Skip to main content
Log in

Decadal Prediction of Temperature: Achievements and Future Prospects

  • Decadal Predictability and Prediction (T Delworth, Section Editor)
  • Published:
Current Climate Change Reports Aims and scope Submit manuscript

Abstract

Decadal prediction refers to predictions on annual, multi-year, and decadal time scales. This paper reviews major developments in decadal prediction that have occurred in the past few years, including attribution of temperature anomalies in northern latitudes, the recent slowdown in the rate of global warming (the “hiatus”), and mechanisms of decadal predictability that do not involve interactive ocean circulations. In addition, this paper discusses certain advances that, in the opinion of the author, have not been given the attention they deserve in previous reviews, including a unified framework for quantifying decadal predictability, empirical models for decadal prediction, defining improved indices of decadal predictability, and clarification of the relation between power spectra and predictability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ault TR, Deser C, Newman M, Emile-Geay J. Characterizing decadal to centennial variability in the equatorial pacific during the last millennium. Geophys Res Lett 2013;40:3450–6.

    Article  Google Scholar 

  2. Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 2003;15(6):1373–96. doi:10.1162/089976603321780317.

    Article  Google Scholar 

  3. Bindoff NL, Stott PA, AchutaRao KM, Allen MR, Gillett N, Gutzler D, Hansingo K, Hegerl G, Hu Y, Jain S, Mokhov II, Overland J, Perlwitz J, Webbari R, Zhang X. Detection and attribution of climate change: From global to regional. In: Stocker T., Qin D., Plattner G.K., Tignor M., Allen S., Boschung J., Nauels A., Xia Y., Bex V., and Midgley P., editors. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, chap. 10. Cambridge University Press; 2013. p. 867–952.

  4. Boer G, Lambert SJ. Multi-model decadal potential predictability of precipitation and temperature. Geophys Res Lett 2008;35. doi:10.1029/2008GL033,234.

  5. Boer G, Smith D, Cassou C, Doblas-Reyes F, Danabasoglu G, Kirtman B, Kushnir Y, Kimoto M, Meehl GA, Msadek R, Mueller WA, Taylor KE, Zwiers F, Rixen M, Ruprich-Robert Y, Eade R. The decadal climate prediction project (dcpp) contribution to cmip6. Geosci Model Dev 2016;9(10): 3751–77. doi:10.5194/gmd-9-3751-2016. http://www.geosci-model-dev.net/9/3751/2016/.

    Article  Google Scholar 

  6. Booth BBB, Dunstone NJ, Halloran PR, Andrews R, Bellouin N. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 2012;484:228–32.

    Article  CAS  Google Scholar 

  7. Bothe O, Evans M, Donado L, Bustamante E, Gergis J, Gonzalez-Rouco J, Goosse H, Hegerl G, Hind A, Jungclaus JH, Kaufman D, Lehner F, McKay N, Moberg A, Raible C, Schurer A, Shi F, Smerdon J, Von Gunten L, Wagner S, Warren E, Widmann M, Yiou P, Zorita E. Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium. Clim Past 2015;11:1673–99. doi:10.5194/cp-11-1673-2015.

    Article  Google Scholar 

  8. Branstator G, Teng H. Two limits of initial-value decadal predictability in a CGCM. J Climate 2010;23: 6292–311.

    Article  Google Scholar 

  9. Branstator G, Teng H. Potential impact of initialization on decadal predictions as assessed for CMIP5 models. Geophys Res Lett 2012;39. doi:10.1029/2012GL051974.

  10. Branstator G, Teng H, Meehl GA, Kimoto M, Knight JR, Latif M, Rosati A. Systematic estimates of initial value decadal predictability for six AOGCMs. J Climate 2012;25:1827–46.

    Article  Google Scholar 

  11. Brown PT, Li W, Xie SP. Regions of significant influence on unforced global mean surface air temperature variability in climate models. J Geophys Res Atmos 2015;120(2):480–94. doi:10.1002/2014JD022576.

    Article  Google Scholar 

  12. Buckley MW, Marshall J. Observations, inferences, and mechanisms of the atlantic meridional overturning circulation: a review. Rev Geophys 2016;54(1):5–63. doi:10.1002/2015RG000493.

    Article  Google Scholar 

  13. In: Chang C.P., Ghil M., Latif M., and Wallace J.M., editors. Climate change: multidecadal and beyond, vol. 6. World Scientific Publishing; 2015.

