Theoretical and Experimental Plant Physiology

, Volume 28, Issue 1, pp 109–129 | Cite as

Reducing sampling bias in molecular studies of grapevine fruit ripening: transcriptomic assessment of the density sorting method

  • Pablo Carbonell-Bejerano
  • Virginia Rodríguez
  • Silvia Hernáiz
  • Carolina Royo
  • Silvia Dal Santo
  • Mario Pezzotti
  • José Miguel Martínez-Zapater
Article

Abstract

The interplay between environmental and genetic factors conditions the fruit ripening program in plants. Transcriptome analysis of grapevine fruits can help understanding these interactions to consciously cope with conditions leading to detrimental effects for viticultural purposes. However, considering the grapevine characteristic ripening asynchrony, which can be intensified by contrasting conditions, accurate grape sampling may be essential for molecular comparisons. In this study, berry density sorting according to floatability in NaCl solutions was transcriptomically assessed as a grape ripening staging strategy. The transcriptome was compared between three density classes collected near commercial maturity using grapevine whole-genome NimbleGen microarrays. Expression profiles clearly related with ripening progression were detected in a density series simultaneously collected from a vineyard of Albariño. By contrast, considerable differences were detected when the same density series was sampled on two different dates from the same vineyard of Tempranillo. Functional analysis indicated that environmental differences between both sampling moments determined most of these expression differences. Ripening degree-dependent responses to the environment were also detected. Finally, the effect of the sorting procedures on the grape transcriptome showed negligible when it was directly tested. Altogether, these findings evidence the convenience of homogenizing the developmental stage and the sampling time conditions for transcriptome comparisons. Berry density sorting proved useful to this end, although this method could be limited when berry sugar concentration increases through dehydration.

Keywords

Grapevine Fruit ripening Ontogenetic sampling Density sorting Transcriptome–environment interaction Chronological sampling 

Supplementary material

40626_2016_59_MOESM1_ESM.xls (351 kb)
Supplementary material 1 (XLS 351 kb)
40626_2016_59_MOESM2_ESM.xls (82 kb)
Supplementary material 2 (XLS 82 kb)
40626_2016_59_MOESM3_ESM.xls (657 kb)
Supplementary material 3 (XLS 657 kb)
40626_2016_59_MOESM4_ESM.pdf (141 kb)
Supplementary material 4 (PDF 140 kb)

