Marlon JR, Bartlein PJ, Gavin DG, Long CJ, Anderson RS, Briles CE, et al. Long-term perspective on wildfires in the western USA. Proc Natl Acad Sci U S A. 2012;109:E535–43. doi:10.1073/pnas.1112839109.
CAS
Article
Google Scholar
Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, et al. Fire in the Earth system. Science. 2009;324:481–4. doi:10.1126/science.1163886.
CAS
Article
Google Scholar
Bond WJ, Woodward FI, Midgley GF. The global distribution of ecosystems in a world without fire. New Phytol. 2005;165:525–38. doi:10.1111/j.1469-8137.2004.01252.x.
CAS
Article
Google Scholar
Goldammer JG. Vegetation fires and global change: challenges for concerted international action. Remagen-Oberwinter: Kessell Publishing House; 2013.
Scott AC, Glasspool IJ. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proc Natl Acad Sci U S A. 2006;103:10861–5. doi:10.1073/pnas.0604090103.
CAS
Article
Google Scholar
Marlon JR, Bartlein PJ, Daniau A-L, Harrison SP, Maezumi SY, Power MJ, et al. Global biomass burning: a synthesis and review of Holocene paleofire records and their controls. Quat Sci Rev. 2013;65:5–25. doi:10.1016/j.quascirev.2012.11.029. This study presents a large meta-analysis of global charcoal records and finds that climate was a dominant driver of regional to global fire activity throughout the Holocene.
Article
Google Scholar
Meyn A, White PS, Buhk C, Jentsch A. Environmental drivers of large, infrequent wildfires: the emerging conceptual model. Prog Phys Geogr. 2007;31:287–312. doi:10.1177/0309133307079365.
Article
Google Scholar
van der Werf GR, Randerson JT, Giglio L, Gobron N, Dolman AJ. Climate controls on the variability of fires in the tropics and subtropics. Glob Biogeochem Cycles. 2008;22, GB3028. doi:10.1029/2007GB003122.
Google Scholar
Kloster S, Mahowald NM, Randerson JT, Lawrence PJ. The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN. Biogeosciences. 2012;9:509–25. doi:10.5194/bg-9-509-2012.
Article
Google Scholar
van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Mu M, Kasibhatla PS, et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys. 2010;10:11707–35. doi:10.5194/acp-10-11707-2010.
Article
CAS
Google Scholar
Ballantyne AP, Alden CB, Miller JB, Tans PP, White JWC. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature. 2012;488:70–2. doi:10.1038/nature11299.
CAS
Article
Google Scholar
Le Quéré C, Raupach MR, Canadell JG, Marland G, Bopp L, Ciais P, et al. Trends in the sources and sinks of carbon dioxide. Nat Geosci. 2009;2:831–6. doi:10.1038/ngeo689.
Article
CAS
Google Scholar
Ward DS, Kloster S, Mahowald NM, Rogers BM, Randerson JT, Hess PG (2012) The changing radiative forcing of fires: global model estimates for past, present and future. Atmos Chem Phys 12. doi:10.5194/acp-12-10857-2012.
Flannigan MD, Krawchuk MA, de Groot WJ, Wotton BM, Gowman LM. Implications of changing climate for global wildland fire. Int J Wildland Fire. 2009;18:483–507. doi:10.1071/WF08187.
Article
Google Scholar
Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW. Warming and earlier spring increase western US forest wildfire activity. Science. 2006;313:940–3. doi:10.1126/science.1128834.
CAS
Article
Google Scholar
Littell JS, McKenzie D, Peterson DL, Westerling AL. Climate and wildfire area burned in Western US ecoprovinces, 1916–2003. Ecol Appl. 2009;19:1003–21. doi:10.1890/07-1183.1.
Article
Google Scholar
Mouillot F, Field CB. Fire history and the global carbon budget: a 1° × 1° fire history reconstruction for the 20th century. Glob Chang Biol. 2005;11:398–420. doi:10.1111/j.1365-2486.2005.00920.x.
Article
Google Scholar
Adams MA. Mega-fires, tipping points and ecosystem services: managing forests and woodlands in an uncertain future. For Ecol Manag. 2013;294:250–61. doi:10.1016/j.foreco.2012.11.039.
Article
Google Scholar
Page SE, Siegert F, Rieley JO, Boehm H-DV, Jaya A, Limin S. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature. 2002;420:61–5. doi:10.1038/nature01131.
CAS
Article
Google Scholar
van der Werf GR, Randerson JT, Collatz GJ, Giglio L, Kasibhatla PS, Arellano AF, et al. Continental-scale partitioning of fire emissions during the 1997 to 2001 El Nino/La Nina period. Science. 2004;303:73–6. doi:10.1126/science.1090753.
Article
CAS
Google Scholar
Cochrane J (2015) Indonesia’s Forest Fires Take Toll on Wildlife, Big and Small. The New York Times, 30 October 2015. http://www.nytimes.com/2015/10/31/world/asia/indonesia-forest-fires-wildlife.html.
Cruz MG, Sullivan AL, Gould JS, Sims NC, Bannister AJ, Hollis JJ, et al. Anatomy of a catastrophic wildfire: the Black Saturday Kilmore East fire in Victoria, Australia. For Ecol Manag. 2012;284:269–85. doi:10.1016/j.foreco.2012.02.035.
Article
Google Scholar
Chubarova N, Nezval Y, Sviridenkov I, Smirnov A, Slutsker I. Smoke aerosol and its radiative effects during extreme fire event over Central Russia in summer 2010. Atmos Meas Tech. 2012;5:557–68. doi:10.5194/amt-5-557-2012.
Article
Google Scholar
Konovalov IB, Beekmann M, Kuznetsova IN, Yurova A, Zvyagintsev AM. Atmospheric impacts of the 2010 Russian wildfires: integrating modelling and measurements of an extreme air pollution episode in the Moscow region. Atmos Chem Phys. 2011;11:10031–56. doi:10.5194/acp-11-10031-2011.