  14. Chang P, Saravanan R, DelSole T, Wang F. Predictability of linear coupled systems. Part I: theoretical analyses. J Climate 2004;17:1474–86.

    Article  Google Scholar 

  15. Clement A, Bellomo K, Murphy LN, Cane MA, Mauritsen T, Rädel G., Stevens B. The Atlantic multidecadal oscillation without a role for ocean circulation. Science 2015;350(6258): 320–4. doi:10.1126/science.aab3980. http://science.sciencemag.org/content/350/6258/320.

    Article  CAS  Google Scholar 

  16. Clement A, Cane MA, Murphy LN, Bellomo K, Mauritsen T, Stevens B. Response to comment on “the atlantic multidecadal oscillation without a role for ocean circulation”. Science 2016;352(6293):1527. doi:10.1126/science.aaf2575. http://science.sciencemag.org/content/352/6293/1527.2.

    Article  CAS  Google Scholar 

  17. Coifman RR, Lafon S. Diffusion maps. Appl Comput Harmon Anal 2006;21(1):5–30. doi:10.1016/j.acha.2006.04.006. http://www.sciencedirect.com/science/article/pii/S1063520306000546 Special Issue: Diffusion Maps and Wavelets.

    Article  Google Scholar 

  18. Cover TM, Thomas JA. 1991. Elements of information theory. Wiley-Interscience.

  19. Dai A, Fyfe JC, Xie SP, Dai X. Decadal modulation of global surface temperature by internal climate variability. Nature Clim Change 2015;5(6):555–9. doi:10.1038/nclimate2605.

    Article  Google Scholar 

  20. DelSole T. Predictability and information theory Part I: Measures of predictability. J Atmos Sci 2004;61:2425–40.

    Article  Google Scholar 

  21. DelSole T., Tippett MK. Predictability in a Changing Climate, Clim Dyn.; 2017; submitted.

  22. DelSole T. Stochastic models of quasigeostrophic turbulence. Surv Geophys 2004;25:107–49.

    Article  Google Scholar 

  23. DelSole T, Jia L, Tippett MK. Decadal prediction of observed and simulated sea surface temperatures. Geophys Res Lett 2013;40:2773–8.

    Article  Google Scholar 

  24. DelSole T, Tippett MK. Predictability: Recent insights from information theory. Rev Geophys 2007;45: RG4002. doi:10.1029/2006RG000202.

    Article  Google Scholar 

  25. DelSole T, Tippett MK. Predictable components and singular vectors. J Atmos Sci 2008;65:1666–78.

    Article  Google Scholar 

  26. DelSole T, Tippett MK. Average predictability time: Part II: Seamless diagnosis of predictability on multiple time scales. J Atmos Sci 2009;66:1188–204.

    Article  Google Scholar 

  27. DelSole T, Tippett MK. Laplacian eigenfunctions for climate analysis. J Climate 2015;28:7420–36.

    Article  Google Scholar 

  28. DelSole T, Tippett MK, Jia L. Multi-year prediction and predictability. In: Change C.P., Ghil M., Latif M., and Wallace J.M., editors. Climate change: multidecadal and beyond, World Scientific Series on Asia-Pacific Weather and Climate, vol. 6, chap. 14. World Scientific Publishing; 2015. p. 219–233.

  29. DelSole T, Tippett MK, Shukla J. A significant component of unforced multidecadal variability in the recent acceleration of global warming. J Climate 2011;24:909–26.

    Article  Google Scholar 

  30. Delworth TL, Mann ME. Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 2000;16:661–76.

    Article  Google Scholar 

  31. Deser C, Alexander MA, Timlin MS. Understanding the persistence of sea surface temperature anomalies in midlatitudes. J Climate 2003;16(1):57–72. doi:10.1175/1520-0442(2003)016<0057:UTPOSS>2.0.CO;2.

    Article  Google Scholar 

  32. Deser C, Hurrell JW, Phillips AS. The role of the north atlantic oscillation in european climate projections. Clim Dyn: pp. 1–17 (2016). doi:10.1007/s00382-016-3502-z.

  33. Deser C, Phillips AS, Alexander MA. Twentieth century tropical sea surface temperature trends revisited. Geophys Res Lett. 2010;37(10) doi:10.1029/2010GL043321.

