Skip to main content

Advertisement

Log in

Leaf construction cost is related to water availability in three species of different growth forms in a Brazilian tropical dry forest

  • Published:
Theoretical and Experimental Plant Physiology Aims and scope Submit manuscript

Abstract

Drought is the major limiting abiotic factor for plant growth in Seasonally Tropical Dry Forests (STDF), affecting the leaf construction cost (LCC), and the strategies of carbon investment. This work aimed to investigate the influence of rainfall in LCC of three species with different growth forms (Cenostigma pyramidale (tree), Hyptis suaveolens (herbaceous) and Sida galheirensis (sub-shrub)) during three consecutive rainy seasons (2013–2015) in a STDF, and how LCC is related to environmental and physiological parameters. We tested the hypothesis that the herbaceous and sub-shrub species would show higher LCC than the tree species, and a higher acclimation capacity to environmental variation. We measured the water status, gas exchange, nitrogen use efficiency, specific leaf area (SLA), phenolics, LCC and the species’ acclimation capacity. The predawn leaf water potential (ψ1) was higher in H. suaveolens in 2014, which showed the highest difference between dry and wet years. CO2 assimilation was supported, in dry years, by the nitrogen use efficiency and the increase in SLA, which are characteristics of plants with acquisitive strategy. The LCC of H. suaveolens and S. galheirensis was related to rainfall and physiological parameters influenced by the water regime as ψ1. The herbaceous and sub-shrub species showed similar acclimation capacity, and their values were higher than those presented by the tree species. Non-woody species converge evolutionarily, and share some response patterns to water availability. We concluded that all species showed acquisitive strategy in carbon balance, but the ecophysiological responses of the herbaceous and sub-shrub species were more influenced by rainfall variability than the tree species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen K, Dupuy JM, Gei MG, Hulshof C, Medivigy D, Pizano C, Salgado-Negret B, Smith CM, Trierweiler A, Van Bloem SJ, Waring BG, Xu X, Powers JS (2017) Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes? Environ Res Lett 12:1–15. doi:10.1088/1748-9326/aa5968

    Article  Google Scholar 

  • Amorim ELC, Nascimento JE, Monteiro JM, Sobrinho TJSP, Araújo TAS, Albuquerque UP (2008) A simple and accurate procedure for determination of tannin and flavonoid levels and some applications in Ethnobotany and Ethnopharmacology. Funct Ecosyst Comm 2:88–94

    Google Scholar 

  • Barthod S, Epron D (2005) Variations of construction cost associated to leaf area renewal in saplings of two co-occurring temperate tree species (Acer platanoides L. and Fraxinus excelsior L.) along a light gradient. Ann For Sci 62:545–551. doi:10.1051/forest:2005047

    Article  Google Scholar 

  • Brodribb TJ, Holbrook NM (2003) Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiol 132:2166–2173. doi:10.1104/pp.103.023879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodribb TJ, Holbrook NM (2005) Water stress deforms tracheids peripheral to the leaf vein of a tropical conifer. Plant Physiol 137:1139–1146. doi:10.1104/pp.104.058156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell GS, Norman JM (1998) An introduction to environmental biophysics. Springer-Verlag, New York

    Book  Google Scholar 

  • Cavatte PC, Rodríguez-López NF, Martins SCV, Mattos MS, Sanglard LMVP, DaMatta FM (2012) Functional analysis of the relative growth rate, chemical composition, construction and maintenance costs, and the payback time of Coffea arabica L. leaves in response to light and water availability. J Exp Bot 63:1–12. doi:10.1093/jxb/ers027

    Article  Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Oósrio ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field? Photosynthesis and growth. Ann Bot 89:907–916. doi:10.1093/aob/mcf105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Annu Rev Ecol Evol Syst 27:305–335. doi:10.1146/annurev.ecolsys.27.1.305

    Article  Google Scholar 

  • Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Wright SJ, Sheremet´ev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD (2016) The global spectrum of plant form and function. Nature 529:167–171. doi:10.1038/nature16489

    Article  PubMed  Google Scholar 

  • Dubey P, Raghubanshi AS, Singh JS (2011) Intra-seasonal variation and relationship among leaf traits of different forest herbs in a dry tropical environment. CurrSci 100:69–76