CAS
Article
Google Scholar
Brando PM, Balch JK, Nepstad DC, Morton DC, Putz FE, Coe MT, et al. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc Natl Acad Sci U S A. 2014;111:6347–52. doi:10.1073/pnas.1305499111.
CAS
Article
Google Scholar
Williams AP, Seager R, Berkelhammer M, Macalady AK, Crimmins MA, Swetnam TW, et al. Causes and implications of extreme atmospheric moisture memand during the record-breaking 2011 wildfire season in the southwest United States. J Appl Meteorol Climatol. 2014;53:2671–84. doi:10.1175/JAMC-D-14-0053.1.
Article
Google Scholar
Williams AP, Seager R, Abatzoglou JT, Cook BI, Smerdon JE, Cook ER. Contribution of anthropogenic warming to California drought during 2012–2014. Geophys Res Lett. 2015;42:6819–28. doi:10.1002/2015GL064924.
Article
Google Scholar
Turetsky MR, Donahue WF, Benscoter BW. Experimental drying intensifies burning and carbon losses in a northern peatland. Nat Commun. 2011;2:514. doi:10.1038/ncomms1523.
CAS
Article
Google Scholar
Pyne SJ. Fire: Nature and Culture. London: Reaktion Books; 2012.
Google Scholar
Pyne SJ. The fires this time, and next. Science. 2001;294:1005–6. doi:10.1126/science.1064989.
CAS
Article
Google Scholar
Moritz MA, Parisien MA, Batllori E, Krawchuk MA, Van Dorn J, Ganz DJ, et al. Climate change and disruptions to global fire activity. Ecosphere. 2012;3:1–22. doi:10.1890/ES11-00345.1. This study drives an empirically derived spatial model with projected climate data from 16 global climate models to project how macro-scale fire probability will compare during 2010–2039 and 2070–2099 to the observed record.
Article
Google Scholar
Krawchuk MA, Moritz MA, Parisien M-A, Van Dorn J, Hayhoe K. Global pyrogeography: the current and future distribution of wildfire. PLoS ONE. 2009;4, e5102. doi:10.1371/journal.pone.0005102.
Article
CAS
Google Scholar
Davidson EA, de Araújo AC, Artaxo P, Balch JK, Brown IF, Bustamante MMC, et al. The Amazon basin in transition. Nature. 2012;481:321–8. doi:10.1038/nature10717.
CAS
Article
Google Scholar
Friedlingstein P, Meinshausen M, Arora VK, Jones CD, Anav A, Liddicoat SK, et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J Clim. 2014;27:511–26. doi:10.1175/JCLI-D-12-00579.1.
Article
Google Scholar
Giglio L, Randerson JT, van der Werf GR, Kasibhatla PS, Collatz GJ, Morton DC, et al. Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeosciences. 2010;7:1171–86. doi:10.5194/bg-7-1171-2010.
Article
Google Scholar
Daniau AL, Bartlein PJ, Harrison SP, Prentice IC, Brewer S, Friedlingstein P, et al. Predictability of biomass burning in response to climate changes. Glob Biogeochem Cycles. 2012;26, GB4007. doi:10.1029/2011GB004249/full.
Article
CAS
Google Scholar
Chuvieco E, Giglio L, Justice C. Global characterization of fire activity: toward defining fire regimes from Earth observation data. Glob Chang Biol. 2008;14:1488–502. doi:10.1111/j.1365-2486.2008.01585.x.
Article
Google Scholar
Archibald S, Roy DP, van Wilgen BW, Scholes RJ. What limits fire? An examination of drivers of burnt area in Southern Africa. Glob Chang Biol. 2009;15:613–30. doi:10.1111/j.1365-2486.2008.01754.x.
Article
Google Scholar
Fischer H, Schüpbach S, Gfeller G, Bigler M, Röthlisberger R, Erhardt T, et al. Millennial changes in North American wildfire and soil activity over the last glacial cycle. Nat Geosci. 2015;8:723–7. doi:10.1038/ngeo2495.
CAS
Article
Google Scholar
Zennaro P, Kehrwald N, McConnell JR, Schüpbach S, Maselli OJ, Marlon J, et al. Fire in ice: two millennia of boreal forest fire history from the Greenland NEEM ice core. Clim Past. 2014;10:1905–24. doi:10.5194/cp-10-1905-2014.
Article
Google Scholar
Zennaro P, Kehrwald N, Marlon J, Ruddiman W, Brücher T, Agostinelli C, et al. Europe on fire three thousand years ago: arson or climate? Geophys Res Lett. 2015;42:5023–33. doi:10.1002/2015GL064259.
Article
Google Scholar
van der Werf GR, Peters W, van Leeuwen TT, Giglio L. What could have caused pre-industrial biomass burning emissions to exceed current rates? Clim Past. 2013;9:289–306. doi:10.5194/cp-9-289-2013.
Article
Google Scholar
Girardin MP, Ali AA, Carcaillet C, Blarquez O, Hély C, Terrier A, et al. Vegetation limits the impact of a warm climate on boreal wildfires. New Phytol. 2013;199:1001–11. doi:10.1111/nph.12322.
Article
Google Scholar
Kelly R, Chipman ML, Higuera PE, Stefanova I, Brubaker LB, Hu FS. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proc Natl Acad Sci U S A. 2013;110:13055–60. doi:10.1073/pnas.1305069110.
CAS
Article
Google Scholar
Brown KJ, Giesecke T. Holocene fire disturbance in the boreal forest of central Sweden. Boreas. 2014;43:639–51. doi:10.1111/bor.12056.
Article
Google Scholar
Blarquez O, Ali AA, Girardin MP, Grondin P, Fréchette B, Bergeron Y, et al. Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers. Nat Sci Rep. 2015;5:13356. doi:10.1038/srep13356.
Article
Google Scholar
Barrett CM, Kelly R, Higuera PE, Hu FS. Climatic and land cover influences on the spatiotemporal dynamics of Holocene boreal fire regimes. Ecology. 2013;94:389–402. doi:10.1890/12-0840.1.