  34. England MH, McGregor S, Spence P, Meehl GA, Timmermann A, Cai W, Gupta AS, McPhaden MJ, Purich A, Santoso A. Recent intensification of wind-driven circulation in the pacific and the ongoing warming hiatus. Nat Clim Change 2014;4(3):222–7. doi:10.1038/nclimate2106.

    Article  Google Scholar 

  35. Frankignoul C. Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes. Rev Geophys 1985;23(4):357–90. doi:10.1029/RG023i004p00357.

    Article  Google Scholar 

  36. Frankignoul C, Czaja A, L’Heveder B. Air–sea feedback in the north atlantic and surface boundary conditions for ocean models. J Clim 1998;11(9):2310–24. doi:10.1175/1520-0442(1998)011<2310:ASFITN>2.0.CO;2.

    Article  Google Scholar 

  37. Frankignoul C, Hasselmann K. Stochastic climate models, Part II: application to sea-surface temperature anomalies and thermocline variability. Tellus 1977;29(4):289–305. doi:10.1111/j.2153-3490.1977.tb00740.x.

    Article  Google Scholar 

  38. Fyfe JC, Meehl GA, England MH, Mann ME, Santer BD, Flato GM, Hawkins E, Gillett NP, Xie SP, Kosaka Y, Swart NC. Making sense of the early-2000s warming slowdown. Nat Clim Change 2016;6(3):224–8. doi:10.1038/nclimate2938.

    Article  Google Scholar 

  39. Fyfe JC, von Salzen K, Gillett NP, Arora VK, Flato GM, McConnell JR. One hundred years of arctic surface temperature variation due to anthropogenic influence. Sci Rep 2013;3:2645 EP. doi:10.1038/srep02645.

    Article  Google Scholar 

  40. Gardiner CW. 2004. Handbook of stochastic methods, 3rd edn. Springer-Verlag.

  41. Giannakis D, Majda AJ. Nonlinear Laplacian spectral analysis for time series with intermittency and low-frequency variability. Proc Natl Acad Sci 2012;109(7):2222–7. http://www.pnas.org/content/109/7/2222.abstractN2.

    Article  CAS  Google Scholar 

  42. Griffies SM, Bryan K. A predictability study of simulated North Atlantic multidecal variability. Clim Dyn 1997;13:459–87.

    Article  Google Scholar 

  43. Guemas V, Doblas-Reyes F, Andreu-Burillo I, Asif M. Retrospective prediction of the global warming slowdown in the past decade. Nat Clim Chang 2013;3. doi:10.1038/NCLIMATE1863.

  44. Gulev SK, Latif M, Keenlyside N, Park W, Koltermann KP. North atlantic ocean control on surface heat flux on multidecadal timescales. Nature 2013;499(7459):464–7.

    Article  CAS  Google Scholar 

  45. Hansen J, Ruedy R, Sato M, Lo K. Global surface temperature change. Rev Geophys. 2010;48(4). doi:10.1029/2010RG000345.

  46. Hansen J, Sato M, Kharecha P, von Schuckmann K. Earth’s energy imbalance and implications. Atmos Chem Phys 2011;11(24):13,421–49. doi:10.5194/acp-11-13421-2011. http://www.atmos-chem-phys.net/11/13421/2011/.

    Article  CAS  Google Scholar 

  47. Hartmann D, Tank AK, Rusticucci M, Alexander L, Bronnimann S, Charabi Y, Dentener F, Dlugokencky E, Easterling D, Kaplan A, Soden B, Thorne P, Wild M, Zhai P. Observations: Atmosphere and surface. In: Stocker T., Qin D., Plattner G.K., Tignor M., Allen S., Boschung J., Nauels A., Xia Y., Bex V., and Midgley P., editors. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; 2013. p. 159–254.

  48. Hasselmann K. Stochastic climate models I. Theory. Tellus 1976;28:473–85.

    Article  Google Scholar 

  49. Huddart B, Subramanian A, Zanna L, Palmer T. Seasonal and decadal forecasts of atlantic sea surface temperatures using a linear inverse model. Clim Dyn 2016;1–13. doi:10.1007/s00382-016-3375-1.

  50. Jia L, DElSole T. Diagnosis of multiyear predictability on continental scales. J Climate 2011;24:5108–24.

    Article  Google Scholar 

  51. Jia L, DelSole T. 2012. Multi-year predictability of temperature and precipitation identified in climate models. Geophys Res Lett 2012;39. doi:10.1029/2012GL052778.

