Skip to main content

Understanding photosynthetic and metabolic adjustments in iron hyperaccumulators grass

Abstract

Setaria parviflora and Paspalum urvillei are iron hyperaccumulating species. In order to understand how they are iron resistant, this study evaluated the adjustments in photosynthetic apparatus, metabolic pathways, and antioxidant response after exposure to iron excess. Two assays were carried out with different purposes. S. parviflora and P. urvillei were grown in Hoagland & Arnon nutrient solution containing 0.009, 1, 2, 4 and 7 mM Fe-EDTA to evaluate which Fe concentration causes accumulation of this element above the toxicity threshold. In addition, leaf samples were collected from plants growing in 0.009 and 7 mM iron-EDTA solution on the 6°, 10°, 14° and 18° day of growth in order to evaluate the adjustments in terms of primary metabolite concentrations and the antioxidant capacity. Only the 7 mM iron-EDTA treatment caused a toxic iron accumulation in the shoot of both species. P. urvillei had decreased photosynthetic rate only upon exposure to 7 mM iron-EDTA, in addition, adjustments in the electron transport rate through photosystem II and oxidation state of quinones were observed. Meanwhile, S. parviflora presented a gradual reduction in photosynthetic rate, although with higher non-photochemical quenching of fluorescence values. P. urvillei showed inhibition of tricarboxylic acid cycle. Based on the activity of antioxidant enzymes, S. parviflora showed higher ascorbate peroxidase, peroxidase values, and lipid peroxidation. We additionally identified that malate can also function to neutralize the free-reactive Fe and may contribute to the tolerance mechanism in P. urvillei. Therefore, these species have the ability to accumulate high concentrations of iron within a few days using effective and different adjustments in photosynthetic, antioxidant and carbon metabolism to cope with iron excess.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Araújo TO, Freitas-Silva L, Santana BVN, Kuki KN, Pereira EG, Azevedo AA, Silva LC (2014) Tolerance to iron accumulation and its effects on mineral composition and growth of two grass species. Environ Sci Pollut R 21:2777–2784

    Article  CAS  Google Scholar 

  • Araújo TO, Freitas-Silva L, Santana BVN, Kuki KN, Pereira EG, Azevedo AA, Silva LC (2015) Morphoanatomical responses induced by excess iron in roots of two tolerant grass species. Environ Sci Pollut R 22(3):2187–2195

    Article  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. CRC Cr Rev Plant Sci 24:23–58

    CAS  Article  Google Scholar 

  • Baker AJ (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. J Plant Nutr 3(1–4):643–654

    CAS  Article  Google Scholar 

  • Becana M, Moran JF, Iturbe-Ormaetxe I (1998) Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant Soil 201:137–147

    CAS  Article  Google Scholar 

  • Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence, and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25(3):173–185

    CAS  PubMed  Article  Google Scholar 

  • Bilger W, Schreiber U, Bock M (1995) Determination of the quantum efficiency of photosystem II and of non-photochemical quenching of chlorophyll fluorescence in the field. Oecologia 102(4):425–432

    PubMed  Article  Google Scholar 

  • Borlotti A, Vigani G, Zocchi G (2012) Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L.) plants. BMC Plant Biol 12:1

    Article  CAS  Google Scholar 

  • Chuine I, Morin X, Sonié L, Collin C, Fabreguettes J, Degueldre D, Salager J, Roy J (2012) Climate change might increase the invasion potential of the alien C4 grass Setaria parviflora (Poaceae) in the Mediterranean Basin. Divers Distrib 18(7):661–672

    Article  Google Scholar 

  • Dai AH, Nie YX, Yu B, Li Q, Lu LY, Bai JG (2012) Cinnamic acid pretreatment enhances heat tolerance of cucumber leaves through modulating antioxidant enzyme activity. Environ Exp Bot 79:1–10

    CAS  Article  Google Scholar 

  • Demmig-Adams B, Adams WW (2000) Harvesting sunlight safely. Nature 403:371–374

    CAS  PubMed  Article  Google Scholar 

  • Dinakar C, Abhaypratap V, Yearla SR, Raghavendra AS, Padmasree K (2010) Importance of ROS and antioxidant system during the beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Planta 231(2):461–474

    CAS  PubMed  Article  Google Scholar 

  • Du Z, Bramlage WJ (1992) Modifed thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. J Agr Food Chem 40:1566–1570