Article
Google Scholar
Walsh MK, Marlon JR, Goring SJ, Brown KJ, Gavin DG. A regional perspective on holocene fire–climate–human interactions in the Pacific Northwest of North America. Ann Assoc Am Geogr. 2015;105:1135–57. doi:10.1080/00045608.2015.1064457.
Article
Google Scholar
Calder WJ, Parker D, Stopka CJ, Jiménez-Moreno G, Shuman BN. Medieval warming initiated exceptionally large wildfire outbreaks in the Rocky Mountains. Proc Natl Acad Sci U S A. 2015;112:13261–6. doi:10.1073/pnas.1500796112.
CAS
Article
Google Scholar
Power MJ, Mayle FE, Bartlein PJ, Marlon JR, Anderson RS, Behling H, et al. Climatic control of the biomass-burning decline in the Americas after AD 1500. The Holocene. 2013;23:3–13. doi:10.1177/0959683612450196.
Article
Google Scholar
Abrams MD, Nowacki GJ. Exploring the early Anthropocene burning hypothesis and climate-fire anomalies for the eastern US. J Sustain For. 2015;34:30–48. doi:10.1080/10549811.2014.973605.
Article
Google Scholar
Williams AN, Mooney SD, Sisson SA, Marlon J. Exploring the relationship between Aboriginal population indices and fire in Australia over the last 20,000 years. Palaeogeogr Palaeoclimatol Palaeoecol. 2015;432:49–57. doi:10.1016/j.palaeo.2015.04.030.
Article
Google Scholar
Feurdean A, Spessa A, Magyari EK, Willis KJ, Veres D, Hickler T. Trends in biomass burning in the Carpathian region over the last 15,000 years. Quat Sci Rev. 2012;45:111–25. doi:10.1016/j.quascirev.2012.04.001.
Article
Google Scholar
Krupinski NBQ, Marlon JR, Nishri A, Street JH, Paytan A. Climatic and human controls on the late Holocene fire history of northern Israel. Quat Res. 2013;80:396–405. doi:10.1016/j.yqres.2013.06.012.
Article
Google Scholar
Ellis EC, Kaplan JO, Fuller DQ, Vavrus S, Goldewijk KK, Verburg PH. Used planet: a global history. Proc Natl Acad Sci U S A. 2013;110:7978–85. doi:10.1073/pnas.1217241110.
CAS
Article
Google Scholar
Arno SF, Sneck KM. A method for determining fire history in coniferous forests of the Mountain West. Ogden: USDA Forest Service; 1977.
Google Scholar
Williams AP, Allen CD, Macalady AK, Griffin D, Woodhouse CA, Meko DM, et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Chang. 2013;3:292–7. doi:10.1038/nclimate1693.
Article
Google Scholar
Dugan AJ, Baker WL. Sequentially contingent fires, droughts and pluvials structured a historical dry forest landscape and suggest future contingencies. J Veg Sci. 2015;26:697–710. doi:10.1111/jvs.12266.
Article
Google Scholar
Huffman DW, Zegler TJ, Fulé PZ. Fire history of a mixed conifer forest on the Mogollon Rim, northern Arizona, USA. Int J Wildland Fire. 2015;24:680–9. doi:10.1071/WF14005.
Article
Google Scholar
Margolis EQ, Swetnam TW. Historical fire–climate relationships of upper elevation fire regimes in the south-western United States. Int J Wildland Fire. 2013;22:588–98. doi:10.1071/WF12064.
Article
Google Scholar
Margolis EQ. Fire regime shift linked to increased forest density in a piñon–juniper savanna landscape. Int J Wildland Fire. 2014;23:234–45. doi:10.1071/WF13053.
Article
Google Scholar
O’Connor CD, Falk DA, Lynch AM, Swetnam TW. Fire severity, size, and climate associations diverge from historical precedent along an ecological gradient in the Pinaleño Mountains, Arizona, USA. For Ecol Manag. 2014;329:264–78. doi:10.1016/j.foreco.2014.06.032.
Article
Google Scholar
Swetnam TW, Falk DA, Sutherland EK, Brown PM, Brown TJ (2012) Final Report: Fire and Climate in the Western US: A New Synthesis for Land Management. Fire and Climate Synthesis Project. University of Arizona, Tucson, AZ.
Swetnam TW, Whitlock C. Ch. 3: Paleofire and Climate History: Western America and Global Perspectives. In: Goldammer JG, editor. Vegetation fires and global change: challenges for concerted international action. Germany: Kessel Publishing House; 2013. p. 21–38.
Google Scholar
Bigio ER, Swetnam TW, Baisan CH. Local-scale and regional climate controls on historical fire regimes in the San Juan Mountains, Colorado. For Ecol Manag. 2016;360:311–22. doi:10.1016/j.foreco.2015.10.041.
Article
Google Scholar
Trouet V, Taylor AH, Wahl ER, Skinner CN, Stephens SL. Fire‐climate interactions in the American West since 1400 CE. Geophys Res Lett. 2010;37, L04702. doi:10.1029/2009GL041695.
Article
Google Scholar
Swetnam TW, Betancourt JL. Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest. J Clim. 1998;11:3128–47. doi:10.1175/1520-0442(1998)011<3128:MDAERT>2.0.CO;2.
Article
Google Scholar
Swetnam TW, Baisan CH. Tree-Ring Reconstructions of Fire and Climate History in the Sierra Nevada and Southwestern United States. In: Veblen TT, Baker WL, Montenegro G, Swetnam TW, editors. Fire and climatic change in temperate ecosystems of the western Americas. New York: Springer; 2003. p. 158–95.
Chapter
Google Scholar
Mundo IA, Kitzberger T, Juñent FAR, Villalba R, Barrera MD. Fire history in the Araucaria araucana forests of Argentina: human and climate influences. Int J Wildland Fire. 2013;22:194–206. doi:10.1071/WF11164.