  52. Jia L, DElSole T. Optimal determination of time-varying climate change signals. J Climate 2012;25:7122–37.

    Article  Google Scholar 

  53. Karl TR, Arguez A, Huang B, Lawrimore JH, McMahon JR, Menne MJ, Peterson TC, Vose RS, Zhang HM. Possible artifacts of data biases in the recent global surface warming hiatus. Science 2015; 348(6242):1469. http://science.sciencemag.org/content/348/6242/1469.abstract.

    Article  CAS  Google Scholar 

  54. Kaufmann RK, Kauppi H, Mann ML, Stock JH. Reconciling anthropogenic climate change with observed temperature 1998–2008. Proc Natl Acad Sci 2011;108(29):11,790–3. http://www.pnas.org/content/108/29/11790.abstract.

    Article  CAS  Google Scholar 

  55. Kirtman B, Power SB, Adedoyin JA, Boer GJ, Bojariu R, Camilloni I, Doblas-Reyes F, Fiore AM, Kimoto M., Meehl GA, Prather M, Sarr A, Schar C., Sutton R, van Oldenborgh GJ, Vecchi G, Wang H. Near-term climate change: Projections and predictability. In: Stocker T., Qin D., Plattner G.K., Tignor M., Allen S. , Boschung J., Nauels A., Xia Y., Bex V., and Midgley P., editors. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, chap. 11. Cambridge University Press; 2013. p. 953–1028.

  56. Kleeman R. Measuring dynamical prediction utility using relative entropy. J Atmos Sci 2002;59:2057–72.

    Article  Google Scholar 

  57. Knight JR. The Atlantic Multidecadal Oscillation inferred from the forced climate response in coupled general circulation models. J Climate 2009;22:1610–25.

    Article  Google Scholar 

  58. Kosaka Y, Xie SP. Recent global-warming hiatus tied to equatorial pacific surface cooling. Nature 2013; 501(7467):403–7. doi:10.1038/nature12534.

    Article  CAS  Google Scholar 

  59. Laepple T, Huybers P. Ocean surface temperature variability: Large model–data differences at decadal and longer periods. Proc Natl Acad Sci 2014;111(47):16,682–7. http://www.pnas.org/content/111/47/16682.abstract N2.

    Article  CAS  Google Scholar 

  60. Latif M, Collins M, Pohlmann H, Keenlyside N. A review of predictability studies of Atlantic sector climate on decadal time scales. J Climate 2006;19:5971–87.

    Article  Google Scholar 

  61. Lean JL. Cycles and trends in solar irradiance and climate. Wiley Interdiscip Rev Clim Chang 2010;1(1):111–22. doi:10.1002/wcc.18.

    Article  Google Scholar 

  62. Lean JL, Rind DH. How will Earth’s surface temperature change in future decades? Geophys Res Lett 2009;36(L15):708. doi:10.1029/2009GL038932.

    Google Scholar 

  63. Lorenz EN. The predictability of a flow which possesses many scales of motion. Tellus 1969;21:289–307.

    Article  Google Scholar 

  64. Marotzke J, Müller W.A, Vamborg FSE, Becker P, Cubasch U, Feldmann H, Kaspar F, Kottmeier C, Marini C, Polkova I, Prömmel K, Rust HW, Stammer D, Ulbrich U, Kadow C, Köhl A, Kröger J., Kruschke T, Pinto JG, Pohlmann H, Reyers M, Schröder M, Sienz F, Timmreck C, Ziese M. Miklip - a national research project on decadal climate prediction. Bull Am Meteorol Soc. 2016. doi:10.1175/BAMS-D-15-00184.1.

  65. Meehl GA, Arblaster JM, Fasullo JT, Hu A, Trenberth KE. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat Clim Chang 2011;1(7):360–4. doi:10.1038/nclimate1229.

    Article  Google Scholar 

  66. Meehl GA, Arrigo K, Chen SS, Goddard L, Hallberg R, Halpern D. Frontiers in Decadal Climate Variability: Proceedings of a Workshop. Washington, DC: The National Academies Press; 2016. doi:10.17226/23552. https://www.nap.edu/catalog/23552/frontiers-in-decadal-climate-variability-proceedings-of-a-workshop.

