Skip to main content
Log in

An overall review on influence of root architecture on soil carbon sequestration potential

  • Published:
Theoretical and Experimental Plant Physiology Aims and scope Submit manuscript

Abstract

Soil carbon sequestration is a vital ecosystem function that mitigates climate change by absorbing atmospheric carbon dioxide (CO2). Root characteristics such as depth, diameter, length, and branching pattern affect soil carbon dynamics through root-soil interactions and organic matter breakdown. Here we review field surveys, laboratory analysis, and mathematical modeling to understand how root structures affect soil carbon storage. Further, certain root features increase soil carbon sequestration, suggesting that selective breeding and genetic engineering of plants could maximize this ecological benefit. However, more research is needed to understand the complex interactions between roots, soil biota, and soil organic matter under changing environmental conditions. In addition, the benefit of climate change mitigation methods and soil carbon models from the inclusion of root architecture was reviewed. Studies in the realm of root-soil interactions encompass a variety of academic fields, including agronomy, ecology, soil science, and plant physiology. Insights into how roots interact with their soil environment and the effects of these interactions on plant health, agricultural productivity, and environmental sustainability have been gained through this research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data can be provided upon resonable request.

References

  • Abalos D, van Groenigen JW, Philippot L, Lubbers IM, De Deyn GB (2019) Plant trait-based approaches to improve nitrogen cycling in agroecosystems. J Appl Ecol 56(11):2454–2466

    Article  Google Scholar 

  • Abd Allah AA, Badawy SA, Zayed BA, El-Gohary AA (2010) The role of root system traits in the drought tolerance of rice (Oryza sativa L.). J Plant Prod 1(4):621–631

    Google Scholar 

  • Abdel-Lateif K, Bogusz D, Hocher V (2012) The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signal Behav 7(6):636–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed AAQ, Odelade KA, Babalola OO (2019) Microbial inoculants for improving carbon sequestration in agroecosystems to mitigate climate change. Handbook of climate change resilience. Springer, Cham, pp 1–21

    Google Scholar 

  • Baker JM, Ochsner TE, Venterea RT, Griffis TJ (2007) Tillage and soil carbon sequestration—What do we really know? Agr Ecosyst Environ 118(1–4):1–5

    Article  CAS  Google Scholar 

  • Bardgett RD, Manning P, Morriën E, De Vries FT (2013) Hierarchical responses of plant–soil interactions to climate change: consequences for the global carbon cycle. J Ecol 101(2):334–343

    Article  Google Scholar 

  • Bartens J, Day SD, Harris JR, Dove JE, Wynn TM (2008) Can urban tree roots improve infiltration through compacted subsoils for stormwater management? J Environ Qual 37(6):2048–2057

    Article  CAS  PubMed  Google Scholar 

  • Basile-Doelsch I, Balesdent J, Pellerin S (2020) Reviews and syntheses: the mechanisms underlying carbon storage in soil. Biogeosciences 17(21):5223–5242

    Article  CAS  Google Scholar 

  • Beidler KV, Pritchard SG (2017) Maintaining connectivity: understanding the role of root order and mycelial networks in fine root decomposition of woody plants. Plant Soil 420:19–36

    Article  CAS  Google Scholar 

  • Bodner G, Leitner D, Kaul HP (2014) Coarse and fine root plants affect pore size distributions differently. Plant Soil 380:133–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bot A, Benites J (2005) The importance of soil organic matter: key to drought-resistant soil and sustained food production (No. 80). Food & Agriculture Org, Rome

    Google Scholar 

  • Branca G, Lipper L, McCarthy N, Jolejole MC (2013) Food security, climate change, and sustainable land management. Rev Agron Sustain Develop 33:635–650

    Article  Google Scholar 

  • Brook AH (2009) Multilevel complex interactions between genetic, epigenetic and environmental factors in the aetiology of anomalies of dental development. Arch Oral Biol 54:S3–S17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruce D, Silva EM, Dawson JC (2022) Cover crop-based reduced tillage management impacts organic squash yield, pest pressure, and management time. Front Sustain Food Syst 6:991463