    CAS  Article  Google Scholar 

  • Fernie AR, Roscher A, Ratcliffe RG, Kruger NJ (2001) Fructose 2,6-bisphosphate activates pyrophosphate: fructose-6-phosphate 1-phosphotransferase and increases triose phosphate to hexose phosphate cycling in heterotrophic cells. Planta 212:250–263

    CAS  PubMed  Article  Google Scholar 

  • Ferreira EB, Cavalcanti PP, Nogueira DA (2013) ExpDes.pt: pacote experimental designs. R package version 1.1.2

  • Flis P, Ouerdane L, Grillet L, Curie C, Mari S, Lobinski R (2016) Inventory of metal complexes circulating in plant fluids: a reliable method based on HPLC coupled with dual elemental and high-resolution molecular mass spectrometric detection. New Phytol 211(3):1129–1141

    CAS  PubMed  Article  Google Scholar 

  • Fritz C, Palacios-Rojas N, Feil R, Stitt M (2006) Regulation of secondary metabolism by the carbon-nitrogen status in tobacco: nitrate inhibits large sectors of phenyl propanoid metabolism. Plant J 46:533–548

    CAS  PubMed  Article  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Article  Google Scholar 

  • Gibon Y, Blaesing OE, Hannemann J, Carillo P, Hoehne M, Hendriks JHM, Palacios N, Cross J, Selbig J, Stitt M (2004) A robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell 16:3304–3325

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Bioch 48(12):909–930

    CAS  Article  Google Scholar 

  • Green MS, Etherington JR (1977) Oxidation of ferrous iron by rice (Oryza sativa L.) roots: a mechanism for waterlogging tolerance. J Exp Bot 28:678–690

    CAS  Article  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. University of California, Station Circular, California Agricultural Experiment Station, p 347

    Google Scholar 

  • Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Biol 47:655–684

    CAS  Article  Google Scholar 

  • IBAMA (2016) Mensuração do dano em APP dos rios Gualaxo do Norte, Carmo e seus afluentes. Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA), Brasília

  • Instituto Brasileiro de Mineração-IBRAM (2011) Information and analysis of the Brazilian mineral economy. IBRAM, Brasília

  • Ishikawa T, Madhusudhan R, Shigeoka S (2003) Effect of iron on the expression of ascorbate peroxidase in Euglena gracilis. Plant Sci 165(6):1363–1367

    CAS  Article  Google Scholar 

  • Jabs T, Dietrich RA, Dangl JL (1996) Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Sci 273(5283):1853–1856

    CAS  Article  Google Scholar 

  • Karuppanapandian T, Moon JC, Kim C, Manoharan K, Kim W (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 5(6):709–725

    CAS  Google Scholar 

  • Kato Y, Miura E, Matsushima R, Sakamoto W (2007) White leaf sectors in yellow variegated2 are formed by viable cells with undifferentiated plastids. Plant Physiol 144(2):952–960

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kim SA, Guerinot ML (2007) Mining iron: iron uptake and transport in plants. FEBS Lett 581:2273–2280

    CAS  PubMed  Article  Google Scholar 

  • Kobayashi T, Nishizawa NK (2012) Iron uptake translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152

    CAS  PubMed  Article  Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79(2):209–218

    CAS  PubMed  Article  Google Scholar 

  • Kuki KN, Oliva MA, Costa AC (2009) The simulated effects of iron dust and acidity during the early stages of establishment of two coastal plant species. Water Air Soil Poll 196:287–295

    CAS  Article  Google Scholar 

  • Le Lay P, Isaure MP, Sarry JE, Kuhn L, Fayard B, Le Bail JL, Bourguignon J (2006) Metabolomic, proteomic and biophysical analyses of Arabidopsis thaliana cells exposed to a cesium stress. Influence of potassium supply. Biochimie 88(11):1533–1547

    PubMed  Article  CAS  Google Scholar 

  • Leão GA, Oliveira JA, Felipe RTA, Farnese FS, Gusman GS (2014) Anthocyanins, thiols, and antioxidant scavenging enzymes are involved in Lemna gibba tolerance to arsenic. J Plant Interact 9:143–151

    Article  CAS  Google Scholar 

  • Liang C, Wang W (2013) Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain. Environ Sci Pollut Res 20:8182–8191

    CAS  Article  Google Scholar 

  • Malavolta E, Vitti GC, Oliveira SA (1989) Assessment of nutritional status of plants: principles and applications. Potafos, Piracicaba

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plant. Academic Press, NewYork, p 889

    Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence: a practical guide. J Exp Bot 51:659–668

