Stimulation of root growth and enhanced nitrogenous metabolite content in habanero pepper (Capsicum chinense Jacq.) treated with a d-amino acid mixture

Abstract

d-amino acids (d-AAs) can be found in soils, and recent studies indicate that plants exhibit multiple behaviors in response to the type of d-AAs present. d-Ala and d-Ser have the greatest adverse effects on plant growth and development, however the role of d-Ala as a source of nitrogen (N) and d-Ser as an agonist of glutamate receptors (GLRs) in plants have been proposed. Though, there is very little knowledge about the role of d-AAs in regulating plant growth. In this paper we report the effect of d-AAs on the root growth of habanero pepper (Capsicum chinense Jacq.). It was found that the primary root (PR) was more sensitive to d-Asp and d-Ala, which caused a complete halt in the growth of the organ. The lateral root (LR) number increased following the application of d-Leu either individually or in a mixture with d-Val and d-Cys. Also, d-Val increased the leaf area. Overall, the three d-AAs acted synergistically to increase the total radical length. The mixture of these three d-AAs increased the concentration of nitrate, total amino acids, and protein. These results suggest that d-Val, d-Leu, and d-Cys regulate cellular metabolism and stimulate root growth. Here we provide important information to understand the role of d-AAs in the regulation of root plant growth.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

d-AA(s):

d-amino acid(s)

GLR(s):

Glutamate receptor(s)

LR(s):

Lateral root(s)

PR:

Primary root

References

  1. Aldag RW, Young JL (1970) D-amino acids in soils. I. Uptake and metabolism by seedling maize and ryegrass. Agron J 62:184–189. https://doi.org/10.2134/agronj1970.00021962006200020002x

    CAS  Article  Google Scholar 

  2. Aliashkevich A, Alvarez L, Cava F (2018) New insights into the mechanisms and biological roles of d-amino acids in complex eco-systems. Front Microbiol 9:683. https://doi.org/10.3389/fmicb.2018.00683

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alvarez L, Aliashkevich A, de Pedro MA, Cava F (2018) Bacterial secretion of D-arginine controls environmental microbial biodiversity. ISME J 12:438–450. https://doi.org/10.1038/ismej.2017.176

    CAS  Article  PubMed  Google Scholar 

  4. Amelung W, Zhang X, Flach KW (2006) Amino acids in grassland soils: climatic effect on concentrations and chirality. Geoderma 130:207–217. https://doi.org/10.1016/j.geoderma.2005.01.017

    CAS  Article  Google Scholar 

  5. Beatty IM, Magrath DI, Ennor AH (1959) Biochemistry of lombricine: occurrence of d-Serine in lombricine. Nature 183:591. https://doi.org/10.1038/183591a0

    Article  PubMed  Google Scholar 

  6. Bellais S, Arthur M, Dubost L, Hugonnet JE, Gutmann L, van Heijenoort J, Legrand R, Brouard JP, Rice L, Mainardi JL (2006) Aslfm, the d-aspartate ligase responsible for the addition of d-aspartic acid onto the peptidoglycan precursor of Enterococcus faecium. J Biol Chem 281:11586–11594. https://doi.org/10.1074/jbc.M600114200

    CAS  Article  PubMed  Google Scholar 

  7. Boniface A, Bouhss A, Mengin-Lecreulx D, Blanot D (2006) The MurE synthetase from Thermotoga maritima is endowed with an unusual d-lysine adding activity. J Biol Chem 281:15680–15686. https://doi.org/10.1074/jbc.M506311200

    CAS  Article  PubMed  Google Scholar 

  8. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Brückner H, Fujii N (2010) Free and peptide-bound d-amino acids in chemistry and life sciences. Chem Biodivers 7:1333–1336. https://doi.org/10.1002/cbdv.201000114

    CAS  Article  PubMed  Google Scholar 

  10. Brückner H, Westhauser T (2003) Chromatographic determination of l- and d-amino acids in plants. Amino Acids 24:43–55. https://doi.org/10.1007/s00726-002-0322-8

    CAS  Article  PubMed  Google Scholar 

  11. Caparros M, Pisabarro AG, de Pedro MA (1992) Effect of D-amino acids on structure and synthesis of peptidoglycan in Escherichia coli. J Bacteriol 174:5549–5559. https://doi.org/10.1128/jb.174.17.5549-5559.1992

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Cava F, Lam H, de Pedro MA, Waldor MK (2011) Emerging knowledge of regulatory roles of d-amino acids in bacteria. Cell Mol Life Sci 68:817–883. https://doi.org/10.1007/s00018-010-0571-8

