Abstract
In this note, we survey the recent developments on theory of generalized quasidisks. Based on standard techniques used earlier, we also provide some minor improvements on the recorded results. A few natural questions are posed.
This is a preview of subscription content, access via your institution.
References
- 1.
Ahlfors, L.V.: Quasiconformal reflections. Acta Math. 109, 291–301 (1963)
- 2.
Ahlfors, L.V.: Lectures on Quasiconformal Mappings, Second edition, With Supplemental Chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard. University Lecture Series, 38. American Mathematical Society, Providence, RI (2006)
- 3.
Astala, K., Iwaniec, T., Martin, G.: Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton University Press, Princeton (2009)
- 4.
Gehring, F.W.: Characteristic Properties of Quasidisks, Séminaire de Mathématiques Supérieures, 84. Presses de l’Université de Montréal, Montreal (1982)
- 5.
Gehring, F.W., Hag, K.: The Ubiquitous quasidisk. With Contributions by Ole Jacob Broch. Mathematical Surveys and Monographs, vol. 184. American Mathematical Society, Providence (2012)
- 6.
Guo, C.-Y.: Generalized quasidisks and conformality II. Proc. Am. Math. Soc. 143(8), 3505–3517 (2015)
- 7.
Guo, C.-Y., Koskela, P., Takkinen, J.: Generalized quasidisks and conformality. Publ. Mat. 58(1), 193–212 (2014)
- 8.
Hencl, S., Koskela, P.: Lecture Notes on Mappings of Finite Distortion. Lecture Notes in Mathematics, vol. 2096 (2014)
- 9.
Iwaniec, T., Martin, G.: Geometric function theory and non-linear analysis. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2001)
- 10.
Iwaniec, T., Onninen, J., Zheng, Z.: Singularity in \(\cal{L}^p\)-quasidisks, submitted preprint (2019)
- 11.
Kühnau, R.: Möglichst konforme Spiegelung an einer Jordankurve, Jahresber. Deutsch. Math.-Verein 90 (1988), 90–109
- 12.
Koskela, P., Onninen, J., Tyson, J.T.: Quasihyperbolic boundary conditions and capacity: Hölder continuity of quasiconformal mappings. Comment. Math. Helv. 76(3), 416–435 (2001)
- 13.
Koskela, P., Takkinen, J.: Mappings of finite distortion: formation of cusps. Publ. Mat. 51(1), 223–242 (2007)
- 14.
Koskela, P., Takkinen, J.: A note to mappings of finite distortion: formation of cusps II. Conform. Geom. Dyn. 14, 184–189 (2010)
- 15.
Koskela, P., Zheng, Z.: Sobolev extension via reflections, submitted preprint (2018)
- 16.
Lehto, O., Virtanen, K.I.: Quasiconformal Mappings in the Plane, 2nd edn. Springer, New York (1973)
- 17.
Tukia, P.: The planar Schönflies theorem for Lipschitz maps. Ann. Acad. Sci. Fenn. Ser. A I Math. 5(1), 49–72 (1980)
- 18.
Vuorinen, M.: Conformal Geometry and Quasiregular Mappings. Lecture Notes in Mathematics, vol. 1319. Springer, Berlin (1988)
- 19.
Xu, H.: Optimal extensions of conformal mappings from the unit disk to Cardioid-type domains, published in J. Geom, Anal (2020)
- 20.
Zakeri, S.: On boundary homeomorphisms of trans-quasiconformal maps of the disk. Ann. Acad. Sci. Fenn. Math. 33(1), 241–260 (2008)
Acknowledgements
This survey is dedicated to our former Ph.D supervisor Prof. Pekka Koskela for his excellent guidance during our postgraduate studies and for bringing us to the world of quasiconformal analysis.
Funding
C.-Y.Guo is supported by the Qilu funding of Shandong University (No. 62550089963197). H. Xu is supported by the Academy of Finland (No. 21000046081).
Author information
Affiliations
Corresponding author
Additional information
Dedicated to Professor Pekka Koskela on the occasion of his 60th birthday.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Guo, CY., Xu, H. Generalized quasidisks and conformality: progress and challenges. Complex Anal Synerg 7, 2 (2021). https://doi.org/10.1007/s40627-021-00065-0
Received:
Accepted:
Published:
Keywords
- Homeomorphism of finite distortion
- Generalized quasidisk
- Local connectivity
- Three point property
- Cusps
Mathematics Subject Classification
- 30C62
- 30C65