Article
Google Scholar
Swetnam TW, Baisan CH (1996) Historical fire regime patterns in the southwestern United States since AD 1700. In: Allen CD (ed) Fire Effects in Southwestern Fortest : Proceedings of the 2nd La Mesa Fire Symposium, vol General Technical Report RM-GTR-286. USDA Forest Service, Rocky Mountain Research Station, pp 11–32.
Pyne SJ. Between Two Fires: A Fire History of Contemporary America. Tucson: The University of Arizona Press; 2015.
Google Scholar
Parks SA, Miller C, Parisien M-A, Holsinger LM, Dobrowski SZ, Abatzoglou J. Wildland fire deficit and surplus in the western United States, 1984–2012. Ecosphere. 2015;6:1–13. doi:10.1890/ES15-00294.1.
Article
Google Scholar
Harris L, Taylor AH. Topography, fuels, and fire dxclusion drive fire severity of the Rim Fire in an old Growth mixed-conifer forest, Yosemite National Park, USA. Ecosystems. 2015;18:1192–208. doi:10.1007/s10021-015-9890-9.
Article
Google Scholar
Heyerdahl EK, Loehman RA, Falk DA. Mixed-severity fire in lodgepole pine dominated forests: are historical regimes sustainable on Oregon’s Pumice Plateau, USA? Can J For Res. 2014;44:593–603. doi:10.1139/cjfr-2013-0413.
Article
Google Scholar
Sibold JS, Veblen TT, González ME. Spatial and temporal variation in historic fire regimes in subalpine forests across the Colorado Front Range in Rocky Mountain National Park, Colorado, USA. J Biogeogr. 2006;33:631–47. doi:10.1111/j.1365-2699.2005.01404.x.
Article
Google Scholar
Baker WL. Are high-severity fires burning at much higher rates recently than historically in dry-forest landscapes of the western USA? PLoS ONE. 2015;10, e0136147. doi:10.1371/journal.pone.0136147.
Article
CAS
Google Scholar
Odion DC, Hanson CT, Arsenault A, Baker WL, DellaSala DA, Hutto RL, et al. Examining historical and current mixed-severity fire regimes in ponderosa pine and mixed-conifer forests of western North America. PLoS ONE. 2014;9, e87852. doi:10.1371/journal.pone.0087852.
Article
CAS
Google Scholar
Seager R, Hooks A, Williams AP, Cook BI, Nakamura J, Henderson N. Climatology, variability and trends in United States vapor pressure deficit, an important fire-related meteorological quantity. J Appl Meteorol. 2015;54:1121–41. doi:10.1175/JAMC-D-14-0321.1.
Article
Google Scholar
Girardin MP, Terrier A. Mitigating risks of future wildfires by management of the forest composition: an analysis of the offsetting potential through boreal Canada. Clim Chang. 2015;130:587–601. doi:10.1007/s10584-015-1373-7.
Article
Google Scholar
Kharuk VI, Dvinskaya ML, Ranson KJ. Fire return intervals within the northern boundary of the larch forest in Central Siberia. Int J Wildland Fire. 2013;22:207–11. doi:10.1071/WF11181.
Article
Google Scholar
Héon J, Arseneault D, Parisien M-A. Resistance of the boreal forest to high burn rates. Proc Natl Acad Sci U S A. 2014;111:13888–93. doi:10.1073/pnas.1409316111.
Article
CAS
Google Scholar
Koutsias N, Xanthopoulos G, Founda D, Xystrakis F, Nioti F, Pleniou M, et al. On the relationships between forest fires and weather conditions in Greece from long-term national observations (1894–2010). Int J Wildland Fire. 2013;22:493–507. doi:10.1071/WF12003.
Article
Google Scholar
Kolden CA, Smith AMS, Abatzoglou JT. Limitations and utilisation of monitoring trends in burn severity products for assessing wildfire severity in the USA. Int J Wildland Fire. 2015;24:1023–8. doi:10.1071/WF15082.
Google Scholar
Eidenshink J, Schwind B, Brewer K, Zhu Z, Quayle B, Howard S. A project for monitoring trends in burn severity. Fire Ecol. 2007;3:3–21.
Article
Google Scholar
Short KC. A spatial database of wildfires in the United States, 1992–2011. Earth Syst Sci Data. 2014;6:1–27. doi:10.5194/essd-6-1-2014.
Article
Google Scholar
Short KC. Sources and implications of bias and uncertainty in a century of US wildfire activity data. Int J Wildland Fire. 2015;24:883–91. doi:10.1071/WF14190.
Google Scholar
Dennison PE, Brewer SC, Arnold JD, Moritz MA. Large wildfire trends in the western United States, 1984–2011. Geophys Res Lett. 2015;41:2928–33. doi:10.1002/2014GL059576.
Article
Google Scholar
Williams AP, Seager R, Macalady AK, Berkelhammer M, Crimmins MA, Swetnam TW, et al. Correlations between components of the water balance and burned area reveal new insights for predicting fire activity in the southwest US. Int J Wildland Fire. 2015;24:14–26. doi:10.1071/WF14023.
Article
Google Scholar
Roy DP, Boschetti L, Justice CO, Ju J. The Collection 5 MODIS Burned Area Product–Global evaluation by comparison with the MODIS Active Fire Product. Remote Sens Environ. 2008;112:3690–707. doi:10.1016/j.rse.2008.05.013.
Article
Google Scholar
Hanson CT, Odion DC. Is fire severity increasing in the Sierra Nevada, California, USA? Int J Wildland Fire. 2014;23:1–8. doi:10.1071/WF13016.
Article
Google Scholar
Morton DC, Collatz GJ, Wang D, Randerson JT, Giglio L, Chen Y. Satellite-based assessment of climate controls on US burned area. Biogeosciences. 2013;10:247–60. doi:10.5194/bg-10-247-2013.
Article
Google Scholar
Westerling A, Brown T, Schoennagel T, Swetnam T, Turner M, Veblen T. Briefing: Climate and Wildfire in Western US Forests. In: Sample VA, Bixler RP, editors. Forest Conservation and Management in the Anthropocene: Conference Proceedings, RMRS-P-71. Fort Collins, CO: USDA Forest Service Rocky Mountain Research Station; 2014. p. 81–102.
