A survey of the \(L^p\) regularity of the Bergman projection


Although the Bergman projection operator \({\mathbf{B}}_{\Omega }\) is defined on \(L^2(\Omega )\), its behavior on other \(L^p(\Omega )\) spaces for \(p\not =2\) is an active research area. We survey some of the recent results on \(L^p\) estimates on the Bergman projection.

This is a preview of subscription content, access via your institution.


  1. 1.

    Abate, M., Raissy, J., Saracco, A.: Toeplitz operators and Carleson measures in strongly pseudoconvex domains. J. Funct. Anal. 263(11), 3449–3491 (2012)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Barrett, D.E.: Irregularity of the Bergman projection on a smooth bounded domain in \({\bf C}^{2}\). Ann. Math. (2) 119(2), 431–436 (1984)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bekollé, D., Bonami, A.: Inégalités à poids pour le noyau de Bergman. C. R. Acad. Sci. Paris Sér. A-B 286(18), A775–A778 (1978)

    Google Scholar 

  4. 4.

    Beberok, T.: \(L^p\) boundedness of the Bergman projection on some generalized Hartogs triangles. Bull. Iran. Math. Soc. 43(7), 2275–2280 (2017)

    MathSciNet  Google Scholar 

  5. 5.

    Bell, S.R.: Biholomorphic mappings and the \({\bar{\partial }}\)-problem. Ann. Math. (2) 114(1), 103–113 (1981)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Bell, S., Ligocka, E.: A simplification and extension of Fefferman’s theorem on biholomorphic mappings. Invent. Math. 57(3), 283–289 (1980)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Boas, H.P., Straube, E.J.: Global regularity of the \({\overline{\partial }}\)-Neumann problem: a survey of the \(L^2\)-Sobolev theory. In: Several Complex Variables (Berkeley, CA, 1995–1996). Mathematical Sciences Research Institute Publications, vol. 37, pp. 79–111. Cambridge University Press, Cambridge (1999)

  8. 8.

    Barrett, D., Şahutoğlu, S.: Irregularity of the Bergman projection on worm domains in \(\mathbb{C}^n\). Mich. Math. J. 61(1), 187–198 (2012)

    Article  MathSciNet  Google Scholar 

  9. 9.

    Charpentier, P., Dupain, Y.: Estimates for the Bergman and Szegö projections for pseudoconvex domains of finite type with locally diagonalizable Levi form. Publ. Mat. 50(2), 413–446 (2006)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Chen, L.: The \(L^p\) boundedness of the Bergman projection for a class of bounded Hartogs domains. J. Math. Anal. Appl. 448(1), 598–610 (2017)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Čučković, Ž., McNeal, J.D.: Special Toeplitz operators on strongly pseudoconvex domains. Rev. Mat. Iberoam. 22(3), 851–866 (2006)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Chen, L., McNeal, J.D.: Product domains, multi-Cauchy transforms, and the \({\overline{\partial }}\) equation. Adv. Math. 360(106930), 42 (2020)

    MathSciNet  Google Scholar 

  13. 13.

    Chakrabarti, D., Zeytuncu, Y.E.: \(L^p\) mapping properties of the Bergman projection on the Hartogs triangle. Proc. Am. Math. Soc. 144(4), 1643–1653 (2016)

    Article  MathSciNet  Google Scholar 

  14. 14.

    Dostanić, M.R.: Unboundedness of the Bergman projections on \(L^p\) spaces with exponential weights. Proc. Edinb. Math. Soc. (2) 47(1), 111–117 (2004)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Edholm, L.D., McNeal, J.D.: The Bergman projection on fat Hartogs triangles: \(L^p\) boundedness. Proc. Am. Math. Soc. 144(5), 2185–2196 (2016)

    Article  MathSciNet  Google Scholar 

  16. 16.

