.
    Christianson K, et al. Sensitivity of Pine Island Glacier to observed ocean forcing. Geophys Res Lett. 2016;43:10,817–25. doi: 10.1002/2016GL070500.CrossRefGoogle Scholar
  60. 60.
    van Wijk EM, Rintoul SR. Freshening drives contraction of Antarctic Bottom Water in the Australian Antarctic Basin. Geophys Res Lett. 2014;41(5):1657–64. doi: 10.1002/2013GL058921.CrossRefGoogle Scholar
  61. 61.
    Fogwill CJ, Phipps SJ, Turney CSM, Golledge NR. Sensitivity of the Southern Ocean to enhanced regional Antarctic ice sheet meltwater input. Earth’s Future. 2015;3:317–29. doi: 10.1002/2015EF000306.CrossRefGoogle Scholar
  62. 62.
    Phipps SJ, Fogwill CJ, Turney CSM. Impacts of marine instability across the East Antarctic Ice Sheet on Southern Ocean dynamic. Cryosphere. 2016;10(5):2317–28. doi: 10.5194/tc-10-2317-2016.CrossRefGoogle Scholar
  63. 63.
    Bintanja R, Van Oldenborgh GJ, Drijfhout SS, Wouters B, Katsman CA. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat Geosci. 2013;6(5):376–9. doi: 10.1038/ngeo1767.CrossRefGoogle Scholar
  64. 64.
    Swart NC, Fyfe JC. The influence of recent Antarctic ice sheet retreat on simulated sea ice area trends. Geophys Res Lett. 2013;40(16):4328–32. doi: 10.1002/grl.50820.CrossRefGoogle Scholar
  65. 65.
    Bintanja R, Van Oldenborgh GJ, Katsman CA. The effect of increased fresh water from Antarctic ice shelves on future trends in Antarctic sea ice. Ann Glaciol. 2015;56:120–6. doi: 10.3189/2015AoG69A001.CrossRefGoogle Scholar
  66. 66.
    Haumann FA, Gruber N, Münnich M, Frenger I, Kern S. Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature. 2016;537:89–92. doi: 10.1038/nature19101.CrossRefGoogle Scholar
  67. 67.
    Purkey SG, Johnson GC. Global contraction of Antarctic Bottom Water between the 1980s and 2000s. J Clim. 2012;25:5830–44. doi: 10.1175/JCLI-D-11-00612.1.CrossRefGoogle Scholar
  68. 68.
    Schmidtko S, Heywood KJ, Thompson AF, Aoki A. Multidecadal warming of Antarctic waters. Science. 2014;346:1227–31. doi: 10.1126/science.1256117.CrossRefGoogle Scholar
  69. 69.
    Desbruyères DG, Purkey SG, McDonagh EL, Johnson GC, King BA. Deep and abyssal ocean warming from 35 years of repeat hydrography. Geophys Res Lett. 2016;43:10356–65. doi: 10.1002/2016GL070413.CrossRefGoogle Scholar
  70. 70.
    Patara L, Böning CW. Abyssal ocean warming around Antarctica strengthens the Atlantic overturning circulation. Geophys Res Lett. 2014;41:3972–8. doi: 10.1002/2014GL059923.CrossRefGoogle Scholar
  71. 71.
    Frölicher T, Sarmiento JL, Paynter DJ, Dunne JP, Krasting JP, Winton M. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J Clim. 2015;28:862–86. doi: 10.1175/JCLI-D-14-00117.1.CrossRefGoogle Scholar
  72. 72.
    Winton M, Griffies SM, Samuels BL, Sarmiento JL, Frölicher TL. Connecting changing ocean circulation with changing climate. J Clim. 2013;26:2268–78. doi: 10.1175/JCLI-D-12-00296.1.CrossRefGoogle Scholar
  73. 73.
    Chen X, Tung K-K. Varying planetary heat sink led to global-warming slowdown and acceleration. Science. 2014;345(6199):897–903. doi: 10.1126/science.1254937.CrossRefGoogle Scholar
  74. 74.
    Yan X-H, Boyer T, Trenberth K, Karl TR, Xie S-P, Nieves V, et al. The global warming hiatus: slowdown or redistribution? Earth's Future. 2016;4:472–82. doi: 10.1002/2016EF000417.CrossRefGoogle Scholar
  75. 75.