    Google Scholar 

  67. Meehl GA, Goddard L, Boer G, Burgman R, Branstator G, Cassou C, Corti S, Danabasoglu G, Doblas-Reyes F, Hawkins E, Karspeck A, Kimoto M, Kumar A, Matei D, Mignot J, Msadek R, Navarra A, Pohlmann H, Rienecker M, Rosati T, Schneider E, Smith D, Sutton R, Teng H, van Oldenborgh GJ, Vecchi G, Yeager S. Decadal climate prediction: An update from the trenches. Bull Am Meteorol Soc 2013;95(2):243–67. doi:10.1175/BAMS-D-12-00241.1.

    Article  Google Scholar 

  68. Meehl GA, Teng H, Arblaster JM. Climate model simulations of the observed early-2000s hiatus of global warming. Nat Clim Chang 2014;4(10):898–902. doi:10.1038/nclimate2357.

    Article  Google Scholar 

  69. Newman M. An empirical benchmark for decadal forecasts of global surface temperature anoMalies. J Climate 2013;26:5260–9.

    Article  Google Scholar 

  70. Newman M, Alexander MA, Ault TR, Cobb KM, Deser C, Di Lorenzo E, Mantua NJ, Miller AJ, Minobe S, Nakamura H, Schneider N, Vimont D, Phillips AS, Scott JD, Smith CA. The pacific decadal oscillation, revisited. J Clim 2016;29(12):4399–427. doi:10.1175/JCLI-D-15-0508.1.

    Article  Google Scholar 

  71. Newman M, Compo GP, Alexander MA. Enso-forced variability of the pacific decadal oscillation. J Clim 2003;16(23):3853–7. doi:10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2.

    Article  Google Scholar 

  72. O’Reilly CH, Huber M, Woollings T, Zanna L. The signature of low-frequency oceanic forcing in the atlantic multidecadal oscillation. Geophy Res Lett 2016;43(6):2810–18. doi:10.1002/2016GL067925.

    Article  Google Scholar 

  73. Pierce DW. Distinguishing coupled ocean–atmosphere interactions from background noise in the north pacific. Prog Oceanogr 2001;49(1–4):331–52. doi:10.1016/S0079-6611(01)00029-5. http://www.sciencedirect.com/science/article/pii/S0079661101000295.

    Article  Google Scholar 

  74. Rahmstorf S, Willebrand J. The role of temperature feedback in stabilizing the thermohaline circulation. J Phys Oceanogr 1995;25(5):787–805. doi:10.1175/1520-0485(1995)025<0787:TROTFI>2.0.CO;2.

    Article  Google Scholar 

  75. Risbey JS, Lewandowsky S, Langlais C, Monselesan DP, O/’Kane TJ, Oreskes N. Well-estimated global surface warming in climate projections selected for enso phase. Nat Clim Chang 2014;4(9):835–40. doi:10.1038/nclimate2310.

    Article  Google Scholar 

  76. Ruiz-Barradas A, Nigam S, Kavvada A. The Atlantic Multidecadal Oscillation in twentieth century climate simulations: uneven progress from cmip3 to cmip5. Clim Dyn 2013; 41 (11): 3301–15. doi:10.1007/s00382-013-1810-0.

    Article  Google Scholar 

  77. Santer BD, Mears C, Doutriaux C, Caldwell P, Gleckler PJ, Wigley TML, Solomon S, Gillett NP, Ivanova D, Karl TR, Lanzante JR, Meehl GA, Stott PA, Taylor KE, Thorne PW, Wehner MF, Wentz FJ. Separating signal and noise in atmospheric temperature changes: The importance of timescale. J Geophys Res Atmos 2011;116(D22). doi:10.1029/2011JD016263.

    Article  Google Scholar 

  78. Schmidt GA, Shindell DT, Tsigaridis K. Reconciling warming trends. Nat Geosci 2014;7(3):158–60. doi:10.1038/ngeo2105.

    Article  CAS  Google Scholar 

  79. Schneider T, Griffies S. A conceptual framework for predictability studies. J Climate 1999;12:3133–55.

    Article  Google Scholar 

  80. Smith D, Booth BBB, Dunstone NJ, Eade R, Hermanson L, Jones GS, Scaife AA, Sheen KL, Thompson V. Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nat Clim Chang 2016;6(10):936–40. doi:10.1038/nclimate3058.

    Article  CAS  Google Scholar 

  81. Solomon A, Goddard L, Kumar A, Carton J, Deser C, Fukumori I, Greene AM, Hegerl G, Kirtman B, Kushnir Y, Newman M, Smith D, Vimont D, Delworth T, Meehl GA, Stockdale T. Distinguishing the roles of natural and anthropogenic ally forced decadal climate variability. Bull Am Meteorol Soc 2010;92(2):141–56. doi:10.1175/2010BAMS2962.1.