    Article  Google Scholar 

  • Calleja-Cabrera J, Boter M, Oñate-Sánchez L, Pernas M (2020) Root growth adaptation to climate change in crops. Front Plant Sci 11:544. https://doi.org/10.3389/fpls.2020.00544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YL, Liu RJ, Bi YL, Feng G (2014) Use of mycorrhizal fungi for forest plantations and minesite rehabilitation. Mycorrhizal fungi: use in sustainable agriculture and land restoration. Springer, Berlin, pp 325–355

    Chapter  Google Scholar 

  • Choi HS, Cho HT (2019) Root hairs enhance Arabidopsis seedling survival upon soil disruption. Sci Rep 9(1):11181

    Article  PubMed  PubMed Central  Google Scholar 

  • Colmer TD (2003) Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ 26(1):17–36

    Article  CAS  Google Scholar 

  • Davidson O, Halsnaes K, Huq S, Kok M, Metz B, Sokona Y, Verhagen J (2003) The development and climate nexus: the case of sub-Saharan Africa. Clim Policy 3(sup1):S97–S113

    Article  Google Scholar 

  • de Vries FT, Williams A, Stringer F, Willcocks R, McEwing R, Langridge H, Straathof AL (2019) Changes in root-exudate-induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling. New Phytol 224(1):132–145

    Article  PubMed  PubMed Central  Google Scholar 

  • Dijkstra FA, Zhu B, Cheng W (2021) Root effects on soil organic carbon: a double-edged sword. New Phytol 230(1):60–65

    Article  CAS  PubMed  Google Scholar 

  • Erktan A, Cécillon L, Graf F, Roumet C, Legout C, Rey F (2016) Increase in soil aggregate stability along a Mediterranean successional gradient in severely eroded gully bed ecosystems: combined effects of soil, root traits and plant community characteristics. Plant Soil 398:121–137

    Article  CAS  Google Scholar 

  • Fan P, Guo D (2010) Slow decomposition of lower order roots: a key mechanism of root carbon and nutrient retention in the soil. Oecologia 163:509–515

    Article  PubMed  Google Scholar 

  • Fitter AH, Garbaye J (1994) Interactions between mycorrhizal fungi and other soil organisms. Plant Soil 159:123–132

    Article  Google Scholar 

  • Forseth IN (2010) The ecology of photosynthetic pathways. Nat Educ Knowl 3(10):4 https://www.nature.com/scitable/knowledge/library/the-ecology-of-photosynthetic-pathways-15785165/

  • Freschet GT, Roumet C (2017) Sampling roots to capture plant and soil functions. Funct Ecol 31(8):1506–1518

    Article  Google Scholar 

  • Freschet GT, Pagès L, Iversen CM, Comas LH, Rewald B, Roumet C, McCormack ML (2021) A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. New Phytol 232(3):973–1122

    Article  PubMed  PubMed Central  Google Scholar 

  • Galindo-Castañeda T, Lynch JP, Six J, Hartmann M (2022) Improving soil resource uptake by plants through capitalizing on synergies between root architecture and anatomy and root-associated microorganisms. Front Plant Sci 13:577

    Article  Google Scholar 

  • Gao K, Mao Z, Meng E, Li J, Liu X, Zhang Y, Liu Y (2022) Effects of elevated CO2 and warming on the root-associated microbiota in an agricultural ecosystem. Environ Microbiol 24(12):6252–6266

    Article  CAS  PubMed  Google Scholar 

  • Goebel M, Hobbie SE, Bulaj B, Zadworny M, Archibald DD, Oleksyn J, Eissenstat DM (2011) Decomposition of the finest root branching orders: linking belowground dynamics to fine-root function and structure. Ecol Monogr 81(1):89–102