    Park W, Keenlyside N, Latif M, Ströh A, Redler R, Roeckner E, et al. Tropical Pacific climate and its response to global warming in the Kiel Climate Model. J Clim. 2009;22:71–92. doi: 10.1175/2008JCLI2261.1.CrossRefGoogle Scholar
  76. 76.
    Martin T, Latif M, Park W. Multi-centennial variability controlled by Southern Ocean convection in the Kiel Climate Model. Clim Dynam. 2013;40:2005–22. doi: 10.1007/s00382-012-1586-7.CrossRefGoogle Scholar
  77. 77.
    Park W, Latif M. Multidecadal and multicentennial variability of the meridional overturning circulation. Geophys Res Lett. 2008;35:L22703. doi: 10.1029/2008GL035779.CrossRefGoogle Scholar
  78. 78.
    Martin T, Park W, Latif M. Southern Ocean forcing of the North Atlantic at multi-centennial time scales in the Kiel Climate Model. Deep Sea Res II. 2015;114:39–48. doi: 10.1016/j.dsr2.2014.01.018.CrossRefGoogle Scholar
  79. 79.
    Pedro JB, Martin T, Steig EJ, Jochum M, Park W, Rasmussen SO. Southern Ocean deep convection as a driver of Antarctic warming events. Geophys Res Lett. 2016;43:2192–9. doi: 10.1002/2016GL067861.CrossRefGoogle Scholar
  80. 80.
    Mikolajewicz U, Maier-Reimer E. Internal secular variability in an ocean general circulation model. Clim Dyn. 1990;4:145–56.CrossRefGoogle Scholar
  81. 81.
    Pierce DW, Barnett TP, Mikolajewicz U. Competing roles of heat and freshwater flux in forcing thermohaline oscillations. J Phys Oceanogr. 1995;25(9):2046–64.CrossRefGoogle Scholar
  82. 82.
    Moore GWK, Alverson K, Renfrew IA. A reconstruction of the air–sea interaction associated with the Weddell Polynya. J Phys Oceanogr. 2002;32:1685–98. doi: 10.1175/1520-0485(2002)032%3C1685:AROTAS%3E2.0.CO;2.CrossRefGoogle Scholar
  83. 83.
    Gordon AL. Deep Antarctic convection west of Maud rise. J Phys Oceanogr. 1978;8(4):600–12.CrossRefGoogle Scholar
  84. 84.
    Gordon AL (2001) Bottom water formation. Encyclopedia of ocean sciences, Steele JH, Turekian KK, Thorpe SA, Eds., Academic Press, 334–340. doi: 10.1006/rwos.2001.0006.
  85. 85.
    Zanowski H, Hallberg R, Sarmiento JL. Abyssal ocean warming and salinification after Weddell Polynyas in the GFDL CM2G coupled climate model. J Phys Oceanogr. 2015;45:2755–72. doi: 10.1175/JPO-D-15-0109.1.CrossRefGoogle Scholar
  86. 86.
    de Lavergne C, Palter JB, Galbraith ED, Bernardello R, Marinov I. Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nat Clim Chang. 2014;4(4):278–82. doi: 10.1038/nclimate2132.CrossRefGoogle Scholar
  87. 87.
    Boer GJ, Lambert SJ. Multi-model decadal potential predictability of precipitation and temperature. Geophys Res Lett. 2008;35 doi: 10.1029/2008GL033234.
  88. 88.
    Zhang L, Delworth TL, Jia L (2017a) Diagnosis of decadal predictability of Southern Ocean sea surface temperature in the GFDL CM2.1 model. J Climate. doi: 10.1175/JCLI-D-16-0537.1.
  89. 89.
    Pohlmann H, Botzet M, Latif M, et al. Estimating the decadal predictability of a coupled AOGCM. J Clim. 2004;17:4463–72. doi: 10.1175/3209.1.CrossRefGoogle Scholar
  90. 90.
    Arblaster JM, Meehl GA, Karoly DJ. Future climate change in the Southern Hemisphere: competing effects of ozone and greenhouse gases. Geophys Res Lett. 2011;38:L02701. doi: 10.1029/2010GL045384.CrossRefGoogle Scholar
  91. 91.
    Schneider D, Reusch D. Antarctic and Southern Ocean surface temperatures in CMIP5 models in the context of the surface energy budget. J Clim. 2016;29:1689–716. doi: 10.1175/JCLI-D-15-0429.1.CrossRefGoogle Scholar
  92. 92.