References

  1. Agati G et al (2013) Potential of a multiparametric optical sensor for determining in situ the maturity components of red and white Vitis vinifera wine grapes. J Agric Food Chem 61:12211–12218. doi:10.1021/jf405099n CrossRefPubMedGoogle Scholar
  2. Agudelo-Romero P, Erban A, Sousa L, Pais MS, Kopka J, Fortes AM (2013) Search for transcriptional and metabolic markers of grape pre-ripening and ripening and insights into specific aroma development in three Portuguese cultivars. PLoS One 8:e60422. doi:10.1371/journal.pone.0060422 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Agudelo-Romero P et al (2015) Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea. J Exp Bot. doi:10.1093/jxb/eru517 PubMedGoogle Scholar
  4. Ali MB, Howard S, Chen S, Wang Y, Yu O, Kovacs LG, Qiu W (2011) Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis. BMC Plant Biol 11:7. doi:10.1186/1471-2229-11-7 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Al-Shahrour F, Diaz-Uriarte R, Dopazo J (2004) FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 20:578–580. doi:10.1093/bioinformatics/btg455 CrossRefPubMedGoogle Scholar
  6. Berdeja M et al (2015) Water limitation and rootstock genotype interact to alter grape berry metabolism through transcriptome reprogramming. Hortic Res 2:15012. doi:10.1038/hortres.2015.12 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bogs J, Jaffe FW, Takos AM, Walker AR, Robinson SP (2007) The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol 143:1347–1361. doi:10.1104/pp.106.093203 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Böttcher C, Harvey K, Forde CG, Boss PK, Davies C (2011) Auxin treatment of pre-veraison grape (Vitis vinifera L.) berries both delays ripening and increases the synchronicity of sugar accumulation. Aust J Grape Wine Res 17:1–8. doi:10.1111/j.1755-0238.2010.00110.x CrossRefGoogle Scholar
  9. Carbonell-Bejerano P et al (2013) Thermotolerance responses in ripening berries of Vitis vinifera L. cv Muscat Hamburg. Plant Cell Physiol 54:1200–1216. doi:10.1093/pcp/pct071 CrossRefPubMedGoogle Scholar
  10. Carbonell-Bejerano P, Diago MP, Martinez-Abaigar J, Martinez-Zapater JM, Tardaguila J, Nunez-Olivera E (2014a) Solar ultraviolet radiation is necessary to enhance grapevine fruit ripening transcriptional and phenolic responses. BMC Plant Biol 14:183. doi:10.1186/1471-2229-14-183 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Carbonell-Bejerano P, Rodriguez V, Royo C, Hernaiz S, Moro-Gonzalez LC, Torres-Vinals M, Martinez-Zapater JM (2014b) Circadian oscillatory transcriptional programs in grapevine ripening fruits. BMC Plant Biol 14:78. doi:10.1186/1471-2229-14-78 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Castellarin SD, Matthews MA, Di Gaspero G, Gambetta GA (2007) Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 227:101–112. doi:10.1007/s00425-007-0598-8 CrossRefPubMedGoogle Scholar
  13. Cerreti M, Esti M, Benucci I, Liburdi K, de Simone C, Ferranti P (2015) Evolution of S-cysteinylated and S-glutathionylated thiol precursors during grape ripening of Vitis vinifera L. cvs Grechetto, Malvasia del Lazio and Sauvignon Blanc. Aust J Grape Wine Res 21:411–416. doi:10.1111/ajgw.12152 CrossRefGoogle Scholar
  14. Comella P et al (2008) Characterization of a ribonuclease III-like protein required for cleavage of the pre-rRNA in the 3′ETS in Arabidopsis. Nucleic Acids Res 36:1163–1175. doi:10.1093/nar/gkm1130 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Conde C et al (2007) Biochemical changes throughout grape berry development and fruit and wine quality. Food 1:1–22Google Scholar
  16. Conesa A, Nueda MJ, Ferrer A, Talon M (2006) maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics 22:1096–1102. doi:10.1093/bioinformatics/btl056 CrossRefPubMedGoogle Scholar
  17. Coombe BG (1992) Research on development and ripening of the grape berry. Am J Enol Vitic 43:101–110Google Scholar
  18. Coombe BG, McCarthy MG (2000) Dynamics of grape berry growth and physiology of ripening. Aust J Grape Wine Res 6:131–135. doi:10.1111/j.1755-0238.2000.tb00171.x CrossRefGoogle Scholar
  19. Cramer GR et al (2014) Transcriptomic analysis of the late stages of grapevine (Vitis vinifera cv. Cabernet Sauvignon) berry ripening reveals significant induction of ethylene signaling and flavor pathways in the skin. BMC Plant Biol 14:370. doi:10.1186/s12870-014-0370-8 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dai ZW et al (2011) Ecophysiological, genetic, and molecular causes of variation in grape berry weight and composition: a review. Am J Enol Vitic 62:413–425. doi:10.5344/ajev.2011.10116 CrossRefGoogle Scholar
  21. Dai ZW, Leon C, Feil R, Lunn JE, Delrot S, Gomes E (2013) Metabolic profiling reveals coordinated switches in primary carbohydrate metabolism in grape berry (Vitis vinifera L.), a non-climacteric fleshy fruit. J Exp Bot 64:1345–1355. doi:10.1093/jxb/ers396 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Dal Santo S et al (2013) The plasticity of the grapevine berry transcriptome. Genome Biol 14:r54. doi:10.1186/gb-2013-14-6-r54 CrossRefGoogle Scholar
