Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Rational sphere maps, linear programming, and compressed sensing

  • 4 Accesses

Abstract

We develop a link between degree estimates for rational sphere maps and compressed sensing. We provide several new ideas and many examples, both old and new, that amplify connections with linear programming. We close with a list of ten open problems.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Baouendi, M.S., Huang, X.: Super-rigidity for holomorphic mappings between hyperquadrics with positive signature. J. Differ. Geom. 69(2), 379–98 (2005)

  2. 2.

    Baouendi, M.S., Ebenfelt, P.F., Huang, X.: Holomorphic mappings between hyperquadrics with small signature difference. Am. J. Math. 133(6), 1633–1661 (2011)

  3. 3.

    Catlin, D.W., D’Angelo, J.P.: A stabilization theorem for Hermitian forms and applications to holomorphic mappings. Math. Res. Lett. 3(2), 149–166 (1996)

  4. 4.

    D’Angelo, J.: Several Complex Variables and the Geometry of Real Hypersurfaces. CRC Press, Boca Raton (1992)

  5. 5.

    D’Angelo, J.: Proper holomorphic mappings, positivity conditions, and isometric imbedding. J. Korean Math. Soc. 40, 341–371 (2003)

  6. 6.

    D’Angelo, J.: Hermitian Analysis: From Fourier Series to CR Geometry, 2nd edn. Springer, New York (2019)

  7. 7.

    D’Angelo, J., Lebl, J.: Complexity results for CR mappings between spheres. Int. J. Math. 20(2), 149–166 (2009)

  8. 8.

    D’Angelo, J., Lebl, J.: On the complexity of proper mappings between balls. Complex Var. Elliptic Equ. 54(3), 187–204 (2009)

  9. 9.

    D’Angelo, J., Lebl, J.: Homotopy equivalence for proper holomorphic mappings. Adv. Math. 286, 160–180 (2016)

  10. 10.

    D’Angelo, J., Xiao, M.: Symmetries in CR complexity theory. Adv. Math. 313, 590–627 (2017)

  11. 11.

    D’Angelo, J., Xiao, M.: Symmetries and regularity for holomorphic maps between balls. Math. Res. Lett. 25(5), 1389–1404 (2018)

  12. 12.

    D’Angelo, J., Kos, S., Riehl, E.: A sharp bound for the degree of proper monomial mappings between balls. J. Geom. Anal. 13(4), 581–593 (2003)

  13. 13.

    Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

  14. 14.

    Donoho, D.: For most large underdetermined systems of linear equations the minimal $L^1$-norm solution is also the sparsest solution. Comm. Pure Appl. Math. 59(6), 797–829 (2006)

  15. 15.

    Faran, J.: Maps from the two-ball to the three-ball. Invent. Math. 68(3), 441–475 (1982)

  16. 16.

    Forstnerič, F.: Extending proper holomorphic maps of positive codimension. Invent. Math. 95, 31–62 (1989)

  17. 17.

    Grundmeier, D.: Signature pairs for group-invariant Hermitian polynomials. Int. J. Math. 22(3), 311–343 (2011)

  18. 18.

    Grundmeier, D., Lebl, J., Vivas, L.: Bounding the rank of Hermitian forms and rigidity for CR mappings of hyperquadrics. Math. Ann. 358(3–4), 1059–1089 (2014)

  19. 19.

    Huang, X., Ji, S., Xu, D.: A new gap phenomenon for proper holomorphic mappings from ${\mathbb{B}}^n$ into ${\mathbb{B}}^N$. Math. Res. Lett. 13(4), 515–529 (2006)

  20. 20.

    Huang, X., Ji, S., Yin, W.: On the third gap for proper holomorphic maps between balls. Math. Ann. 358(1–2), 115–142 (2014)

  21. 21.

    Lebl, J.: Normal forms, Hermitian operators, and CR maps of spheres and hyperquadrics. Mich. Math. J. 60(3), 603–628 (2011)

  22. 22.

    Lebl, J.: Addendum to uniqueness of certain polynomials constant on a line. arXiv:1302.1441v2

  23. 23.

    Lebl, J., Lichtblau, D.: Uniqueness of certain polynomials constant on a line. Linear Algebra Appl. 433(4), 824–837 (2010)

  24. 24.

    Lebl, J., Peters, H.: Polynomials constant on a hyperplane and CR maps of hyperquadrics. Mosc. Math. J. 11(2), 285–315 (2011)

  25. 25.

    Lebl, J., Peters, H.: Polynomials constant on a hyperplane and CR maps of spheres. Ill. J. Math. 56(1), 155–175 (2012)

  26. 26.

    Petkovsek, M., Wilf, H., Zeilberger, D.: A = B. A. K. Peters Ltd., Wellesley (1996)

  27. 27.

    Wono, S.: Proper holomorphic mappings in several complex variables. PhD thesis, University of Illinois (1993)

Download references

Author information

Correspondence to John P. D’Angelo.

Additional information

In memory of Nick Hanges.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

D’Angelo, J.P., Grundmeier, D. & Lebl, J. Rational sphere maps, linear programming, and compressed sensing. Complex Anal Synerg 6, 4 (2020). https://doi.org/10.1007/s40627-020-0041-5

Download citation

Keywords

  • Rational sphere maps
  • CR complexity
  • Proper holomorphic maps
  • Compressed sensing
  • Linear programming

Mathematics Subject Classification

  • 32H35
  • 32M99
  • 32V99
  • 90C05
  • 94A12