    McCoy DT, Hartmann DL, Zelinka MD, Ceppi P, Grosvenor DP. Mixed-phase cloud physics and Southern Ocean cloud feedback in climate models. J Geophys Res Atmos. 2015;120:9539–54. doi: 10.1002/2015JD023603.CrossRefGoogle Scholar
  93. 93.
    Wang C, Zhang L, Lee S-K, Wu L, Mechoso CR. A global perspective on CMIP5 climate model biases. Nat Clim Ch. 2014;4:201–5. doi: 10.1038/nclimate2118.CrossRefGoogle Scholar
  94. 94.
    Bi DH, Budd WF, Hirst AC, Wu XR. Response of the antarctic circumpolar current transport to global warming in a coupled model. Geophys Res Lett. 2002;29 doi: 10.1029/2002GL015919.
  95. 95.
    Saenko OA, Fyfe JC, England MH. On the response of the oceanic wind-driven circulation to atmospheric CO2 increase. Clim Dynam. 2005;25:415–26. doi: 10.1007/s00382-005-0032-5.CrossRefGoogle Scholar
  96. 96.
    Fyfe JC, Saenko OA. Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys Res Lett. 2006;33 doi: 10.1029/2005GL025332.
  97. 97.
    Hallberg R, Gnanadesikan A. The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: results from the modeling eddies in the Southern Ocean (MESO) project. J Phys Oceanogr. 2006;36:2232–52. doi: 10.1175/JPO2980.1.CrossRefGoogle Scholar
  98. 98.
    Hogg AM, Meredith MP, Blundell JR, Wilson C. Eddy heat flux in the Southern Ocean: response to variable wind forcing. J Clim. 2008;21:608–20. doi: 10.1175/2007JCLI1925.1.CrossRefGoogle Scholar
  99. 99.
    Screen JA, Gillett NP, Stevens DP, Marshall GJ, Roscoe HK. The role of eddies in the Southern Ocean temperature response to the Southern Annular Mode. J Clim. 2009;22:806–18. doi: 10.1175/2008JCLI2416.1.CrossRefGoogle Scholar
  100. 100.
    Yang XY, Huang RX, Wang J, Wang DX. Delayed baroclinic response of the Antarctic circumpolar current to surface wind stress. Sci China Ser D. 2008;51:1036–43. doi: 10.1007/s11430-008-0074-8.CrossRefGoogle Scholar
  101. 101.
    Wang Z, Kuhlbrodt T, Meredith MP. On the response of the Antarctic Circumpolar Current transport to climate change in coupled climate models. J Geophys Res-Oceans. 2011;116 doi: 10.1029/2010JC006757.
  102. 102.
    Zhou G, Latif M, Greatbatch RJ, Park W. Atmospheric response to the North Pacific enabled by daily sea surface temperature variability. Geophys Rese Lett. 2015;42:7732–9. doi: 10.1002/2015GL065356.CrossRefGoogle Scholar
  103. 103.
    Ma X, et al. Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature. 2016;535:533–7. doi: 10.1038/nature18640.CrossRefGoogle Scholar
  104. 104.
    Bordbar MH, Martin T, Latif M, Park W. Effects of long-term variability on projections of twenty-first-century dynamic sea level. Nat Clim Chang. 2015;5:343–7. doi: 10.1038/nclimate2569.CrossRefGoogle Scholar
  105. 105.
    Zhang L, Delworth TL, Zeng F. The impact of multidecadal Atlantic meridional overturning circulation variations on the Southern Ocean. Clim Dynam. 2017b; doi: 10.1007/s00382-016-3190-8.
  106. 106.
    Arblaster JM, Meehl GA. Contributions of external forcings to Southern Annular Mode trends. J Clim. 2006;19:2896–905. doi: 10.1175/JCLI3774.1.CrossRefGoogle Scholar
  107. 107.
    Pope A, Wagner P, Johnson R, Shutler JD, Baeseman J, Newman L. Community review of Southern Ocean satellite data needs. Antarct Sci. 2017;29(2):97–138. doi: 10.1017/S0954102016000390.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mojib Latif
    • 1
    • 2
    Email author
  • Torge Martin
    • 1
  • Annika Reintges
    • 1
  • Wonsun Park
    • 1
  1. 1.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  2. 2.Centre of Excellence “The Future Ocean”KielGermany

Personalised recommendations