    Article  Google Scholar 

  • Gougoulias C, Clark JM, Shaw LJ (2014) The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agric 94(12):2362–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould IJ, Quinton JN, Weigelt A, De Deyn GB, Bardgett RD (2016) Plant diversity and root traits benefit physical properties key to soil function in grasslands. Ecol Lett 19(9):1140–1149

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen AJ, Neilson RP, Dale VH, Flather CH, Iverson LR, Currie DJ, Bartlein PJ (2001) Global change in forests: responses of species, communities, and biomes: interactions between climate change and land use are projected to cause large shifts in biodiversity. BioScience 51(9):765–779

    Article  Google Scholar 

  • Harman G, Khadka R, Doni F, Uphoff N (2021) Benefits to plant health and productivity from enhancing plant microbial symbionts. Front Plant Sci 11:610065

    Article  PubMed  PubMed Central  Google Scholar 

  • Herms CH, Hennessy RC, Bak F, Dresbøll DB, Nicolaisen MH (2022) Back to our roots: exploring the role of root morphology as a mediator of beneficial plant–microbe interactions. Environ Microbiol 24(8):3264–3272

    Article  PubMed  PubMed Central  Google Scholar 

  • Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162(1):9–24

    Article  Google Scholar 

  • Hooker BA, Morris TF, Peters R, Cardon ZG (2005) Long-term effects of tillage and corn stalk return on soil carbon dynamics. Soil Sci Soc Am J 69(1):188–196

    Article  CAS  Google Scholar 

  • Iannucci A, Canfora L, Nigro F, De Vita P, Beleggia R (2021) Relationships between root morphology, root exudate compounds and rhizosphere microbial community in durum wheat. Appl Soil Ecol 158:103781

    Article  Google Scholar 

  • Ingram DL, Ruter JM, Martin CA (2015) Characterization and impact of supraoptimal root-zone temperatures in container-grown plants. HortScience 50(4):530–539

    Article  Google Scholar 

  • Iversen CM (2010) Digging deeper: fine-root responses to rising atmospheric CO2 concentration in forested ecosystems. New Phytol 186(2):346–357

    Article  PubMed  Google Scholar 

  • Jackson RB, Lajtha K, Crow SE, Hugelius G, Kramer MG, Piñeiro G (2017) The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu Rev Ecol Evol Syst 48:419–445

    Article  Google Scholar 

  • Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S (2017) The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Front Plant Sci 8:1617

    Article  PubMed  PubMed Central  Google Scholar 

  • Julkowska MM, Koevoets IT, Mol S, Hoefsloot H, Feron R, Tester MA, Testerink C (2017) Genetic components of root architecture remodeling in response to salt stress. Plant cell 29(12):3198–3213. https://doi.org/10.1105/tpc.16.00680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kane D, Solutions LLC (2015) Carbon sequestration potential on agricultural lands: a review of current science and available practices. National Sustainable Agriculture Coalition Breakthrough Strategies and Solutions, LLC 1–35

  • Kattge J, Bönisch G, Díaz S, Lavorel S, Prentice IC, Leadley P, Tautenhahn S, Werner GD, Aakala T, Abedi M, Acosta AT (2020) TRY plant trait database–enhanced coverage and open access. Glob Change Biol 26(1):119–188

    Article  Google Scholar 

  • Kim J, Ale S, Kreuter UP, Teague WR, DelGrosso SJ, Dowhower SL (2023) Evaluating the impacts of alternative grazing management practices on soil carbon sequestration and soil health indicators. Agr Ecosyst Environ 342:108234

    Article  CAS  Google Scholar 

  • Kirschbaum MU, Don A, Beare MH, Hedley MJ, Pereira RC, Curtin D, Lawrence-Smith EJ (2021) Sequestration of soil carbon by burying it deeper within the profile: a theoretical exploration of three possible mechanisms. Soil Biol Biochem 163:108432