    Google Scholar 

  • Edwards EJ, Chatelet DS, Sack L, Donoghue M (2014) Leaf life span and the leaf economic spectrum in the context of whole plant architecture. J Ecol 102:328–333. doi:10.1111/1365-2745.12209

    Article  Google Scholar 

  • EMBRAPA (1997) Manual de métodos de análises de solo. Ministério da Agricultura e do Abastecimento, Rio de Janeiro

    Google Scholar 

  • Falcão HM, Medeiros CD, Silva BLR, Sampaio EVSB, Almeida-Cortez JS, Santos MG (2015) Phenotypic plasticity and ecophysiological strategies in a tropical dry forest chronosequence: a study case with Poincianella pyramidalis. For Ecol Manag 340:62–69. doi:10.1016/j.foreco.2014.12.029

    Article  Google Scholar 

  • Franco AC, Bustamante M, Caldas LS, Goldstein G, Meinzer FC, Kozovits AR, Rundel P, Coradin VTR (2005) Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit. Trees 19:326–335. doi:10.1007/s00468-004-0394-z

    Article  Google Scholar 

  • Franks PJ, Leitch IJ, Ruszala EM, Hetherington AM, Beerling DJ (2012) Physiological framework for adaptation of stomata to CO2 from glacial to 419 future concentrations. Philos T R Soc B 367:537–546. doi:10.1098/rstb.2011.0270

    Article  CAS  Google Scholar 

  • Fürstenberg-Hägg J, Zagrobelny M, Bak S (2013) Plant defense against insect herbivores. Int J Mol Sci 14:10242–10297. doi:10.3390/ijms140510242

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganthaler A, Mayr S (2015) Dwarf shrub hydraulics: two Vaccinium species (V. myrtillus, V. vitis-idaea) of the European Alps compared. Physiol Plant 155:424–434. doi:10.1111/ppl.12333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Q, Yu M, Zhou C (2013) Detecting the differences in responses of stomatal conductance to moisture stresses between deciduous shrubs and Artemisia subshrubs. PlosOne 8:e84200. doi:10.1371/journal.pone.0084200

    Article  Google Scholar 

  • Goedhart C, Pataki D, Billings S (2010) Seasonal variations in plant nitrogen relations and photosynthesis along a grassland to shrubland gradient in Owens Valley, California. Plant Soil 327:213–223. doi:10.1007/s11104-009-0048-4

    Article  CAS  Google Scholar 

  • Gratani L (2014) Plant Phenotypic Plasticity in Response to Environmental Factors. Adv Bot 2014:208747. doi:10.1155/2014/208747

    Google Scholar 

  • Hennenberg KJ, Goetze D, Szarzynski J, Porembski S (2008) Detection of seasonal variability in microclimatic borders and ecotones between forest and savanna. Basic Appl Ecol 9:275–285. doi:10.1016/j.baae.2007.02.004

    Article  Google Scholar 

  • Holdo RM (2013) Revisiting the two-layer hypothesis: coexistence of alternative functional rooting strategies in savannas. Plos ONE 8:1–12. doi:10.1371/journal.pone.0069625

    Article  Google Scholar 

  • Kikuzawa K, Ackerly D (1999) Significance of leaf longevity in plants. Plant Species Biol 14:39–45. doi:10.1046/j.1442-1984.1999.00005.x

    Article  Google Scholar 

  • Kramer PJ (1983) Water relations of plants. Academic Press, Cambridge

    Google Scholar 

  • Lebrija-Trejos E, Pérez-García EA, Meave JA, Bongers F, Poorter L (2010) Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology 91:386–398. doi:10.1890/08-1449.1

    Article  PubMed  Google Scholar 

  • Lebrija-Trejos E, Pérez-García EA, Meave JA, Poorter L, Bongers F (2011) Environmental changes during secondary succession in a tropical dry forest in Mexico. J Trop Ecol 27:477–489. doi:10.1017/S0266467411000253

    Article  Google Scholar 

  • Li F, Yang Q, Zan Q, Tam NF, Shin PK, Vrijmoed LL, Cheung SG (2011) Differences in leaf construction cost between alien and native mangrove species in Futian, Shenzhen, China: implications for invasiveness of alien species. Mar Pollut Bull 62:1957–1962. doi:10.1016/j.marpolbul.2011.06.032