    CAS  PubMed  Article  Google Scholar 

  • Miranda LS, Marques AC (2016) Hidden impacts of the Samarco mining waste dam collapse to Brazilian marine fauna-an example from the staurozoans (Cnidaria). Biota Neotrop 16(2):201

    Article  Google Scholar 

  • Mishra M, Mishra PK, Kumar U, Prakash V (2009) NaCl phytotoxicity induces oxidative stress and response of antioxidant systems in Cicer arietinum L. Cv Abrodhi Botany Res Int 2(2):74–82

    CAS  Google Scholar 

  • Møller IM, Sweetlove LJ (2010) ROS signalling-specificity is required. Trends Plant Sci 15(7):370–374

    PubMed  Article  CAS  Google Scholar 

  • Müller C, Silveira SFS, Daloso DM, Mendes GC, Merchant A, Kuki KN, Oliva MA, Loureiro ME, Almeida AM (2017) Ecophysiological responses to excess iron in lowland and upland rice cultivars. Chemosphere 189:123–133

    PubMed  Article  CAS  Google Scholar 

  • Neves NR, Oliva MA, Cruz Centeno D, Costa AC, Ribas RF, Pereira EG (2009) Photosynthesis and oxidative stress in the restinga plant species Eugenia uniflora L. exposed to simulated acid rain and iron ore dust deposition: potential use in environmental risk assessment. Sci Total Environ 407(12):3740–3745

    CAS  PubMed  Article  Google Scholar 

  • Nikolic M, Cesco S, Monte R, Tomasi N, Gottardi S, Zamboni A, Pinton R, Varanini Z (2012) Nitrate transport in cucumber leaves is an inducible process involving an increase in plasma membrane H+-ATPase activity and abundance. BMC Plant Biol 12(1):1

    Article  CAS  Google Scholar 

  • Nunes-Nesi A, Carrari F, Gibon Y, Sulpice R, Lytovchenko A, Fisahn J, Graham J, Ratcliffe RG, Sweetlove LJ, Fernie AR (2007) Deficiency of mitochondrial fumarase activity in tomato plants impairs photosynthesis via an effect on stomatal function. Plant J 50:1093–1106

    CAS  PubMed  Article  Google Scholar 

  • Nunes-Nesi A, Fernie AR, Stitt M (2010) Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol Plant 3:973–996

    CAS  PubMed  Article  Google Scholar 

  • Pereira EG, Oliva MA, Kuki KN, Cambraia J (2009) Photosynthetic changes and oxidative stress caused by iron ore dust deposition in the tropical CAM tree Clusia hilariana. Trees 23(2):277–285

    CAS  Article  Google Scholar 

  • Pereira EG, Oliva MA, Rosado-Souza L, Mendes GC, Colares DS, Stopato CH, Almeida AM (2013) Iron excess affects rice photosynthesis through stomatal and non-stomatal limitations. Plant Sci 201:81–92

    PubMed  Article  CAS  Google Scholar 

  • Pereira EG, Oliva MA, Siqueira-Silva AI, Rosado-Souza L, Pinheiro DT, Almeida AM (2014) Tropical rice cultivars from lowland and upland cropping systems differ in iron plaque formation. J Plant Nutr 37(9):1373–1394

    CAS  Article  Google Scholar 

  • Pinheiro C, Chaves MM (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62(3):869–882

    CAS  PubMed  Article  Google Scholar 

  • Pinto SDS, Souza AED, Oliva MA, Pereira EG (2016) Oxidative damage and photosynthetic impairment in tropical rice cultivars upon exposure to excess iron. Sci Agric 73(3):217–226

    Article  Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    CAS  PubMed  Article  Google Scholar 

  • Sanchez-Pardo B, Fernandez-Pascual M, Zornoza P (2012) Copper microlocalisation, ultrastructural alterations and antioxidant responses in the nodules of white lupin and soybean plants grown under conditions of copper excess. Environ Exp Bot 84:52–60

    CAS  Article  Google Scholar 

  • Santana BVN, Araújo TO, Andrade GC, Freitas-Silva L, Kuki KN, Pereira EG, Azevedo AA, Silva LC (2014) Leaf morphoanatomy of species tolerant to excess iron and evaluation of their phytoextraction potential. Environ Sci Pollut Res 1:2550–2562

    Article  CAS  Google Scholar 

  • Scheffer-Basso SM, Rodrigues GL, Bordignon MV (2002) Morphophysiological and anatomic characterization of Paspalum urvillei (Steudel). R Bras Zootec 31(4):1674–1679