    Article  CAS  Google Scholar 

  • Krauss M, Wiesmeier M, Don A, Cuperus F, Gattinger A, Gruber S, Steffens M (2022) Reduced tillage in organic farming affects soil organic carbon stocks in temperate Europe. Soil Tillage Res 216:105262

    Article  Google Scholar 

  • Kuzyakov Y, Gavrichkova O (2010) Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Glob Change Biol 16(12):3386–3406

    Article  Google Scholar 

  • Lal R (2006) Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degrad Dev 17(2):197–209

    Article  Google Scholar 

  • Laliberté E (2017) Below-ground frontiers in trait-based plant ecology. New Phytol 213(4):1597–1603

    Article  PubMed  Google Scholar 

  • Landry JS, Matthews HD (2016) Non-deforestation fire vs. fossil fuel combustion: the source of CO2 emissions affects the global carbon cycle and climate responses. Biogeosciences 13(7):2137–2149

    Article  Google Scholar 

  • Lawlor DW (2013) Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. J Exp Bot 64(1):83–108

    Article  CAS  PubMed  Google Scholar 

  • Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528(7580):60–68

    Article  CAS  PubMed  Google Scholar 

  • Lei X, Shen Y, Zhao J, Huang J, Wang H, Yu Y, Xiao C (2023) Root exudates mediate the processes of soil organic carbon input and efflux. Plants 12(3):630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lessmann M, Ros GH, Young MD, de Vries W (2022) Global variation in soil carbon sequestration potential through improved cropland management. Glob Change Biol 28(3):1162–1177

    Article  CAS  Google Scholar 

  • Li A, Fahey TJ, Pawlowska TE, Fisk MC, Burtis J (2015) Fine root decomposition, nutrient mobilization and fungal communities in a pine forest ecosystem. Soil Biol Biochem 83:76–83

    Article  CAS  Google Scholar 

  • Li X, Zeng R, Liao H (2016) Improving crop nutrient efficiency through root architecture modifications. J Integr Plant Biol 58(3):193–202

    Article  PubMed  Google Scholar 

  • Liang Z, Jin X, Zhai P, Zhao Y, Cai J, Li S, Li C (2022) Combination of organic fertilizer and slow-release fertilizer increases pineapple yields, agronomic efficiency and reduces greenhouse gas emissions under reduced fertilization conditions in tropical areas. J Clean Prod 343:131054

    Article  CAS  Google Scholar 

  • Lucas M, Santiago JP, Chen J, Guber A, Kravchenko A (2023) The soil pore structure encountered by roots affects plant-derived carbon inputs and fate. New Phytologist. https://doi.org/10.1111/nph.19159

    Article  PubMed  Google Scholar 

  • Lynch J, Marschner P, Rengel Z (2012) Effect of internal and external factors on root growth and development. Marschner’s mineral nutrition of higher plants. Academic Press, Cambridge, pp 331–346

    Chapter  Google Scholar 

  • Lynch JP, Strock CF, Schneider HM, Sidhu JS, Ajmera I, Galindo-Castañeda T, Klein SP, Hanlon MT (2021) Root anatomy and soil resource capture. Plant Soil 466:21–63

    Article  CAS  Google Scholar 

  • Ma W, Tang S, Dengzeng Z, Zhang D, Zhang T, Ma X (2022) Root exudates contribute to belowground ecosystem hotspots: a review. Front Microbiol 13:937940

    Article  PubMed  PubMed Central  Google Scholar 

  • Maqbool S, Hassan MA, Xia X, York LM, Rasheed A, He Z (2022) Root system architecture in cereals: progress, challenges and perspective. Plant J 110(1):23–42

    Article  CAS  PubMed  Google Scholar 

  • McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D, Zadworny M (2015) Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol 207(3):505–518

    Article  PubMed  Google Scholar 

  • Mcleod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, Silliman BR (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9(10):552–560