Google Scholar
Abatzoglou JT, Kolden CA. Relationships between climate and macroscale area burned in the western United States. Int J Wildland Fire. 2013;22:1003–20. doi:10.1071/WF13019.
Article
Google Scholar
Schwartz MW, Butt N, Dolanc CR, Holguin A, Moritz MA, North MP, et al. Increasing elevation of fire in the Sierra Nevada and implications for forest change. Ecosphere. 2015;6:121. doi:10.1890/ES15-00003.1.
Article
Google Scholar
Cansler CA, McKenzie D. Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA. Ecol Appl. 2014;24:1037–56. doi:10.1890/13-1077.1.
Article
Google Scholar
Riley KL, Abatzoglou JT, Grenfell IC, Klene AE, Heinsch FA. The relationship of large fire occurrence with drought and fire danger indices in the western USA, 1984–2008: the role of temporal scale. Int J Wildland Fire. 2013;22:894–909. doi:10.1071/WF12149.
Article
Google Scholar
Yoon J-H, Wang S-Y, Gilles RR, Hipps L, Kravitz B, Rasch PJ. Extreme fire season in California: a glimpse into the future? [in “Explaining Extremes of 2014 from a Climate Perspective”]. Bull Am Meteorol Soc. 2015;96:S5–9.
Article
Google Scholar
Barbero R, Abatzoglou JT, Steel EA, Larkin NK. Modeling very large-fire occurrences over the continental United States from weather and climate forcing. Environ Res Lett. 2014;9:124009. doi:10.1088/1748-9326/9/12/124009.
Article
Google Scholar
Sedano F, Randerson JT. Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems. Biogeosciences. 2014;11:3739–55. doi:10.5194/bg-11-3739-2014.
Article
Google Scholar
Stavros EN, Abatzoglou J, Larkin NK, McKenzie D, Steel EA. Climate and very large wildland fires in the contiguous Western USA. Int J Wildland Fire. 2014;23:899–914. doi:10.1071/WF13169.
Article
Google Scholar
Barbero R, Abatzoglou JT, Kolden CA, Hegewisch KC, Larkin NK, Podschwit H. Multi-scalar influence of weather and climate on very large‐fires in the Eastern United States. Int J Climatol. 2014;35:2180–6. doi:10.1002/joc.4090.
Article
Google Scholar
Jolly WM, Cochrane MA, Freeborn PH, Holden ZA, Brown TJ, Williamson GJ, et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat Commun. 2015;6:7537. doi:10.1038/ncomms8537. This study evaluates a global reanalysis of gridded meteorological data and finds a significant increase in the global vegetation area experiencing anomalously severe fire-weather in a given year during 1979--2013..
CAS
Article
Google Scholar
Urbieta IR, Zavala G, Bedia J, Gutiérrez JM, Miguel-Ayanz JS, Camia A, et al. Fire activity as a function of fire–weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA. Environ Res Lett. 2015;10:114013. doi:10.1088/1748-9326/10/11/114013.
Article
Google Scholar
Lasslop G, Hantson S, Kloster S. Influence of wind speed on the global variability of burned fraction: a global fire model’s perspective. Int J Wildland Fire. 2015;24:989–1000. doi:10.1071/WF15052.
Google Scholar
Diaz HF, Swetnam TW. The wildfires of 1910: climatology of an extreme early twentieth-century event and comparison with more recent extremes. Bull Am Meteorol Soc. 2013;94:1361–70. doi:10.1175/BAMS-D-12-00150.1.
Article
Google Scholar
Clarke H, Lucas C, Smith P. Changes in Australian fire weather between 1973 and 2010. Int J Climatol. 2013;33:931–44. doi:10.1002/joc.3480.
Article
Google Scholar
Higuera PE, Abatzoglou JT, Littell JS, Morgan P. The changing strength and nature of fire-climate relationships in the Northern Rocky Mountains, USA, 1902–2008. PLoS ONE. 2015;10, e0127563. doi:10.1371/journal.pone.0127563. This study highlights the nonlinearity and complexities of climate-fire relationships using a century of observational data from the northern Rocky Mountains.
Article
Google Scholar
Pausas JG, Fernández-Muñoz S. Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Clim Chang. 2012;110:215–26. doi:10.1007/s10584-011-0060-6.
Article
Google Scholar
Moritz MA, Morais ME, Summerell LA, Carlson JM, Doyle JC. Wildfires, complexity, and highly optimized tolerance. Proc Natl Acad Sci U S A. 2005;102:17912–7. doi:10.1073/pnas.0508985102.
CAS
Article
Google Scholar
Parisien M-A, Moritz MA. Environmental controls on the distribution of wildfire at multiple spatial scales. Ecol Monogr. 2009;79:127–54. doi:10.1890/07-1289.1.
Article
Google Scholar
Krawchuk MA, Moritz MA. Burning issues: statistical analyses of global fire data to inform assessments of environmental change. Environmetrics. 2014;25:472–81. doi:10.1002/env.2287. This paper provides an excellent review of statistical modeling of global fire activity and needed next steps for research and application.
Article
Google Scholar
Krawchuk MA, Moritz MA. Constraints on global fire activity vary across a resource gradient. Ecology. 2011;92:121–32. doi:10.1890/09-1843.1.
Article
Google Scholar
Pausas JG, Ribeiro E. The global fire–productivity relationship. Glob Ecol Biogeogr. 2013;22:728–36. doi:10.1111/geb.12043.
Article
Google Scholar
Pausas JG, Bradstock RA. Fire persistence traits of plants along a productivity and disturbance gradient in mediterranean shrublands of south-east Australia. Glob Ecol Biogeogr. 2007;16:330–40. doi:10.1111/j.1466-8238.2006.00283.x.