    Article  Google Scholar 

  82. Solomon S, Daniel JS, Neely RR, Vernier JP, Dutton EG, Thomason LW. The persistently variable “background” stratospheric aerosol layer and global climate change. Science 2011;333:866–70. doi:10.1126/science.1206027.

    Article  CAS  Google Scholar 

  83. Srivastava A, DelSole T. Decadal predictability without ocean dynamics. Proc Natl Acad Sci 2017;114(9): 2177–82. http://www.pnas.org/content/114/9/2177.abstract.

    Article  CAS  Google Scholar 

  84. Steinman BA, Mann ME, Miller SK. Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science 2015;347(6225):988–91. doi:10.1126/science.1257856. http://science.sciencemag.org/content/347/6225/988.

    Article  CAS  Google Scholar 

  85. Ting M, Kushnir Y, Seager R, Li C. Forced and internal twentieth-century SST in the North Atlantic. J Climate 2009;22:1469–81.

    Article  Google Scholar 

  86. Trenary L, DelSole T. Does the Atlantic Multidecadal Oscillation get its predictability from the Atlantic Meridional Overturning Circulation? J Clim 2016;29(14):5267–80. doi:10.1175/JCLI-D-16-0030.1.

    Article  Google Scholar 

  87. Tung KK, Zhou J. Using data to attribute episodes of warming and cooling in instrumental records. Proc Natl Acad Sci 2013;110(6):2058–63. http://www.pnas.org/content/110/6/2058.abstract.

    Article  CAS  Google Scholar 

  88. Vallis GK. 2006. Atmospheric and oceanic fluid dynamics cambridge university press.

  89. Venzke S, Allen MR, Sutton RT, Rowell DP. The atmospheric response over the North Atlantic to decadal changes in sea surface temperature. J Climate 1999;12:2562–84.

    Article  Google Scholar 

  90. Wang C, Zhang L. Multidecadal ocean temperature and salinity variability in the tropical north atlantic: linking with the amo, amoc, and subtropical cell. J Clim 2013;26(16):6137–62. doi:10.1175/JCLI-D-12-00721.1.

    Article  Google Scholar 

  91. Watterson IG, Whetton PH. Distributions of decadal means of temperature and precipitation change under global warming. J Geophys Res Atmos 2011;116(D7). doi:10.1029/2010JD014502.

    Article  Google Scholar 

  92. WCRP. 2013. Report of the International workshop on seasonal to decadal prediction, Toulouse, France, WCRP Report No. 23.

  93. Zanna L. Forecast skill and predictability of observed North Atlantic sea surface temperatures. J Climate 2012; 25:5047–56.

    Article  Google Scholar 

  94. Zhang R, Delworth TL, Sutton R, Hodson DLR, Dixon KW, Held IM, Kushnir Y, Marshall J, Ming Y, Msadek R, Robson J, Rosati AJ, Ting M, Vecchi GA. Have aerosols caused the observed Atlantic multidecadal variability. J Atmos Sci 2013;70(4):1135–44.

    Article  Google Scholar 

  95. Zhang R, Sutton R, Danabasoglu G, Delworth TL, Kim WM, Robson J, Yeager SG. Comment on “The Atlantic Multidecadal Oscillation without a role for ocean circulation”. Science 2016;352(6293):1527.

    Article  CAS  Google Scholar 

  96. Zucchini W. An introduction to model selection. J Math Psychol 2000;44:41–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank the anonymous reviewers for very helpful comments that lead to improvements in the presentation of this paper, and discussions with Michael K. Tippett and Jagadish Shukla that helped clarify some of the ideas presented in this paper. This work was supported by the National Oceanic and Atmospheric Administration (NA14OAR4310160, NA16OAR4310175), the National Science Foundation (AGS1338427), and the National Aeronautics and Space Administration (NNX14AM19G). The views expressed herein are those of the authors and do not necessarily reflect the views of these agencies. The author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy DelSole.

Additional information

This article is part of the Topical Collection on Decadal Predictability and Prediction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DelSole, T. Decadal Prediction of Temperature: Achievements and Future Prospects. Curr Clim Change Rep 3, 99–111 (2017). https://doi.org/10.1007/s40641-017-0066-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40641-017-0066-x

Keywords

Navigation