A note on the critical points of the localization landscape


Let \(\Omega \subset {{\mathbb{C}}}\) be a bounded domain. In this note, we use complex variable methods to study the number of critical points of the function \(v=v_\Omega\) that solves the elliptic problem \(\Delta v = -2\) in \(\Omega ,\) with boundary values \(v=0\) on \(\partial \Omega .\) This problem has a classical flavor but is especially motivated by recent studies on localization of eigenfunctions. We provide an upper bound on the number of critical points of v when \(\Omega\) belongs to a special class of domains in the plane, namely, domains for which the boundary \(\partial \Omega\) is contained in \(\{z:|z|^2 = f(z) + \overline{f(z)}\},\) where \(f^{\prime}(z)\) is a rational function. We furnish examples of domains where this bound is attained. We also prove a bound on the number of critical points in the case when \(\Omega\) is a quadrature domain. The note concludes with the statement of some open problems and conjectures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Among complex analysts, the index theorem is often referred to as the “generalized argument principle” [34, Sect. 2.5]. Alternatively, one can use Morse theory instead of index theory.


  1. 1.

    Aharonov, D., Shapiro, H.S.: Domains on which analytic functions satisfy quadrature identities. J. Anal. Math. 30, 39–73 (1976)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Alessandrini, G., Magnanini, R.: The index of isolated critical points and solutions of elliptic equations in the plane. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19(4), 567–589 (1992)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Alessandrini, G., Magnanini, R.: Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions. SIAM J. Math. Anal. 25(5), 1259–1268 (1994)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Arnold, D.N., David, G., Jerison, D., Mayboroda, S., Filoche, M.: Effective confining potential of quantum states in disordered media. Phys. Rev. Lett. 116, 056602 (2016)

    Article  Google Scholar 

  5. 5.

    Arnold, D., David, G., Filoche, M., Jerison, D., Mayboroda, S.: Computing spectra without solving eigenvalue problems. SIAM J. Sci. Comput. 41(1), B69–B92 (2019)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Bergweiler, W., Eremenko, A.: On the number of solutions of a transcendental equation arising in the theory of gravitational lensing. Comput. Methods Funct. Theory 10(1), 303–324 (2010)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Bergweiler, W., Eremenko, A.: Green’s function and anti-holomorphic dynamics on a torus. Proc. Am. Math. Soc. 144(7), 2911–2922 (2016)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Bergweiler, W., Eremenko, A.: On the number of solutions of some transcendental equations. Anal. Math. Phys. 8(2), 185–196 (2018)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Bleher, P.M., Homma, Y., Ji, L.L., Roeder, R.K.W.: Counting zeros of harmonic rational functions and its application to gravitational lensing. Int. Math. Res. Not. 2014(8), 2245–2264 (2013)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Branner, B., Fagella, N.: Quasiconformal surgery in holomorphic dynamics, volume 141 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2014). With contributions by X. Buff, S. Bullett, A.L. Epstein, P. Haïssinsky, C. Henriksen, C.L. Petersen, K.M. Pilgrim, T. Lei and M. Yampolsky

  11. 11.

    Chai, C.-L., Lin, C.-S., Wang, C.-L.: Mean field equations, hyperelliptic curves and modular forms: I. Camb. J. Math. 3(1–2), 127–274 (2015)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Crowe, W.D., Hasson, R., Rippon, P.J., Strain-Clark, P.E.D.: On the structure of the Mandelbar set. Nonlinearity 2(4), 541–553 (1989)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Davis, P.J.: The Schwarz Function and Its Applications. The Carus Mathematical Monographs, No. 17. The Mathematical Association of America, Buffalo (1974)

  14. 14.

    Draisma, J., HorobeŢ, E., Ottaviani, G., Sturmfels, B., Thomas, R.R.: The Euclidean distance degree of an algebraic variety. Found. Comput. Math. 16(1), 99–149 (2016)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Filoche, M., Mayboroda, S.: Strong localization induced by one clamped point in thin plate vibrations. Phys. Rev. Lett. 103, 254301 (2009)

    Article  Google Scholar 

  16. 16.

    Filoche, M., Mayboroda, S.: Universal mechanism for Anderson and weak localization. Proc. Natl Acad. Sci. USA 109(37), 14761–14766 (2012)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Fleeman, M., Khavinson, D.: Approximating ${{\overline{z}}}$ in the Bergman space. In: Recent Progress on Operator Theory and Approximation in Spaces of Analytic Functions. Contemporary Mathematics, vol. 679, pp. 79–90. American Mathematical Society, Providence (2016)

  18. 18.