Article
Google Scholar
Archibald S, Lehmann CER, Gómez-Dans JL, Bradstock RA. Defining pyromes and global syndromes of fire regimes. Proc Natl Acad Sci U S A. 2013;110:6442–7. doi:10.1073/pnas.1211466110.
CAS
Article
Google Scholar
McWethy DB, Higuera PE, Whitlock C, Veblen TT, Bowman DMJS, Cary GJ, et al. A conceptual framework for predicting temperate ecosystem sensitivity to human impacts on fire regimes. Glob Ecol Biogeogr. 2013;22:900–12. doi:10.1111/geb.12038.
Article
Google Scholar
Faivre N, Jin Y, Goulden ML, Randerson JT. Controls on the spatial pattern of wildfire ignitions in Southern California. Int J Wildland Fire. 2014;23:799–811. doi:10.1071/WF13136.
Article
Google Scholar
Hawbaker TJ, Radeloff VC, Stewart SI, Hammer RB, Keuler NS, Clayton MK. Human and biophysical influences on fire occurrence in the United States. Ecol Appl. 2013;23:565–82. doi:10.1890/12-1816.1.
Article
Google Scholar
Hantson S, Pueyo S, Chuvieco E. Global fire size distribution is driven by human impact and climate. Glob Ecol Biogeogr. 2015;24:77–86. doi:10.1111/geb.12246.
Article
Google Scholar
Hantson S, Lasslop G, Kloster S, Chuvieco E. Anthropogenic effects on global mean fire size. Int J Wildland Fire. 2015;24:589–96. doi:10.1071/WF14208.
Article
Google Scholar
Knorr W, Kaminski T, Arneth A, Weber U. Impact of human population density on fire frequency at the global scale. Biogeosciences. 2014;11:1085–102. doi:10.5194/bg-11-1085-2014.
Article
Google Scholar
Bistinas I, Harrison SP, Prentice IC, Pereira JM. Causal relationships versus emergent patterns in the global controls of fire frequency. Biogeosciences. 2014;11:5087–101. doi:10.5194/bg-11-5087-2014.
Article
Google Scholar
Finney MA, Cohen JD, Forthofer JM, McAllister SS, Gollner MJ, Gorham DJ, et al. Role of buoyant flame dynamics in wildfire spread. Proc Natl Acad Sci U S A. 2015;112:9833–8. doi:10.1073/pnas.1504498112.
CAS
Article
Google Scholar
Hoffman CM, Canfield J, Linn RR, Mell W, Sieg CH, Pimont F, et al. Evaluating crown fire rate of spread predictions from physics-based models. Fire Technol. 2015;1:1–17. doi:10.1007/s10694-015-0500-3.
Google Scholar
Hoffman CM, Linn R, Parsons R, Sieg C, Winterkamp J. Modeling spatial and temporal dynamics of wind flow and potential fire behavior following a mountain pine beetle outbreak in a lodgepole pine forest. Agric For Meteorol. 2015;204:79–93. doi:10.1016/j.agrformet.2015.01.018.
Article
Google Scholar
Bradstock RA. A biogeographic model of fire regimes in Australia: current and future implications. Glob Ecol Biogeogr. 2010;19:145–58. doi:10.1111/j.1466-8238.2009.00512.x.
Article
Google Scholar
Flannigan M, Cantin AS, de Groot WJ, Wotton M, Newbery A, Gowman LM. Global wildland fire season severity in the 21st century. For Ecol Manag. 2013;294:54–61. doi:10.1016/j.foreco.2012.10.022.
Article
Google Scholar
Liu Y, Goodrick SL, Stanturf JA. Future US wildfire potential trends projected using a dynamically downscaled climate change scenario. For Ecol Manag. 2013;294:120–35. doi:10.1016/j.foreco.2012.06.049.
Article
Google Scholar
Luo L, Tang Y, Zhong S, Bian X, Heilman WE. Will future climate favor more erratic wildfires in the Western United States? J Appl Meteorol Climatol. 2013;52:2410–7. doi:10.1175/JAMC-D-12-0317.1.
Article
Google Scholar
Stavros EN, Abatzoglou JT, McKenzie D, Larkin NK. Regional projections of the likelihood of very large wildland fires under a changing climate in the contiguous Western United States. Clim Chang. 2014;126:455–68. doi:10.1007/s10584-014-1229-6.
Article
Google Scholar
Yue X, Mickley LJ, Logan JA, Kaplan JO. Ensemble projections of wildfire activity and carbonaceous aerosol concentrations over the western United States in the mid-21st century. Atmos Environ. 2013;77:767–80. doi:10.1016/j.atmosenv.2013.06.003.
CAS
Article
Google Scholar
Yue X, Mickley LJ, Logan JA, Hudman RC, Val Martin M, Yantosca RM. Impact of 2050 climate change on North American wildfire: consequences for ozone air quality. Atmos Chem Phys. 2015;15:10033–55. doi:10.5194/acp-15-10033-2015.
CAS
Article
Google Scholar
Tian X, Zhao F, Shu L, Wang M. Changes in forest fire danger for south-western China in the 21st century. Int J Wildland Fire. 2014;23:185–95. doi:10.1071/WF13014.
Article
Google Scholar
Barbero R, Abatzoglou JT, Larkin NK, Kolden CA, Stocks B. Climate change presents increased potential for very large fires in the contiguous United States. Int J Wildland Fire. 2015;24:892–9. doi:10.1071/WF15083.
Google Scholar
Westerling AL, Turner MG, Smithwick EAH, Romme WH, Ryan MG. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proc Natl Acad Sci U S A. 2011;108:13165–70. doi:10.1073/pnas.1110199108.
CAS
Article
Google Scholar
Bedia J, Herrera S, Gutiérrez JM, Benali A, Brands S, Mota B, et al. Global patterns in the sensitivity of burned area to fire-weather: implications for climate change. Agric For Meteorol. 2015;214:369–79. doi:10.1016/j.agrformet.2015.09.002.
Article
Google Scholar
Yue X, Mickley LJ, Logan JA. Projection of wildfire activity in southern California in the mid-twenty-first century. Clim Dyn. 2014;43:1973–91. doi:10.1007/s00382-013-2022-3.