    CAS  Article  PubMed  Google Scholar 

  13. Cawse PA (1967) The determination of nitrate in soil solution by ultraviolet spectrophotometry. Analyst 92:311–315. https://doi.org/10.1039/AN9679200311

    CAS  Article  Google Scholar 

  14. Celis-Arámburo TJ, Carrillo-Pech M, Castro-Concha LA, Miranda-Ham ML, Martínez-Estévez M, Echevarría-Machado I (2011) Exogenous nitrate induces root branching and inhibits primary root growth in Capsicum chinense Jacq. Plant Physiol Biochem 49:1456–1464. https://doi.org/10.1016/j.plaphy.2011.09.003

    CAS  Article  Google Scholar 

  15. Chen IC, Thiruvengadam V, Lin WD, Chang HH, Hsu WH (2010) Lysine racemase: a novel non-antibiotic selectable marker for plant transformation. Plant Mol Biol 72:153–169. https://doi.org/10.1007/s11103-009-9558-y

    CAS  Article  PubMed  Google Scholar 

  16. Davidonis GH, Hamilton RH, Vallejo RP, Buly R, Mumma RO (1982) Biological properties of D-amino acid conjugates of 2, 4-D. Plant Physiol 70:357–360. https://doi.org/10.1104/pp.70.2.357

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Domínguez-May A, Carrillo-Pech M, Barredo-Pool F, Martínez-Estévez M, Us-Camas R, Moreno-Valenzuela O, Echevarría-Machado I (2013) A Novel effect for glycine on root system growth of habanero pepper. J Am Soc Hort Sci 138:433–442

    Article  Google Scholar 

  18. Dubrovsky JG, Gambetta GA, Hernandez-Barrera A, Shishkova S, González I (2006) Lateral root initiation in Arabidopsis: developmental window, spatial patterning, density and predictability. Ann Bot 97:903–915. https://doi.org/10.1093/aob/mcj604

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Erbe T, Bruckner H (2000) Chromatographic determination of amino acid enantiomers in beers and raw materials used for their manufacture. J Chromatogr A 881:81–91. https://doi.org/10.1016/S0021-9673(00)00255-7

    CAS  Article  PubMed  Google Scholar 

  20. Erikson O, Hertzberg M, Näsholm T (2004) A conditional marker gene allowing both positive and negative selection in plants. Nat Biotechnol 22:455–458. https://doi.org/10.1038/nbt946

    CAS  Article  PubMed  Google Scholar 

  21. Estrada-Medina H, Canto-Canché BB, De los Santos-Briones C, O’Connor-Sánchez A (2016) Yucatán in black and red: linking edaphic analysis and pyrosequencing-based assessment of bacterial and fungal community structures in the two main kinds of soil of Yucatán State. Microbiol Res 188:23–33. https://doi.org/10.1016/j.micres.2016.04.007

    Article  PubMed  Google Scholar 

  22. Forsum O, Svennerstam H, Ganeteg U, Näsholm T (2008) Capacities and constraints of amino acid utilization in Arabidopsis. New Phytol 179:1058–1069. https://doi.org/10.1111/j.1469-8137.2008.02546.x

    CAS  Article  PubMed  Google Scholar 

  23. Fujitani Y, Nakajima N, Ishihara K, Oikawa T, Ito K, Sugimoto M (2006) Molecular and biochemical characterization of a serine racemase from Arabidopsis thaliana. Phytochemistry 67:668–674. https://doi.org/10.1016/j.phytochem.2006.01.003

    CAS  Article  PubMed  Google Scholar 

  24. Fujitani Y, Horiuchi T, Ito K, Sugimoto M (2007) Serine racemases from barley, Hordeum vulgare L., and other plant species represent a distinct eukaryotic group: Gene cloning and recombinant protein characterization. Phytochemistry 68:1530–1536. https://doi.org/10.1016/j.phytochem.2007.03.040

    CAS  Article  PubMed  Google Scholar 

  25. Funakoshi M, Sekine M, Katane M, Furuchi T, Yohda M, Yoshikawa T, Homma H (2008) Cloning and functional characterization of Arabidopsis thaliana d-amino acid aminotransferase-d-aspartate behavior during germination. FEBS J 275:1188–1200. https://doi.org/10.1111/j.1742-4658.2008.06279.x

    CAS  Article  PubMed  Google Scholar 

  26. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158. https://doi.org/10.1016/0014-4827(68)90403-5