  23. Degu A et al (2014) Metabolite and transcript profiling of berry skin during fruit development elucidates differential regulation between Cabernet Sauvignon and Shiraz cultivars at branching points in the polyphenol pathway. BMC Plant Biol 14:188. doi:10.1186/s12870-014-0188-4 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Deluc LG et al (2007) Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics 8:429. doi:10.1186/1471-2164-8-429 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Deluc LG et al (2009) Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genomics 10:212. doi:10.1186/1471-2164-10-212 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Doumouya S, Lahaye M, Maury C, Siret R (2014) Physical and physiological heterogeneity within the grape bunch: impact on mechanical properties during maturation. Am J Enol Vitic 65:170–178. doi:10.5344/ajev.2014.13062 CrossRefGoogle Scholar
  27. Duchêne E, Dumas V, Jaegli N, Merdinoglu D (2012) Deciphering the ability of different grapevine genotypes to accumulate sugar in berries. Aust J Grape Wine Res 18:319–328. doi:10.1111/j.1755-0238.2012.00194.x CrossRefGoogle Scholar
  28. Fasoli M et al (2012) The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. Plant Cell 24:3489–3505. doi:10.1105/tpc.112.100230 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Fortes AM et al (2011) Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening. BMC Plant Biol 11:149. doi:10.1186/1471-2229-11-149 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Fournand D, Vicens A, Sidhoum L, Souquet JM, Moutounet M, Cheynier V (2006) Accumulation and extractability of grape skin tannins and anthocyanins at different advanced physiological stages. J Agric Food Chem 54:7331–7338. doi:10.1021/jf061467h CrossRefPubMedGoogle Scholar
  31. Friesner JD, Liu B, Culligan K, Britt AB (2005) Ionizing radiation-dependent gamma-H2AX focus formation requires ataxia telangiectasia mutated and ataxia telangiectasia mutated and Rad3-related. Mol Biol Cell 16:2566–2576. doi:10.1091/mbc.E04-10-0890 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gouthu S, O’Neil ST, Di Y, Ansarolia M, Megraw M, Deluc LG (2014) A comparative study of ripening among berries of the grape cluster reveals an altered transcriptional programme and enhanced ripening rate in delayed berries. J Exp Bot 65:5889–5902. doi:10.1093/jxb/eru329 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Grimplet J, Deluc LG, Tillett RL, Wheatley MD, Schlauch KA, Cramer GR, Cushman JC (2007) Tissue-specific mRNA expression profiling in grape berry tissues. BMC Genomics 8:187. doi:10.1186/1471-2164-8-187 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Grimplet J et al (2012) Comparative analysis of grapevine whole-genome gene predictions, functional annotation, categorization and integration of the predicted gene sequences. BMC Res Notes 5:213. doi:10.1186/1756-0500-5-213 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Guillaumie S et al (2011) Transcriptional analysis of late ripening stages of grapevine berry. BMC Plant Biol 11:165. doi:10.1186/1471-2229-11-165 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hannam KD, Neilsen GH, Neilsen D, Bowen P (2014) Cluster thinning as a tool to hasten ripening of wine grapes in the Okanagan Valley, British Columbia. Can J Plant Sci 95:103–113. doi:10.4141/cjps2013-397 CrossRefGoogle Scholar
  37. He F et al (2010) Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules 15:9057–9091. doi:10.3390/molecules15129057 CrossRefPubMedGoogle Scholar
  38. Holl J et al (2013) The R2R3-MYB transcription factors MYB14 and MYB15 regulate stilbene biosynthesis in Vitis vinifera. Plant Cell. doi:10.1105/tpc.113.117127 PubMedPubMedCentralGoogle Scholar
  39. Jones GV, Davis RE (2000) Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am J Enol Vitic 51:249–261Google Scholar
  40. Keller M (2010) Managing grapevines to optimise fruit development in a challenging environment: a climate change primer for viticulturists. Aust J Grape Wine Res 16:56–69. doi:10.1111/j.1755-0238.2009.00077.x CrossRefGoogle Scholar
  41. Kim W, Benhamed M, Servet C, Latrasse D, Zhang W, Delarue M, Zhou DX (2009) Histone acetyltransferase GCN5 interferes with the miRNA pathway in Arabidopsis. Cell Res 19:899–909. doi:10.1038/cr.2009.59 CrossRefPubMedGoogle Scholar
  42. Kuhn N et al (2013) Berry ripening: recently heard through the grapevine. J Exp Bot. doi:10.1093/jxb/ert395 PubMedGoogle Scholar
  43. Li Q et al (2014) Comparison of distinct transcriptional expression patterns of flavonoid biosynthesis in Cabernet Sauvignon grapes from east and west China. Plant Physiol Biochem 84:45–56. doi:10.1016/j.plaphy.2014.08.026 CrossRefPubMedGoogle Scholar
  44. Lijavetzky D et al (2012) Berry flesh and skin ripening features in Vitis vinifera as assessed by transcriptional profiling. PLoS One 7:e39547. doi:10.1371/journal.pone.0039547 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lund ST, Peng FY, Nayar T, Reid KE, Schlosser J (2008) Gene expression analyses in individual grape (Vitis vinifera L.) berries during ripening initiation reveal that pigmentation intensity is a valid indicator of developmental staging within the cluster. Plant Mol Biol 68:301–315. doi:10.1007/s11103-008-9371-z CrossRefPubMedGoogle Scholar