    Article  Google Scholar 

  • Shu X, Yin L, Zhang Q, Wang W (2012) Effect of Pb toxicity on leaf growth, antioxidant enzyme activities, and photosynthesis in cuttings and seedlings of Jatropha curcas L. Environ Sci Pollut Res 19(3):893–902

    CAS  Article  Google Scholar 

  • SOS Mata Atlântica, INPE (2016) Análise do impacto sobre áreas de Mata Atlântica do rompimento da barragem localizada no subdistrito de Bento Rodrigues, no município de Mariana—MG. SOS Mata Atlântica e Instituo Nacional de Pesquisas Espaciais (INPE), Brasília

  • Silva GP, Fontes MPF, Costa LM, Venegas VHA (2007) Potencialidade de plantas para revegetação de estéreis e rejeito da mineração de ferro da Mina de Alegria Mariana-MG. Pesq Agropec Trop 36(3):165–172

    Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzymol 299:152–178

    CAS  Article  Google Scholar 

  • Stein RJ, Lopes SIG, Fett JP (2014) Iron toxicity in field-cultivated rice: contrasting tolerance mechanisms in distinct cultivars. Theor Exp Plant Physiol 26(2):135–146

    CAS  Article  Google Scholar 

  • Suh H, Kim CS, Lee J, Jung J (2002) Photodynamic effect of iron excess on photosystem II function in pea plants. Photochem Photobiol 75:513–518

    CAS  PubMed  Article  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plantarum 126:45–51

    CAS  Article  Google Scholar 

  • Taylor GJ, Crowder AA (1983) Use of the DCB technique for extraction of hydrous iron oxides from roots of wetland plants. Am J Bot 70:1254–1257

    CAS  Article  Google Scholar 

  • Tewari RK, Kumar P, Sharma PN (2005) Signs of oxidative stress in the chlorotic leaves of iron starved plants. Plant Sci 169(6):1037–1045

    CAS  Article  Google Scholar 

  • Thongbai P, Goodman BA (2000) Free radical generation and post-anoxic injury in rice grown in an iron-toxic soil. J Plant Nutr 23(11–12):1887–1900

    CAS  Article  Google Scholar 

  • Tripathi RD, Tripathi P, Dwivedi S, Kumar A, Mishra A, Chauhan PS, Nautiyal CS (2014) Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants. Metallomics 6:1789–1800

    CAS  PubMed  Article  Google Scholar 

  • Ueda Y, Uehara N, Sasaki H, Kobayashi K, Yamakawa T (2013) Impacts of acute ozone stress on superoxide dismutase (SOD) expression and reactive oxygen species (ROS) formation in rice leaves. Plant Physiol Bioch 70:396–402

    CAS  Article  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    CAS  PubMed  Article  Google Scholar 

  • Vigani G (2012) Discovering the role of mitochondria in the iron deficiency-induced metabolic responses of plants. J Plant Physiol 169:1–11

    CAS  PubMed  Article  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    CAS  Article  Google Scholar 

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780

    CAS  PubMed  Article  Google Scholar 

  • Wu LB, Ueda Y, Lai SK, Frei M (2017) Shoot tolerance mechanisms to iron toxicity in rice (Oryza sativa L.). Plant Cell Environ 40(4):570–584

    CAS  PubMed  Article  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 and to SECTES (Secretaria de Estado de Ciência, Tecnologia e Ensino Superior). The authors acknowledges the National Council for Scientific and Technological Development (CNPq), Brazil, for the Research Productivity scholarship granted to L.C. Silva 309308/2018-6.

Author information

Authors and Affiliations

Authors

Contributions

TA, LS, KK, EP and AN conceived and designed the research. TA, LF and FS conducted the experiments and conducted the biochemical and metabolite analyses. TA, LS, CR, FS, KK, EP, AN, and LS discussed the results and participated in manuscript preparation. TA wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Luzimar C. Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 419 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Araújo, T.O., Freitas-Silva, L., de O. Silva, F.M. et al. Understanding photosynthetic and metabolic adjustments in iron hyperaccumulators grass. Theor. Exp. Plant Physiol. 32, 147–162 (2020). https://doi.org/10.1007/s40626-020-00176-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40626-020-00176-9

Keywords

  • Setaria parviflora
  • Paspalum urvillei
  • Gas exchange
  • Chlorophyll a fluorescence
  • Oxidative metabolism
  • Primary metabolism