    Fleeman, M., Lundberg, E.: The Bergman analytic content of planar domains. Comput. Methods Funct. Theory 17(3), 369–379 (2017)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Fleeman, M., Simanek, B.: Torsional rigidity and Bergman analytic content of simply connected regions. Comput. Methods Funct. Theory 19(1), 37–63 (2019)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Gustafsson, B., Shapiro, H.S.: What is a quadrature domain? In: Quadrature Domains and Their Applications. Operator Theory: Advances and Applications, vol. 156, pp. 1–25. Birkhäuser, Basel (2005)

  21. 21.

    Khavinson, D., Lundberg, E.: Transcendental harmonic mappings and gravitational lensing by isothermal galaxies. Complex Anal. Oper. Theory 4(3), 515–524 (2010)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Khavinson, D., Neumann, G.: On the number of zeros of certain rational harmonic functions. Proc. Am. Math. Soc. 134(4), 1077–1085 (2006)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Khavinson, D., Świa̧tek, G.: On the number of zeros of certain harmonic polynomials. Proc. Am. Math. Soc. 131(2):409–414 (2003)

  24. 24.

    Lawrence, D.J.: A Catalog of Special Plane Curves. Dover, Garden City (1972)

    MATH  Google Scholar 

  25. 25.

    Lee, S.-Y., Makarov, N.G.: Topology of quadrature domains. J. Am. Math. Soc. 29(2), 333–369 (2016)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Lin, C.-S., Wang, C.-L.: Elliptic functions, Green functions and the mean field equations on tori. Ann. Math. (2) 172(2), 911–954 (2010)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Lin, C.-S., Wang, C.-L.: Mean field equations, hyperelliptic curves and modular forms: II. J. Éc. Polytech. Math. 4, 557–593 (2017)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Magnanini, R.: An introduction to the study of critical points of solutions of elliptic and parabolic equations. Rend. Ist. Mat. Univ. Trieste 48, 121–166 (2016)

    MathSciNet  MATH  Google Scholar 

  29. 29.

    Matsumoto, Y.: An Introduction to Morse Theory. Translations of Mathematical Monographs, vol. 208. American Mathematical Society, Providence (2002). Translated from the 1997 Japanese original by K. Hudson and M. Saito, Iwanami Series in Modern Mathematics

  30. 30.

    Mukherjee, S., Nakane, S., Schleicher, D.: On multicorns and unicorns II: bifurcations in spaces of antiholomorphic polynomials. Ergod. Theory Dyn. Syst. 37(3), 859–899 (2017)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Muskhelishveli, N.: Some Basic Problems of the Mathematical Theory of Elasticity. Springer, Cham (1977)

    Book  Google Scholar 

  32. 32.

    Nakane, S., Schleicher, D.: On multicorns and unicorns. I. Antiholomorphic dynamics, hyperbolic components and real cubic polynomials. Int. J. Bifurc. Chaos Appl. Sci. Eng. 13(10), 2825–2844 (2003)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Rhie, S.H.: n-point gravitational lenses with 5(n-1) images (2003). arxiv.org/abs/astro-ph/0305166

  34. 34.

    Sheil-Small, T.: Complex Polynomials. Cambridge Studies in Advanced Mathematics, vol. 75. Cambridge University Press, Cambridge (2002)

  35. 35.

    Steinerberger, S.: Localization of quantum states and landscape functions. Proc. Am. Math. Soc. 145(7), 2895–2907 (2017)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Wilmshurst, A.S.: The valence of harmonic polynomials. Proc. Am. Math. Soc. 126(7), 2077–2081 (1998)

    MathSciNet  Article  Google Scholar 

Download references


We thank Alexandre Eremenko, Dmitry Khavinson, and Svitlana Mayboroda for helpful comments.

Author information



Corresponding author

Correspondence to Erik Lundberg.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lundberg, E., Ramachandran, K. A note on the critical points of the localization landscape. Complex Anal Synerg 7, 12 (2021). https://doi.org/10.1007/s40627-021-00075-y

Download citation


  • Critical points
  • Elliptic equations
  • Torsion function
  • Localization of eigenfunctions
  • Anti-holomorphic dynamics
  • Morse theory