    Edholm, L.D., McNeal, J.D.: Bergman subspaces and subkernels: degenerate \(L^p\) mapping and zeroes. J. Geom. Anal. 27(4), 2658–2683 (2017)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Fefferman, C.: The Bergman kernel and biholomorphic mappings of pseudoconvex domains. Invent. Math. 26, 1–65 (1974)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Fornæss, J.E., Lee, L., Zhang, Y.: On supnorm estimates for \({\overline{\partial }}\) on infinite type convex domains in \(\mathbb{C}^2\). J. Geom. Anal. 21(3), 495–512 (2011)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Forelli, F., Rudin, W.: Projections on spaces of holomorphic functions in balls. Indiana Univ. Math. J. 24, 593–602 (1974/75)

  20. 20.

    Fornæss, J.E., Sibony, N.: On \(L^p\) estimates for \({\overline{\partial }}\). In: Several Complex Variables and Complex Geometry, Part 3 (Santa Cruz, CA, 1989). Proceedings of Symposia in Pure Mathematics, vol. 52, pp. 129–163. American Mathematical Society, Providence, RI (1991)

  21. 21.

    Hedenmalm, H.: The dual of a Bergman space on simply connected domains. J. Anal. Math. 88, 311–335 (2002)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Huo, Z.: \(L^p\) estimates for the Bergman projection on some Reinhardt domains. Proc. Am. Math. Soc. 146(6), 2541–2553 (2018)

    Article  MathSciNet  Google Scholar 

  23. 23.

    Huo, Z., Wagner, N., Wick, B.: A Bekollé-Bonami class of weights for certain pseudoconvex domains. Preprint. arXiv:2001.08302 (2020)

  24. 24.

    Huo, Z., Wagner, N., Wick, B.: Bekollé-Bonami estimates on some pseudoconvex domains. Preprint arXiv:2001.07868 (2020)

  25. 25.

    Harrington, P.S., Zeytuncu, Y.E.: \(L^p\) mapping properties for the Cauchy-Riemann equations on Lipschitz domains admitting subelliptic estimates. Complex Var. Elliptic Equ. 64(3), 369–385 (2019)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Jarnicki, M., Pflug, P.: First Steps in Several Complex Variables: Reinhardt domains. EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich (2008)

  27. 27.

    Kerzman, N.: Hölder and \(L^{p}\) estimates for solutions of \({\bar{\partial }} u=f\) in strongly pseudoconvex domains. Commun. Pure Appl. Math. 24, 301–379 (1971)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Khanh, T.V., Liu, J., Thuc, P.T.: Bergman-Toeplitz operators on weakly pseudoconvex domains. Math. Z. 291(1–2), 591–607 (2019)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Kohn, J.J.: A survey of the \({\bar{\partial }}\)-Neumann problem. In: Complex Analysis of Several Variables (Madison, Wis., 1982). Proceedings of Symposia in Pure Mathematics, vol. 41, pp. 137–145. American Mathematical Society, Providence, RI (1984)

  30. 30.

    Krantz, S.G., Peloso, M.M.: The Bergman kernel and projection on non-smooth worm domains. Houst. J. Math. 34(3), 873–950 (2008)

    MathSciNet  Google Scholar 

  31. 31.

    Krantz, S.G., Peloso, M.M., Stoppato, C.: Bergman kernel and projection on the unbounded Diederich-Fornæss worm domain. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16(4), 1153–1183 (2016)

    MathSciNet  Google Scholar 

  32. 32.

    Krantz, S.G.: Geometric Function Theory. Cornerstones. Explorations in Complex Analysis. Birkhäuser, Boston (2006)

    Google Scholar 

  33. 33.

    Krantz, S.G.: Geometric Analysis of the Bergman Kernel and Metric. Graduate Texts in Mathematics, vol. 268. Springer, New York (2013)

  34. 34.

    Lieb, I., Michel, J.: The Cauchy-Riemann Complex. Integral Formulae and Neumann Problem. Aspects of Mathematics, E34. Friedr. Vieweg & Sohn, Braunschweig (2002)

  35. 35.