Article
Google Scholar
Hurteau MD, Westerling AL, Wiedinmyer C, Bryant BP. Projected effects of climate and development on California wildfire emissions through 2100. Environ Sci Technol. 2014;48:2298–304. doi:10.1021/es4050133.
CAS
Google Scholar
Westerling AL, Bryant BP. Climate change and wildfire in California. Clim Chang. 2008;87:231–49. doi:10.1007/s10584-007-9363-z.
Article
Google Scholar
Batllori E, Parisien MA, Krawchuk MA, Moritz MA. Climate change‐induced shifts in fire for Mediterranean ecosystems. Glob Ecol Biogeogr. 2013;22:1118–29. doi:10.1111/geb.12065.
Article
Google Scholar
Balshi MS, McGuire AD, Duffy P, Flannigan M, Walsh J, Melillo J. Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach. Glob Chang Biol. 2009;15:578–600. doi:10.1111/j.1365-2486.2008.01679.x.
Article
Google Scholar
Parisien M-A, Parks SA, Krawchuk MA, Little JM, Flannigan MD, Gowman LM, et al. An analysis of controls on fire activity in boreal Canada: comparing models built with different temporal resolutions. Ecol Appl. 2014;24:1341–56. doi:10.1890/13-1477.1. This study uniquely uses both spatial and temporal variability in observations to develop a burned area model for boreal Canada.
Article
Google Scholar
Hu FS, Higuera PE, Duffy P, Chipman ML, Rocha AV, Young AM, et al. Arctic tundra fires: natural variability and responses to climate change. Front Ecol Environ. 2015;13:369–77. doi:10.1890/150063.
Article
Google Scholar
Johnstone JF, Hollingsworth TN, Chapin FS, Mack MC. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob Chang Biol. 2010;16:1281–95. doi:10.1111/j.1365-2486.2009.02051.x.
Article
Google Scholar
Parks SA, Holsinger LM, Miller C, Nelson CR. Wildland fire as a self-regulating mechanism: the role of previous burns and weather in limiting fire progression. Ecol Appl. 2015;25:1478–92. doi:10.1890/14-1430.1.
Article
Google Scholar
Balch JK, Bradley BA, D’Antonio CM, Gómez‐Dans J. Introduced annual grass increases regional fire activity across the arid western USA (1980–2009). Glob Chang Biol. 2013;19:173–83. doi:10.1111/gcb.12046.
Article
Google Scholar
Boulanger Y, Gauthier S, Gray DR, Le Goff H, Lefort P, Morissette J. Fire regime zonation under current and future climate over eastern Canada. Ecol Appl. 2013;23:904–23. doi:10.1890/12-0698.1.
Article
Google Scholar
Boulanger Y, Gauthier S, Burton PJ. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Can J For Res. 2014;44:365–76. doi:10.1139/cjfr-2013-0372.
CAS
Article
Google Scholar
Bowman DMJS, Murphy BP, Williamson GJ, Cochrane MA. Pyrogeographic models, feedbacks and the future of global fire regimes. Glob Ecol Biogeogr. 2014;23:821–4. doi:10.1111/geb.12180.
Article
Google Scholar
Yang J, Tian H, Tao B, Ren W, Kush J, Liu Y, et al. Spatial and temporal patterns of global burned area in response to anthropogenic and environmental factors: reconstructing global fire history for the 20th and early 21st centuries. J Geophys Res: Biogeosci. 2014;119:249–63. doi:10.1002/2013JG002532.
Article
Google Scholar
Yang J, Tian H, Tao B, Ren W, Lu C, Pan S, et al. Century-scale patterns and trends of global pyrogenic carbon emissions and fire influences on terrestrial carbon balance. Glob Biogeochem Cycles. 2015;29:1549–66. doi:10.1002/2015GB005160. This study models global fire area and emissions using a dynamic global vegetation model linked to a fire module to estimate the response of global fire activity to changes in climate, atmospheric CO
2
, and human demographics over the past 110 years.
Marlon JR, Bartlein PJ, Carcaillet C, Gavin DG, Harrison SP, Higuera PE, et al. Climate and human influences on global biomass burning over the past two millennia. Nat Geosci. 2008;1:697–702. doi:10.1038/ngeo313.
CAS
Article
Google Scholar
Knorr W, Jiang L, Arneth A. Climate, CO2 and demographic impacts on global wildfire emissions. Biogeosciences. 2016;13:267–82. doi:10.5194/bg-13-267-2016. This study uses global semi-empirical fire modeling with a dynamic global vegetation model to tease apart the projected effects of 21st century changes in climate, atmospheric CO
2
, and human population/demographics change.
Wu M, Knorr W, Thonicke K, Schurgers G, Camia A, Arneth A. Sensitivity of burned area in Europe to climate change, atmospheric CO2 levels and demography: a comparison of two fire‐vegetation models. J Geophys Res: Biogeosci. 2015;120:2256–72. doi:10.1002/2015JG003036.
Article
Google Scholar
Kelly R, Genet H, McGuire AD, Hu FS (2015) Palaeodata-informed modelling of large carbon losses from recent burning of boreal forests. Nature Climate Change:In press. doi:10.1038/nclimate2832. This study used charcoal reconstructions of fire in Alaskan boreal forest to drive model simulations of carbon dynamics from AD 850–2006 and finds that fire was likely the dominant source of carbon-stock variability in boreal forests and that a recent increase in fire frequency since 1950 has led to large carbon losses
de Groot WJ, Flannigan MD, Cantin AS. Climate change impacts on future boreal fire regimes. For Ecol Manag. 2013;294:35–44. doi:10.1016/j.foreco.2012.09.027.
Article
Google Scholar
Murphy BP, Bowman DMJS. What controls the distribution of tropical forest and savanna? Ecol Lett. 2012;15:748–58. doi:10.1111/j.1461-0248.2012.01771.x.
