Bittencourt P, Pereira L, Oliveira R (2018) Pneumatic method to measure plant xylem embolism. Bio-Protocol 8:1–14. https://doi.org/10.21769/bioprotoc.3059
CAS
Article
Google Scholar
Cai J, Tyree MT (2010) The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen Populus tremuloides Michx. Plant Cell Environ 33:1059–1069. https://doi.org/10.1111/j.1365-3040.2010.02127.x
Article
PubMed
Google Scholar
Cai J, Tyree MT (2014) Measuring vessel length in vascular plants: can we divine the truth? History, theory, methods, and contrasting models. Trees 28:643–655. https://doi.org/10.1007/s00468-014-0999-9
Article
Google Scholar
Cohen S, Bennink J, Tyree M (2003) Air method measurements of apple vessel length distributions with improved apparatus and theory. J Exp Bot 54:1889–1897. https://doi.org/10.1093/jxb/erg202
CAS
Article
PubMed
Google Scholar
Greenidge KNH (1952) An approach to the study of vessel length in hardwood species. Am J Bot 39:570–574. https://doi.org/10.1002/j.1537-2197.1952.tb13070.x
Article
Google Scholar
Jacobsen AL, Brandon Pratt R, Tobin MF et al (2012) A global analysis of xylem vessel length in woody plants. Am J Bot 99:1583–1591. https://doi.org/10.3732/ajb.1200140
Article
PubMed
Google Scholar
Jansen S, Guan X, Kaack L et al (2020) The pneumatron estimates xylem embolism resistance in angiosperms based on gas diffusion kinetics: a mini-review. Acta Hortic (in press)
Kaack L, Altaner CM, Carmesin C et al (2019) Function and three-dimensional structure of intervessel pit membranes in angiosperms: a review. IAWA J 40:673–702. https://doi.org/10.1163/22941932-40190259
Article
Google Scholar
Levionnois S, Ziegler C, Jansen S et al (2020) Vulnerability and hydraulic segmentations at the stem–leaf transition: coordination across Neotropical trees. New Phytol. https://doi.org/10.1111/nph.16723
Article
PubMed
Google Scholar
Link RM, Schuldt B, Choat B et al (2018) Maximum-likelihood estimation of xylem vessel length distributions. J Theor Biol 455:329–341. https://doi.org/10.1016/j.jtbi.2018.07.036
Article
PubMed
Google Scholar
Liu M, Pan R, Tyree MT (2018) Intra-specific relationship between vessel length and vessel diameter of four species with long-to-short species-average vessel lengths: further validation of the computation algorithm. Trees 32:51–60. https://doi.org/10.1007/s00468-017-1610-y
Article
Google Scholar
Medeiros JS, Lens F, Maherali H, Jansen S (2019) Vestured pits and scalariform perforation plate morphology modify the relationships between angiosperm vessel diameter, climate and maximum plant height. New Phytol 221:1802–1813. https://doi.org/10.1111/nph.15536
CAS
Article
PubMed
Google Scholar
Pan R, Geng J, Cai J, Tyree MT (2015) A comparison of two methods for measuring vessel length in woody plants. Plant Cell Environ 38:2519–2526. https://doi.org/10.1111/pce.12566
CAS
Article
PubMed
Google Scholar
Pereira L, Bittencourt PRL, Oliveira RS et al (2016) Plant pneumatics: stem air flow is related to embolism—new perspectives on methods in plant hydraulics. New Phytol 211:357–370. https://doi.org/10.1111/nph.13905
Article
PubMed
Google Scholar
Pereira L, Bittencourt PRL, Pacheco VS et al (2020) The pneumatron: an automated pneumatic apparatus for estimating xylem vulnerability to embolism at high temporal resolution. Plant Cell Environ 43:131–142. https://doi.org/10.1111/pce.13647
CAS
Article
PubMed
Google Scholar
Scholz A, Klepsch M, Karimi Z, Jansen S (2013a) How to quantify conduits in wood? Front Plant Sci 4:1–11. https://doi.org/10.3389/fpls.2013.00056
Article
Google Scholar
Scholz A, Rabaey D, Stein A et al (2013b) The evolution and function of vessel and pit characters with respect to cavitation resistance across 10 Prunus species. Tree Physiol 33:684–694. https://doi.org/10.1093/treephys/tpt050
Article
PubMed
Google Scholar
Sperry JS, Hacke UG, Wheeler JK (2005) Comparative analysis of end wall resistivity in xylem conduits. Plant Cell Environ 28:456–465. https://doi.org/10.1111/j.1365-3040.2005.01287.x
Article
Google Scholar
Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap. Springer, Berlin
Book
Google Scholar
Wang R, Zhang L, Zhang S et al (2014) Water relations of Robinia pseudoacacia L.: do vessels cavitate and refill diurnally or are R-shaped curves invalid in Robinia? Plant Cell Environ 37:2667–2678. https://doi.org/10.1111/pce.12315
Article
PubMed
Google Scholar
Wheeler JK, Sperry JS, Hacke UG, Hoang N (2005) Inter-vessel pitting and cavitation in woody Rosaceae and other vessel led plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant Cell Environ 28:800–812. https://doi.org/10.1111/j.1365-3040.2005.01330.x
Article
Google Scholar
Williamson VG, Milburn JA (2017) Xylem vessel length and distribution: does analysis method matter? A study using Acacia. Aust J Bot 65:292–303. https://doi.org/10.1071/BT16220
Article
Google Scholar
Wu M, Zhang Y, Oya T et al (2020) Root xylem in three woody angiosperm species is not more vulnerable to embolism than stem xylem. Plant Soil 450:479–495. https://doi.org/10.1007/s11104-020-04525-0
CAS
Article
Google Scholar
Zhang Y, Carmesin C, Kaack L et al (2020) High porosity with tiny pore constrictions and unbending pathways characterize the 3D structure of intervessel pit membranes in angiosperm xylem. Plant Cell Environ 43:116–130. https://doi.org/10.1111/pce.13654
CAS
Article
PubMed
Google Scholar
Zhang Y, Lamarque LJ, Torres-Ruiz JM et al (2018) Testing the plant pneumatic method to estimate xylem embolism resistance in stems of temperate trees. Tree Physiol 38:1016–1025. https://doi.org/10.1093/treephys/tpy015
Article
PubMed
PubMed Central
Google Scholar