    CAS  Article  Google Scholar 

  27. Gamburg KZ, Rekoslavskaya NI (1992) Formation and function of d-amino acids in plants. Soviet Plant Physiol 38:904–912

    Google Scholar 

  28. Genchi G (2017) An overview on d-amino acids. Amino Acids 49:1521–1533. https://doi.org/10.1007/s00726-017-2459-5

    CAS  Article  PubMed  Google Scholar 

  29. Gholizadeh A (2015) The possible involvement of d-amino acids or their metabolites in Arabidopsis cysteine proteinase/cystatin-dependent proteolytic pathway. Cytol Genet 49:73–79. https://doi.org/10.3103/S0095452715020036

    Article  Google Scholar 

  30. Gogami Y, Ito K, Kamitani Y, Matsushima Y, Oikawa T (2009) Occurrence of d-serine in rice and characterization of rice serine racemase. Phytochemistry 70:380–387. https://doi.org/10.1016/j.phytochem.2009.01.003

    CAS  Article  PubMed  Google Scholar 

  31. Gördes D, Kolukisaoglu Ü, Thurow K (2011) Uptake and conversion of d-amino acids in Arabidopsis thaliana. Amino Acids 40:553–563. https://doi.org/10.1007/s00726-010-0674-4

    CAS  Article  PubMed  Google Scholar 

  32. Gördes D, Koch G, Thurow K, Kolukisaoglu Ü (2013) Analyses of Arabidopsis ecotypes reveal metabolic diversity to convert d-amino acids. SpringerPlus 2:559. https://doi.org/10.1186/2193-1801-2-559

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Hener C, Hummel S, Suarez J, Stahl M, Stahl M, Kolukisaoglu Ü (2018) d-Amino Acids Are Exuded by Arabidopsis thaliana Roots to the Rhizosphere. Int J Mol Sci 19:1109. https://doi.org/10.3390/ijms19041109

    CAS  Article  PubMed Central  Google Scholar 

  34. Hernandez SB, Cava F (2016) Environmental roles of microbial amino acid racemases. Environ Microbiol 18:1673–1685. https://doi.org/10.1111/1462-2920.13072

    CAS  Article  PubMed  Google Scholar 

  35. Hill PW, Quilliam RS, DeLuca TH, Farrar J, Farrell M, Roberts P, Newsham KK, Hopkins DW, Bardgett RD, Jones DL (2011) Acquisition and assimilation of nitrogen as peptide-bound and d-enantiomers of amino acids by wheat. PLoS ONE 4:e19220. https://doi.org/10.1371/journal.pone.0019220

    CAS  Article  Google Scholar 

  36. Ju J, Xu S, Wen J, Li G, Ohnishi K, Xue Y, Ma Y (2009) Characterization of endogenous pyridoxal 5´-phosphate-dependent alanine racemase from Bacillus pseudofirmus OF4. J Biosci Bioeng 107:225–229. https://doi.org/10.1016/j.jbiosc.2008.11.005

    CAS  Article  PubMed  Google Scholar 

  37. Kang J, Turano FJ (2003) The putative glutamate receptor 1.1 (AtGLR1.1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana. Proc Natl Acad Sci USA 100:6872–6877. https://doi.org/10.1073/pnas.1030961100

    CAS  Article  PubMed  Google Scholar 

  38. Kawase T, Nagasawa M, Ikeda H, Yasuo S, Koga Y, Furuse M (2017) Gut microbiota of mice putatively modifies amino acid metabolism in the host brain. Br J Nutr 117:775–783. https://doi.org/10.1017/S0007114517000678

    CAS  Article  PubMed  Google Scholar 

  39. Kepert I, Fonseca J, Müller C, Milger K, Hochwind K, Kostric M (2017) D-tryptophan from probiotic bacteria influences the gut microbiome and allergic airway disease. J Allerg Clin Immunol 139:1525–1535. https://doi.org/10.1016/j.jaci.2016.09.003

    CAS  Article  Google Scholar 

  40. Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R (2010) D-amino acids trigger biofilm disassembly. Science 328:627–629. https://doi.org/10.1126/science.1188628

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Lam H, Oh DC, Cava F, Takacs CN, Clardy J, de Pedro MA, Waldor MK (2009) D-amino acids govern stationary phase cell wall remodeling in bacteria. Science 325:1552–1555. https://doi.org/10.1126/science.1178123