Article
Google Scholar
Randerson JT, Chen Y, Werf GR, Rogers BM, Morton DC. Global burned area and biomass burning emissions from small fires. J Geophys Res: Biogeosci. 2012;117, G04012. doi:10.1029/2012JG002128.
Google Scholar
Farquhar GD. Carbon dioxide and vegetation. Science. 1997;278:1411. doi:10.1126/science.278.5342.1411.
CAS
Article
Google Scholar
Frank DC, Poulter B, Saurer M, Esper J, Huntingford C, Helle G, et al. Water-use efficiency and transpiration across European forests during the Anthropocene. Nat Clim Chang. 2015;5:579–83. doi:10.1038/nclimate2614.
CAS
Article
Google Scholar
De Kauwe MG, Medlyn BE, Zaehle S, Walker AP, Dietze MC, Hickler T, et al. Forest water use and water use efficiency at elevated CO2: a model‐data intercomparison at two contrasting temperate forest FACE sites. Glob Chang Biol. 2013;19:1759–79. doi:10.1111/gcb.12164.
Article
Google Scholar
Roderick ML, Greve P, Farquhar GD. On the assessment of aridity with changes in atmospheric CO2. Water Resour Res. 2015;51:5450–63. doi:10.1002/2015WR017031.
CAS
Article
Google Scholar
Allen CD, Breshears DD, McDowell NG. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere. 2015;6:1–55. doi:10.1890/ES15-00203.1.
Article
Google Scholar
Zhang K, Kimball JS, Nemani RR, Running SW, Hong Y, Gourley JJ, et al. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Nat Scientif Rep. 2015;5:15956. doi:10.1038/srep15956.
CAS
Article
Google Scholar
Donohue RJ, Roderick ML, McVicar TR, Farquhar GD. Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys Res Lett. 2013;40:3031–5. doi:10.1002/grl.50563.
CAS
Article
Google Scholar
Ukkola AM, Prentice IC, Keenan TF, van Dijk AIJM, Viney NR, Myneni RB, et al. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat Clim Chang. 2015. doi:10.1038/nclimate2831.
Google Scholar
Xu C, Liu H, Williams AP, Yin Y, Wu X. Trends toward an earlier peak of the growing season in Northern Hemisphere mid-latitudes. Glob Chang Biol. 2016. doi:10.1111/gcb.13224.
Google Scholar
Friend AD, Lucht W, Rademacher TT, Keribin R, Betts R, Cadule P, et al. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proc Natl Acad Sci U S A. 2014;111:3280–5. doi:10.1073/pnas.1222477110.
CAS
Article
Google Scholar
Anderegg WRL, Hicke JA, Fisher RA, Allen CD, Aukema J, Bentz B, et al. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol. 2015;208:674–83. doi:10.1111/nph.13477.
Article
Google Scholar
McDowell NG, Fischer RA, Xu C, Domec JC, Hölttä T, Mackay DS, et al. Evaluating theories of drouht-induced vegetation mortality using a multimodel-experiment framework. New Phytol. 2013;200:304–21. doi:10.1111/nph.12465.
CAS
Article
Google Scholar
Keenan TF, Baker I, Barr A, Ciais P, Davis K, Dietze M, et al. Terrestrial biosphere model performance for inter‐annual variability of land‐atmosphere CO2 exchange. Glob Chang Biol. 2012;18:1971–87. doi:10.1111/j.1365-2486.2012.02678.x.
Article
Google Scholar
Li F, Levis S, Ward DS. Quantifying the role of fire in the Earth system–Part 1: improved global fire modeling in the Community Earth System Model (CESM1). Biogeosciences. 2013;10:2293–314. doi:10.5194/bg-10-2293-2013.
CAS
Article
Google Scholar
Schweizer VJ, O’Neill BC. Systematic construction of global socioeconomic pathways using internally consistent element combinations. Clim Chang. 2014;122:431–45. doi:10.1007/s10584-013-0908-z.
Article
Google Scholar
Randers J. 2015: A Global Forecast for the Next Forty Years. White River Junction: Chelsea Green Publishing; 2012.
Google Scholar
van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, et al. The representative concentration pathways: an overview. Clim Chang. 2011;109:5–31. doi:10.1007/s10584-011-0148-z.
Article
Google Scholar
Knutti R, Sedláček J. Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Chang. 2013;3:369–73. doi:10.1038/nclimate1716.
Article
Google Scholar
Zhang X, Liu H, Zhang M. Double ITCZ in coupled ocean–atmosphere models: from CMIP3 to CMIP5. Geophys Res Lett. 2015;42:8651–9. doi:10.1002/2015GL065973.
Article
Google Scholar
Romps DM, Seeley JT, Vollaro D, Molinari J. Projected increase in lightning strikes in the United States due to global warming. Science. 2014;346:851–4. doi:10.1126/science.1259100.
CAS
Article
Google Scholar
Pfeiffer M, Spessa A, Kaplan JO. A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0). Geosci Model Dev. 2013;6:643–85. doi:10.5194/gmd-6-643-2013.
Article
CAS
Google Scholar
Magi BI. Global lightning parameterization from CMIP5 climate model output. J Atmos Ocean Technol. 2015;32:434–52. doi:10.1175/JTECH-D-13-00261.1.
Article
Google Scholar
Allen DJ, Pickering KE. Evaluation of lightning flash rate parameterizations for use in a global chemical transport model. J Geophys Res: Atmos. 2002;107, ACH 15-11-21. doi:10.1029/2002JD002066.
Google Scholar
Price C, Rind D. A simple lightning parameterization for calculating global lightning distributions. J Geophys Res: Atmos. 1992;97:9919–33. doi:10.1029/92JD00719.
Article
Google Scholar
Holtslag AAM, Svensson G, Baas P, Basu S, Beare B, Beljaars ACM, et al. Stable atmospheric boundary layers and diurnal cycles: challenges for weather and climate models. Bull Am Meteorol Soc. 2013;94:1691–706. doi:10.1175/BAMS-D-11-00187.1.
Article
Google Scholar