    Article  CAS  PubMed  Google Scholar 

  • Lima ALA, Sampaio EVSB, Castro CC, Rodal MJN, Antonino ACD, Melo AL (2012) Do the phenology and functional stem attributes of woody species allow for the identification of functional groups in the semiarid region of Brazil? Trees 26:1605–1616. doi:10.1007/s00468-012-0735-2

    Article  Google Scholar 

  • Lohbeck M, Lebrija-Trejos E, Martínez-Ramos M, Meave JA, Poorter L, Bongers F (2015) Functional trait strategies of trees in dry and wet tropical forests are similar but differ in their consequences for succession. Plos One 10:e0123741. doi:10.1371/journal.pone.0123741

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Martínez JO, Sanaphre-Vallanueva L, Dupuy JM, Hernández-Stefanoni JL, Meave JA, Gallardo-Cruz JA (2013) β-Diversity of functional groups of woody plants in a tropical dry forest in Yucatan. Plos One 8:1–9. doi:10.1371/journal.pone.00736600

    Google Scholar 

  • Lu N, Chen S, Wilske B, Sun G, Chen J (2011) Evapotranspiration and soil water relationships in a range of disturbed and undisturbed ecosystems in the semi-arid Inner Mongolia, China. J Plant Ecol 4:49–60. doi:10.1093/jpe/rtq035

    Article  Google Scholar 

  • Lucena RFP, Nascimento VT, Araújo EL, Albuquerque UP (2008) Local uses of native plants in an area of Caatinga vegetation (Pernambuco, NE Brazil). Ethnobot Res Appl 6:03–13. doi:10.17348/era.6.0.3-14

    Article  Google Scholar 

  • Nouvellon Y, Laclau J-P, Epron D, Kinana A, Mabiala A, Roupsard O, Bonnefond J-M, Le Maire G, Marsden C, Bontemps J-D, Laurent S-A (2010) Within-stand and seasonal variations of specific leaf area in a clonal eucalyptus plantation in the Republic of Congo. For Ecol Manag 259:1796–1807. doi:10.1016/j.foreco.2009.05.023

    Article  Google Scholar 

  • Oliveira Junior RG, Souza GR, Guimarães AL, Oliveira AP, Morais ACS, Araújo ECC, Nunes XP, Almeida JRGS (2013) Dried extracts of Encholirium spectabile (Bromeliaceae) present antioxidant and photoprotective activities in vitro. J Young Pharm 5:102–105. doi:10.1016/j.jyp.2013.08.005

    Article  Google Scholar 

  • Oliveira MT, Matzek V, Medeiros CD, Rivas R, Falcão HM, Santos MG (2014) Stress tolerance and ecophysiological ability of an invader and a native species in a seasonally dry tropical forest. Plos One 9:1–11. doi:10.1371/journal.pone.0105514

    Article  Google Scholar 

  • Pantin F, Fanciullino A-L, Massonnet C, Dauzat M, Simonneau T, Muller B (2013) Buffering growth variations against water deficits through timely carbon usage. Front Plant Sci 4(483):1–11. doi:10.3389/fpls.2013.00483

    Google Scholar 

  • Penning de Vries FWT, Brunsting AHM, Van Laar HH (1974) Products, requirements and efficiency of biosynthesis: a quantitative approach. J Theor Biol 45:339–377. doi:10.1016/0022-5193(74)90119-2

    Article  CAS  PubMed  Google Scholar 

  • Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst 37:187–214. doi:10.1146/annurev.ecolsys.37.091305.110215

    Article  Google Scholar 

  • Pimentel C, Ribeiro RV, Santos MG, Oliveira RF, Machado EC (2004) Effects of changes in the photosynthetic photon flux density on net gas exchange of Citrus limon and Nicotiana tabacum. Braz J Plant Physiol 16:77–82. doi:10.1590/S1677-04202004000200002

    Article  CAS  Google Scholar 

  • Pinheiro C, Chaves MM (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62:869–882. doi:10.1093/jxb/erq340