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Lee RJ, Hariri BM, McMahon DB, Chen B, Doghramji L, Adappa ND (2017) Bacterial d-amino acids suppress sinonasal innate immunity through sweet taste receptors in solitary chemosensory cells. Sci Signal. https://doi.org/10.1126/scisignal.aam7703

    Article  PubMed  PubMed Central  Google Scholar 

  43. Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44

    CAS  Google Scholar 

  44. Manabe H, Ohira K (1981) Effects of D- and L-alanine on the growth of suspension-cultured rice, soybean and tabacco cells. Soil Sci Plant Nutr 27:383–386. https://doi.org/10.1080/00380768.1981.10431293

    CAS  Article  Google Scholar 

  45. Manabe (1984) Analysis by HPLC of d-alanyl-glycine and its related compounds in rice plants. Soil Sci Plant Nutr 30:589–593. https://doi.org/10.1080/00380768.1984.10434727

    CAS  Article  Google Scholar 

  46. Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Václavíková K, Miyawaki K, Kakimoto T (2008) Cytokinins are central regulators of cambial activity. Proc Natl Acad Sci USA 105:20027–20031. https://doi.org/10.1073/pnas.0805619105

    Article  PubMed  Google Scholar 

  47. Medina-Lara F, Souza-Perera R, Martínez-Estévez M, Ramírez-Sucre MO, Rodríguez-Buenfil IM, Echevarría-Machado I (2019) Red and brown soils increase the development and content of nutrients in habanero pepper subjected to irrigation water high electrical conductivity. HortScience 54:2039–2049

    Article  Google Scholar 

  48. Meyerhoff O, Müller K, Roelfsema MRG, Latz A, Lacombe B, Hedrich R, Dietrich P, Becker D (2005) AtGLR3.4, a glutamate receptor channel-like gene is sensitive to touch and cold. Planta 222:418–427. https://doi.org/10.1007/s00425-005-1551-3

    CAS  Article  PubMed  Google Scholar 

  49. Michard E, Lima P, Borges F, Silva A, Portes M, Carvalho J, Gilliham M, Liu L, Obermeyer G, Feijo J (2011) Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine. Science 332:434–437. https://doi.org/10.1126/science.1201101

    CAS  Article  PubMed  Google Scholar 

  50. Miller ND, Durham Brooks TL, Assadi AH, Spalding EP (2010) Detection of a gravitropism phenotype in glutamate receptor-like3.3 mutants of Arabidopsis thaliana using machine vision and computation. Genetics 186:585–593. https://doi.org/10.1534/genetics.110.118711

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Miura GA, Mills SE (1971) The conversion of D-tryptophan to L-tryptophan in cell cultures of tobacco. Plant Physiol 47:483–487. https://doi.org/10.1104/pp.47.4.483

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol 13:349–361. https://doi.org/10.1038/nri3423

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Ogawa T, Fukuda M (1973) Occurrence of D-amino acid aminotransferase in pea seedling. Biochem Biophys Res Commun 52:998–1002. https://doi.org/10.1016/0006-291x(73)91036-x

    CAS  Article  PubMed  Google Scholar 

  54. Ogawa T, Bando N, Sasaoka K (1976) Occurrence of α- amino-n-butyric acid in legume seedlings. Agric Biol Chem 40:1661–1662. https://doi.org/10.1080/00021369.1976.10862282

    CAS  Article  Google Scholar 

  55. Ono K, Yanagida K, Oikawa T, Ogawa T, Soda K (2006) Alanine racemase of alfalfa seedlings (Medicago sativa L.): first evidence for the presence of an amino acid racemase in plants. Phytochemistry 67:856–860. https://doi.org/10.1016/j.phytochem.2006.02.017

    CAS  Article  PubMed  Google Scholar 

  56. Rekoslovskaya NI, Yurjeva OV, Salyaev RK, Mapelli S, Kopytina TV (1999) D-tryptophan as IAA source during wheat germination. Bulg J Plant Physiol 25:39–49

    Google Scholar 

  57. Reynolds PE, Courvalin P (2005) Vancomycin resistance in enterococci due to synthesis of precursors terminating in d-alanyl-d-serine. Antimicrob Agents Chemother 49:21–25. https://doi.org/10.1128/AAC.49.1.21-25.2005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Robinson (1976) D-amino acids in higher plants. Life Sci 19:1097–1102. https://doi.org/10.1016/0024-3205(76)90244-7

    CAS  Article  PubMed  Google Scholar 

  59. Rousk J, Jones DL (2010) Loss of low molecular weight dissolved organic carbon (DOC) and nitrogen (DON) in H2O and 0.5 M K2SO4 soil extracts. Soil Biol Biochem 42:2331–2335. https://doi.org/10.1016/j.soilbio.2010.08.017