    Article  Google Scholar 

  • Mickovski SB, Van Beek LPH (2009) Root morphology and effects on soil reinforcement and slope stability of young vetiver (Vetiveria zizanioides) plants grown in semi-arid climate. Plant Soil 324(1–2):43–56

    Article  CAS  Google Scholar 

  • Minerovic AJ, Valverde-Barrantes OJ, Blackwood CB (2018) Physical and microbial mechanisms of decomposition vary in importance among root orders and tree species with differing chemical and morphological traits. Soil Biol Biochem 124:142–149

    Article  CAS  Google Scholar 

  • Moreau D, Bardgett RD, Finlay RD, Jones DL, Philippot L (2019) A plant perspective on nitrogen cycling in the rhizosphere. Funct Ecol 33(4):540–552

    Article  Google Scholar 

  • Moreno-Risueno MA, Van Norman JM, Moreno A, Zhang J, Ahnert SE, Benfey PN (2010) Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 329(5997):1306–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosaddeghi MR, Mahboubi AA, Safadoust A (2009) Short-term effects of tillage and manure on some soil physical properties and maize root growth in a sandy loam soil in western Iran. Soil Tillage Res 104(1):173–179

    Article  Google Scholar 

  • Nagel KA, Kastenholz B, Jahnke S, Van Dusschoten D, Aach T, Mühlich M, Schurr U (2009) Temperature responses of roots: impact on growth, root system architecture and implications for phenotyping. Funct Plant Biol 36(11):947–959

    Article  CAS  PubMed  Google Scholar 

  • Nibau C, Gibbs DJ, Coates JC (2008) Branching out in new directions: the control of root architecture by lateral root formation. New Phytol 179(3):595–614

    Article  CAS  PubMed  Google Scholar 

  • Olesen JE, Bindi M (2002) Consequences of climate change for European agricultural productivity, land use and policy. Eur J Agron 16(4):239–262

    Article  Google Scholar 

  • Ontl TA, Cambardella CA, Schulte LA, Kolka RK (2015) Factors influencing soil aggregation and particulate organic matter responses to bioenergy crops across a topographic gradient. Geoderma 255:1–11

    Article  Google Scholar 

  • Osono T, Azuma JI, Hirose D (2014) Plant species effect on the decomposition and chemical changes of leaf litter in grassland and pine and oak forest soils. Plant Soil 376:411–421

    Article  CAS  Google Scholar 

  • Ostonen I, Püttsepp Ü, Biel C, Alberton O, Bakker MR, Lõhmus K, Brunner I (2007) Specific root length as an indicator of environmental change. Plant Biosyst 141(3):426–442

    Article  Google Scholar 

  • Pages L (2011) Root system architecture: analysis from root systems to individual roots. Encyclopedia of Agrophysics. Springe r Netherlands, Dordrecht. Root System Architecture: Analysis from Root Systems to Individual Roots | SpringerLink

  • Panchal P, Preece C, Peñuelas J, Giri J (2022) Soil carbon sequestration by root exudates. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2022.04.009

    Article  PubMed  Google Scholar 

  • Pérès G, Cluzeau D, Menasseri S, Soussana JF, Bessler H, Engels C, Eisenhauer N (2013) Mechanisms linking plant community properties to soil aggregate stability in an experimental grassland plant diversity gradient. Plant Soil 373:285–299

    Article  Google Scholar 

  • Pessarrodona A, Franco-Santos RM, Wright LS, Vanderklift MA, Howard J, Pidgeon E, Filbee-Dexter K (2023) Carbon sequestration and climate change mitigation using macroalgae: a state of knowledge review. Biol Rev. https://doi.org/10.1111/brv.12990

    Article  PubMed  Google Scholar 

  • Poirier V, Roumet C, Angers DA, Munson AD (2017) Species and root traits impact macroaggregation in the rhizospheric soil of a Mediterranean common garden experiment. Plant Soil 424:289–302