    Article  CAS  PubMed  Google Scholar 

  • Poorter H, Villar R (1997) The fate of acquire carbon in plants: chemical composition and constructions costs. In: Barraz FA, Grace J (ed) Plant resource and allocation. Acad Hague, pp 39–72

  • Prentice IC, Dong N, Gleason SM, Maire V, Wright IJ (2014) Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecol Lett 17:82–91. doi:10.5194/bg-11-5987-2014

    Article  PubMed  Google Scholar 

  • Reich PB (2014) The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J Ecol 102:275–301. doi:10.1111/1365-2745.12211

    Article  Google Scholar 

  • Richter S, Kipfer T, Wohlgemuth T, Calderón-Guerrero C, Ghazoul J, Moser B (2012) Phenotypic plasticity facilitates resistance to climate change in a highly variable environment. Oecologia 169:269–279. doi:10.1007/s00442-011-2191-x

    Article  PubMed  Google Scholar 

  • Rivas RC, Oliveira MT, Santos MG (2013) Three cycles of water deficit from seed to young plants of Moringa oleifera woody species improves stress tolerance. Plant Physiol Biochem 63:200–208. doi:10.1016/j.plaphy.2012.11.026

    Article  CAS  PubMed  Google Scholar 

  • Rossato DR, Hoffman WA, Silva LCR, Haridasan M, Sternberg LSL, Franco AC (2013) Seasonal variation in leaf traits between congeneric savanna and forest trees in Central Brazil: implications for forest expansion into savanna. Trees 27:1139–1150. doi:10.1007/s00468-013-0864-2

    Article  Google Scholar 

  • Rossato DR, Silva LCR, Sternberg LSL, Franco AC (2014) Do woody and herbaceous species compete for soil water across topographic gradients? Evidence for niche partitioning in a Neotropical savanna. S Afr J Bot 9:14–18. doi:10.1016/j.sajb.2013.11.011

    Article  Google Scholar 

  • Rossatto DR, Franco AC (2017) Expanding our understanding of leaf functional syndromes in savanna systems: the role of plant growth form. Physiol Ecol 183:953–962. doi:10.1007/s00442-017-3815-6

    Google Scholar 

  • Sánchez-Gómez D, Robson TM, Gascó A, Gil-Pelegrín E, Aranda I (2013) Differences in the leaf functional traits of six beech (Fagus sylvatica L.) populations are reflected in their response to water limitation. Environ Exp Bot 87:110–119. doi:10.1016/j.envexpbot.2012.09.011

    Article  Google Scholar 

  • Santos MG, Oliveira MT, Figueiredo KV, Falcão HM, Arruda EP, Almeida-Cortez JS, Sampaio EVSB, Ometto JPHB, Menezes RSC, Oliveira AFM, Pompelli MF, Antonino ACD (2014) Caatinga, the Brazilian dry tropical forest: can it tolerate climate changes? Theor Exp Plant Physiol 26:83–99. doi:10.1007/s40626-014-0008-0

    Article  Google Scholar 

  • Scholander PF, Hammel HT, Hemmingsen EA, Bradstreet ED (1964) Hydrostatic pressure and osmotic potentials in leaves of mangroves and some other plants. P Natl Acad Sci 51:119–125. doi:10.1073/pnas.52.1.119

    Article  Google Scholar 

  • Scolforo JR, Filho ACF, Silva CPC, Thiersch CR, Ferreira MZ (2008) Trajetórias de crescimento de espécies na floresta estacional decidual. In: Mello JM, Scolforo JR, Carvalho LMT (eds) Inventário Florestal de Minas Gerais: Floresta Estacional Decidual - Florística, Estrutura, Similaridade, Distribuição Diamétrica e de Altura, Volumetria, Tendências de Crescimento e Manejo, Florestal edn. UFLA, Lavras, pp 213–224

    Google Scholar 

  • Sheperd GJ (2010) Fitopac 2.1 Manual do usuário. UNICAMP, Campinas

    Google Scholar 

  • Shi Z, Haworth M, Feng Q, Cheng R, Centritto M (2015) Growth habit and leaf economics determine gas exchange responses to high elevation in an evergreen tree, a deciduous shrub and a herbaceous annual. AoB Plants 7:1–14. doi:10.1093/aobpla/plv115