    Lanzani, L., Stein, E.M.: Szegö and Bergman projections on non-smooth planar domains. J. Geom. Anal. 14(1), 63–86 (2004)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Lanzani, L., Stein, E.M.: The Bergman projection in \(L^p\) for domains with minimal smoothness. Ill. J. Math. 56(1), 127–154(2013) (2012)

    Article  MathSciNet  Google Scholar 

  37. 37.

    McNeal, J.D.: Boundary behavior of the Bergman kernel function in \({ C}^2\). Duke Math. J. 58(2), 499–512 (1989)

    MathSciNet  Article  Google Scholar 

  38. 38.

    McNeal, J.D.: Local geometry of decoupled pseudoconvex domains. In: Complex Analysis (Wuppertal, 1991). Aspects of Mathematics, E17, pp. 223–230. Friedr. Vieweg, Braunschweig (1991)

  39. 39.

    McNeal, J.D.: The Bergman projection as a singular integral operator. J. Geom. Anal. 4(1), 91–103 (1994)

    MathSciNet  Article  Google Scholar 

  40. 40.

    Monguzzi, A., Peloso, M.M.: Sharp estimates for the Szegö projection on the distinguished boundary of model worm domains. Integral Equ. Oper. Theory 89(3), 315–344 (2017)

    Article  Google Scholar 

  41. 41.

    McNeal, J.D., Stein, E.M.: Mapping properties of the Bergman projection on convex domains of finite type. Duke Math. J. 73(1), 177–199 (1994)

    MathSciNet  Article  Google Scholar 

  42. 42.

    Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)

    MathSciNet  Article  Google Scholar 

  43. 43.

    Munasinghe, S., Zeytuncu, Y.E.: Irregularity of the Szegö projection on bounded pseudoconvex domains in \(\mathbb{C}^2\). Integral Equ. Oper. Theory 82(3), 417–422 (2015)

    Article  Google Scholar 

  44. 44.

    Munasinghe, S., Zeytuncu, Y.E.: \(L^p\) regularity of weighted Szegö projections on the unit disc. Pac. J. Math. 276(2), 449–458 (2015)

    Article  Google Scholar 

  45. 45.

    Phong, D.H., Stein, E.M.: Estimates for the Bergman and Szegö projections on strongly pseudo-convex domains. Duke Math. J. 44(3), 695–704 (1977)

    MathSciNet  Article  Google Scholar 

  46. 46.

    Zeytuncu, Y.E.: \(L^p\) regularity of weighted Bergman projections. Trans. Am. Math. Soc. 365(6), 2959–2976 (2013)

    Article  MathSciNet  Google Scholar 

  47. 47.

    Zhu, K.H.: Operator Theory in Function Spaces. Monographs and Textbooks in Pure and Applied Mathematics, vol. 139. Marcel Dekker, Inc., New York (1990)

  48. 48.

    Zaharjuta, V.P., Judovič, V.I.: The general form of a linear functional in \(H_{p}^{^{\prime }}\). Uspehi Mat. Nauk 19(2 (116)), 139–142 (1964)

    MathSciNet  Google Scholar 

  49. 49.

    Zhao, R., Zhu, K.: Theory of Bergman spaces in the unit ball of \({\mathbb{C}}^n\). Mém. Soc. Math. Fr. (N.S.) (115)(vi+103) pp. (2009) (2008)

Download references


I thank Mehmet Çelik, John D’Angelo, Nordine Mir, and Sönmez Şahutoğlu, and the anonymous referee for many useful comments on preliminary versions of this paper.


This work is supported by NSF (DMS-1659203) and by a Grant from the Simons Foundation (#353525).

Author information



Corresponding author

Correspondence to Yunus E. Zeytuncu.

Additional information

To the memory of Nick Hanges.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zeytuncu, Y.E. A survey of the \(L^p\) regularity of the Bergman projection. Complex Anal Synerg 6, 19 (2020). https://doi.org/10.1007/s40627-020-00056-7

Download citation


  • Bergman projection
  • \(L^p\) regularity
  • Sobolev regularity

Mathematics Subject Classification

  • Primary 32A25
  • Secondary 32A36