    Article  Google Scholar 

  • Poirier V, Roumet C, Munson AD (2018) The root of the matter: Linking root traits and soil organic matter stabilization processes. Soil Biol Biochem 120:246–259

    Article  CAS  Google Scholar 

  • Powlson DS, Whitmore AP, Goulding KW (2011) Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Eur J Soil Sci 62(1):42–55

    Article  CAS  Google Scholar 

  • Qin T, Kazim A, Wang Y, Richard D, Yao P, Bi Z, Bai J (2022) Root-related genes in crops and their application under drought stress resistance—a review. Int J Mol Sci 23(19):11477

    Article  PubMed  PubMed Central  Google Scholar 

  • Rane NR, Tapase S, Kanojia A, Watharkar A, Salama ES, Jang M, Jeon BH (2022) Molecular insights into plant–microbe interactions for sustainable remediation of contaminated environment. Bioresour Technol 344:126246

    Article  CAS  PubMed  Google Scholar 

  • Rice CW, Reed D (2007) Soil carbon sequestration and greenhouse gas mitigation: a role for American agriculture. Manhattan: Kansas State University. https://bipartisanpolicy.org/download/?file=/wpcontent/uploads/2019/03/cwrice_report_30907_final.pdf

  • Rich SM, Watt M (2013) Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver. J Exp Bot 64(5):1193–1208

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues L, Hardy B, Huyghebeart B, Fohrafellner J, Fornara D, Barančíková G, Leifeld J (2021) Achievable agricultural soil carbon sequestration across Europe from country-specific estimates. Glob Change Biol 27(24):6363–6380

    Article  CAS  Google Scholar 

  • Sadhukhan B, Srivastava RK, Chakraborty A, Panda RK (2024) Scientific evidence supporting the progression of climate change-induced drought through history. Integrated drought management, vol 1. CRC Press, Boca Raton, pp 525–540

    Google Scholar 

  • Samuel A, Dines L (2023) 1 - Plants. Woodhead publishing series in food science, technology and nutrition, Lockhart and Wiseman’s Crop Husbandry Including Grassland, 10th edn. Woodhead Publishing, Sawston, pp 1–31

    Google Scholar 

  • Schenk HJ, Jackson RB (2002) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90:480–494

    Article  Google Scholar 

  • Searchinger T, Ranganathan J (2020) INSIDER: Further explanation on the potential contribution of soil carbon sequestration on working agricultural lands to climate change mitigation. https://www.wri.org/technical-perspectives/insider-further-explanation-potential-contribution-soil-carbon-sequestration-working

  • Sharma R (2017) Ectomycorrhizal mushrooms: their diversity, ecology and practical applications. Mycorrhiza-function, diversity, state of the art. Springer, Cham, pp 99–131

    Chapter  Google Scholar 

  • Silver WL, Miya RK (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–419

    Article  PubMed  Google Scholar 

  • Singh BK, Millard P, Whiteley AS, Murrell JC (2004) Unravelling rhizosphere–microbial interactions: opportunities and limitations. Trends Microbiol 12(8):386–393

    Article  CAS  PubMed  Google Scholar 

  • Sokol NW, Slessarev E, Marschmann GL, Nicolas A, Blazewicz SJ, Brodie EL, Pett-Ridge J (2022) Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat Rev Microbiol 20(7):415–430

    Article  CAS  PubMed  Google Scholar 

  • Srivastava RK, Mequanint F, Chakraborty A, Panda RK, Halder D (2022) Augmentation of maize yield by strategic adaptation to cope with climate change for a future period in Eastern India. J Clean Prod 339:130599

    Article  Google Scholar 

  • Stockmann U, Adams MA, Crawford JW, Field DJ, Henakaarchchi N, Jenkins M, Zimmermann M (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ 164:80–99