    CAS  Article  Google Scholar 

  60. Santiago-Antonio G, Lizama-Gasca MG, Carrillo-Pech M, Echeverría-Machado I (2014) Natural variation in response to nitrate starvation among varieties of habanero pepper (Capsicum chinense Jacq.). Aust J Crop Sci 8:523–535

    CAS  Google Scholar 

  61. Strauch R, Svedin E, Dilkes B, Chapple C, Li X (2015) Discovery of a novel amino acid racemase through exploration of natural variation in Arabiopsis thaliana. PNAS 37:11726–11731. https://doi.org/10.1073/pnas.1503272112

    CAS  Article  Google Scholar 

  62. Sugimoto M, Sakamoto W, Fujitani Y (2009) Localization and expression of serine racemase in Arabidopsis thaliana. Amino Acids 36:587–590. https://doi.org/10.1007/s00726-008-0112-z

    CAS  Article  PubMed  Google Scholar 

  63. Svennerstam H, Ganeteg U, Bellini C, Näsholm T (2007) Comprehensive screening of Arabidopsis mutants suggests the Lysine, Histidine Transporter 1 to be involved in plant uptake of amino acids. Plant Physiol 143:1853–1860. https://doi.org/10.1104/pp.106.092205

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Forsum O (2016) On Plant Responses to D-Amino Acids. Ph.D. thesis. Swedish University of Agricultural Sciences, Umeå

  65. Vincill ED, Clarin AE, Molenda JN, Spalding EP (2013) Interacting glutamate receptor-like proteins in phloem regulate lateral root initiation in Arabidopsis. Plant Cell 25:1304–1313. https://doi.org/10.1105/tpc.113.110668

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Vranova V, Zahradnickova H, Janous D, Skene RK, Matharu-Avtar S, Rejsek K, Formanek P (2012) The significance of D-amino acids in soil, fate and utilization by microbes and plants: review and identification of knowledge gaps. Plant Soil 354:21–39. https://doi.org/10.1007/s11104-011-1059-5

    CAS  Article  Google Scholar 

  67. Walch-Liu P, Ivanov II, Filleur S, Gan Y, Remans T, Forde BG (2006) Nitrogen regulation of root branching. Ann Bot 97:875–881. https://doi.org/10.1093/aob/mcj601

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75:2046–2056. https://doi.org/10.1128/AEM.02294-08

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Wolosker H, Blackshaw S, Snyder SH (1999) Serine racemase: a glial enzyme synthesizing d-Serine to regulate glutamate N-methyl-d-aspartate neurotransmission. PNAS 96:13409–13414. https://doi.org/10.1073/pnas.96.23.13409

    CAS  Article  PubMed  Google Scholar 

  70. Yemm EW, Cocking EC (1955) The determination of amino-acids with ninhydrin. Analyst 80:209–214. https://doi.org/10.1039/an9558000209

    CAS  Article  Google Scholar 

  71. Zhang G, Sun HJ (2014) Racemization in reverse: evidence that d-amino acid toxicity on earth is controlled by bacteria with racemases. PLoS ONE 9:e92101. https://doi.org/10.1371/journal.pone.0092101

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Zhang H, Jennings A, Barlow PW, Forde BG (1999) Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci USA 96:6529–6534. https://doi.org/10.1073/pnas.96.11.6529

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Consejo Nacional de Ciencia y Tecnologia, CONACYT (Project 169041) and CONACYT fellowship to AASI (No. 404402).

Author information

Affiliations

Authors

Contributions

AASI and IEM conceived and designed the experiments. AASI performed the experiments, analyzed the data and organized data into figures and tables. AASI and IEM wrote the article. MLMH contributed to the data analysis and writing of the article. All the authors agreed on the contents of the paper and they approve it.

Corresponding author

Correspondence to Ileana Echevarría-Machado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Serralta-Interian, A.A., Miranda-Ham, M.d. & Echevarría-Machado, I. Stimulation of root growth and enhanced nitrogenous metabolite content in habanero pepper (Capsicum chinense Jacq.) treated with a d-amino acid mixture. Theor. Exp. Plant Physiol. 32, 31–47 (2020). https://doi.org/10.1007/s40626-020-00165-y

Download citation

Keywords

  • Capsicum chinense jacq.
  • d-amino acids
  • Nitrogenous metabolites
  • Root growth