    Google Scholar 

  • Shipley B, Lechowicz MJ, Wright I, Reich PB (2006) Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology 87:535–541. doi:10.1890/05-1051

    Article  PubMed  Google Scholar 

  • Somavilla NS, Kolb RM, Rossato DR (2014) Leaf anatomical traits corroborate the leaf economic spectrum: a case study with deciduous forest tree species. Braz J Bot 37:60–82. doi:10.1007/s40415-013-0038-x

    Article  Google Scholar 

  • Thomas RL, Sheard RW, Moyer JR (1967) Comparison of conventional and automated procedures for N, P and K analysis of plant material using a single digestion. Agron J 59:240–247. doi:10.2134/agronj1967.00021962005900030010x

    Article  CAS  Google Scholar 

  • Uzilday B, Turkan I, Sekmen AH, Ozgur R, Karakaya HC (2012) Comparison of ROS formation and antioxidant enzymes in Cleome gynandra (C4) and Cleome spinosa (C3) under drought stress. Plant Sci 182:59–70. doi:10.1016/j.plantsci.2011.03.015

    Article  CAS  PubMed  Google Scholar 

  • Valladares F, Gianoli E, Gómez JM (2007) Ecological limits to plant phenotypic plasticity. New Phytol 176:749–763. doi:10.1111/j.1469-8137.2007.02275.x

    Article  PubMed  Google Scholar 

  • Van Wijk MT, Williams M, Gough L, Hobbie SE, Shaver GR (2003) Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation? J Ecol 91:664–676. doi:10.1046/j.1365-2745.2003.00788.x

    Article  Google Scholar 

  • Villar R, Merino J (2001) Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems. New Phytol 151:213–226. doi:10.1046/j.1469-8137.2001.00147.x

    Article  Google Scholar 

  • Wei H, Luo T, Wu B (2016) Optimal balance of water use efficiency and leaf construction cost with a link to the drought threshold of the desert steppe ecotone in northern China. Ann Bot 118:541–553. doi:10.1093/aob/mcw127

    Article  PubMed  Google Scholar 

  • Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. Trend Ecol Evol 21:261–268. doi:10.1016/j.tree.2006.02.004

    Article  Google Scholar 

  • Will RE, Wilson SM, Zou CB, Hennessey TC (2013) Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest–grassland ecotone. New Phytol 200:366–374. doi:10.1111/nph.12321

    Article  PubMed  Google Scholar 

  • Williams K, Percival F, Merino J, Mooney HA (1987) Estimation of tissue construction cost from heat of combustion and organic nitrogen content. Plant Cell Environ 10:725–734. doi:10.1111/1365-3040.ep11604754

    CAS  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827. doi:10.1038/nature02403

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Zhong Y, Shangguan Z (2016) A meta-analysis of leaf gas exchange and water status responses to drought. Sci Rep 6:1–9. doi:10.1038/srep20917

    Article  Google Scholar 

  • Zhang Y-J, Sack L, Cao K-F, Wei X-M, Li N (2017) Speed versus endurance tradeoff in plants: leaves with higher photosynthetic rates show stronger seasonal declines. Sci Rep 7:42085. doi:10.1038/srep42085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu SD, Song JJ, Li RH, Ye Q (2013) Plant hydraulics and photosynthesis of 34 woody species from different successional stages of subtropical forests. Plant Cell Environ 36:879–891. doi:10.1111/pce.12024

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the staff of the Instituto Fazenda Tamanduá for allowing us to stay and work on the Tamanduá Farm and for their logistical support. We extend the acknowledgemnts to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—563304/2010-3) and FAPEMIG—Brazil (Proc. CRA APQ-00001-11) for the finacial support. H.M. Falcão acknowledges CAPES for the research scholarship. J.A. Cortez and M.G. Santos both acknowledge CNPq for scientific productivity fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Guida Santos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (EPS 114 kb)

Supplementary material 2 (XLSX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falcão, H.M., Medeiros, C.D., Almeida-Cortez, J. et al. Leaf construction cost is related to water availability in three species of different growth forms in a Brazilian tropical dry forest. Theor. Exp. Plant Physiol. 29, 95–108 (2017). https://doi.org/10.1007/s40626-017-0087-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40626-017-0087-9

Keywords

Navigation