    Article  CAS  Google Scholar 

  • Sukumar P, Legue V, Vayssieres A, Martin F, Tuskan GA, Kalluri UC (2013) Involvement of auxin pathways in modulating root architecture during beneficial plant–microorganism interactions. Plant Cell Environ 36(5):909–919

    Article  CAS  PubMed  Google Scholar 

  • Sun T, Mao Z, Han Y (2013) Slow decomposition of very fine roots and some factors controlling the process: a 4-year experiment in four temperate tree species. Plant Soil 372:445–458

    Article  CAS  Google Scholar 

  • Taub D (2010) Effects of rising atmospheric concentrations of carbon dioxide on plants. Nat Educ Knowl 1(8)

  • Tedersoo L, Bahram M, Zobel M (2020) How mycorrhizal associations drive plant population and community biology. Science 367(6480):eaba1223

    Article  CAS  PubMed  Google Scholar 

  • Tol RS (2016) The impacts of climate change according to the IPCC. Clim Change Econ 7(01):1640004

    Article  Google Scholar 

  • Valverde-Barrantes OJ, Smemo KA, Blackwood CB (2015) Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees. Funct Ecol 29(6):796–807

    Article  Google Scholar 

  • Van Hees PA, Jones DL, Finlay R, Godbold DL, Lundström US (2005) The carbon we do not see—the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review. Soil Biol Biochem 37(1):1–13

    Article  Google Scholar 

  • Vissenberg K, Claeijs N, Balcerowicz D, Schoenaers S (2020) Hormonal regulation of root hair growth and responses to the environment in Arabidopsis. J Exp Bot 71(8):2412–2427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallenstein MD, Haddix ML, Ayres E, Steltzer H, Magrini-Bair KA, Paul EA (2013) Litter chemistry changes more rapidly when decomposed at home but converges during decomposition–transformation. Soil Biol Biochem 57:311–319

    Article  CAS  Google Scholar 

  • Wang Q, Zhang Z, Guo W, Zhu X, Xiao J, Liu Q, Yin H (2021) Absorptive and transport roots differ in terms of their impacts on rhizosphere soil carbon storage and stability in alpine forests. Soil Biol Biochem 161:108379

    Article  CAS  Google Scholar 

  • Washbourne CL, Renforth P, Manning DAC (2012) Investigating carbonate formation in urban soils as a method for capture and storage of atmospheric carbon. Sci Total Environ 431:166–175

    Article  CAS  PubMed  Google Scholar 

  • Wendel AS, Bauke SL, Amelung W, Knief C (2022) Root-rhizosphere-soil interactions in biopores. Plant Soil 475(1–2):253–277

    Article  CAS  Google Scholar 

  • Yin L, Dijkstra FA, Phillips RP, Zhu B, Wang P, Cheng W (2021) Arbuscular mycorrhizal trees cause a higher carbon to nitrogen ratio of soil organic matter decomposition via rhizosphere priming than ectomycorrhizal trees. Soil Biol Biochem 157:108246

    Article  CAS  Google Scholar 

  • Yudina A, Kuzyakov Y (2023) Dual nature of soil structure: the unity of aggregates and pores. Geoderma 434:116478

    Article  Google Scholar 

  • Zhang X, Wang W (2015) The decomposition of fine and coarse roots: their global patterns and controlling factors. Sci Rep 5(1):9940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1(2):85–93

    Article  Google Scholar 

  • Zhang R, Vivanco JM, Shen Q (2017) The unseen rhizosphere root–soil–microbe interactions for crop production. Curr Opin Microbiol 37:8–14

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R. K. Srivastava: conceptualization, writing, review, and editing; Ali Yetgin: literature review, and writing the original draft.

Corresponding author

Correspondence to R. K. Srivastava.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, R.K., Yetgin, A. An overall review on influence of root architecture on soil carbon sequestration potential. Theor. Exp. Plant Physiol. (2024). https://doi.org/10.1007/s40626-024-00323-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40626-024-00323-6

Keywords

Navigation