  46. Martinez de Toda F, Balda P (2013) Delaying berry ripening through manipulating leaf area to fruit ratio. Vitis 52:171–176Google Scholar
  47. Martinez-Luscher J, Morales F, Sanchez-Diaz M, Delrot S, Aguirreolea J, Gomes E, Pascual I (2015) Climate change conditions (elevated CO2 and temperature) and UV-B radiation affect grapevine (Vitis vinifera cv. Tempranillo) leaf carbon assimilation, altering fruit ripening rates. Plant Sci 236:168–176. doi:10.1016/j.plantsci.2015.04.001 CrossRefPubMedGoogle Scholar
  48. Medina I et al (2010) Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling. Nucleic Acids Res 38:W210–W213. doi:10.1093/nar/gkq388 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mira de Orduña R (2010) Climate change associated effects on grape and wine quality and production. Food Res Int 43:1844–1855. doi:10.1016/j.foodres.2010.05.001 CrossRefGoogle Scholar
  50. Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K (2007) Loss of anthocyanins in red-wine grape under high temperature. J Exp Bot 58:1935–1945. doi:10.1093/jxb/erm055 CrossRefPubMedGoogle Scholar
  51. Oliveros JC (2007) VENNY. An interactive tool for comparing lists with Venn Diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html. Accessed 13 March 2014
  52. Orlandi F, Bonofiglio T, Aguilera F, Fornaciari M (2015) Phenological characteristics of different wine grape cultivars in Central Italy. Vitis 54:129–136Google Scholar
  53. Palliotti A et al (2013) Influence of mechanical postveraison leaf removal apical to the cluster zone on delay of fruit ripening in Sangiovese (Vitis vinifera L.) grapevines. Aust J Grape Wine Res 19:369–377. doi:10.1111/ajgw.12033 Google Scholar
  54. Pastore C et al (2011) Increasing the source/sink ratio in Vitis vinifera (cv Sangiovese) induces extensive transcriptome reprogramming and modifies berry ripening. BMC Genomics 12:631. doi:10.1186/1471-2164-12-631 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Pastore C, Zenoni S, Fasoli M, Pezzotti M, Tornielli GB, Filippetti I (2013) Selective defoliation affects plant growth, fruit transcriptional ripening program and flavonoid metabolism in grapevine. BMC Plant Biol 13:30. doi:10.1186/1471-2229-13-30 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Pilati S et al (2007) Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at veraison. BMC Genomics 8:428. doi:10.1186/1471-2164-8-428 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Reid KE, Olsson N, Schlosser J, Peng F, Lund ST (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 6:27. doi:10.1186/1471-2229-6-27 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Rienth M, Torregrosa L, Kelly MT, Luchaire N, Pellegrino A, Grimplet J, Romieu C (2014a) Is transcriptomic regulation of berry development more important at night than during the day? PLoS One 9:e88844. doi:10.1371/journal.pone.0088844 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Rienth M, Torregrosa L, Luchaire N, Chatbanyong R, Lecourieux D, Kelly MT, Romieu C (2014b) Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (Vitis vinifera) fruit. BMC Plant Biol 14:108. doi:10.1186/1471-2229-14-108 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Río Segade S, Giacosa S, de Palma L, Novello V, Torchio F, Gerbi V, Rolle L (2013) Effect of the cluster heterogeneity on mechanical properties, chromatic indices and chemical composition of Italia table grape berries (Vitis vinifera L.) sorted by floatation. Int J Food Sci Technol 48:103–113. doi:10.1111/j.1365-2621.2012.03164.x CrossRefGoogle Scholar
  61. Rodríguez-Fernández LC, López-Pavón C, Lissarrague JR, Torres-Viñals M, Martínez-Arce L (2012) Consecuencias de la aplicación del riego para atenuar los efectos del calentamiento global del viñedo. Agric Rev agropecu 953:504–508Google Scholar
  62. Rolle L, Río Segade S, Torchio F, Giacosa S, Cagnasso E, Marengo F, Gerbi V (2011) Influence of grape density and harvest date on changes in phenolic composition, phenol extractability indices, and instrumental texture properties during ripening. J Agric Food Chem 59:8796–8805. doi:10.1021/jf201318x CrossRefPubMedGoogle Scholar
  63. Rolle L, Torchio F, Giacosa S, Río Segade S, Cagnasso E, Gerbi V (2012) Assessment of physicochemical differences in Nebbiolo grape berries from different production areas and sorted by floatation. Am J Enol Vitic 63:195–204. doi:10.5344/ajev.2012.11069 CrossRefGoogle Scholar
  64. Rolle L, Torchio F, Giacosa S, Rio Segade S (2015) Berry density and size as factors related to the physicochemical characteristics of Muscat Hamburg table grapes (Vitis vinifera L.). Food Chem 173:105–113. doi:10.1016/j.foodchem.2014.10.033 CrossRefPubMedGoogle Scholar
  65. Sadras VO, McCarthy MG (2007) Quantifying the dynamics of sugar concentration in berries of Vitis vinifera cv. Shiraz: a novel approach based on allometric analysis. Aust J Grape Wine Res 13:66–71. doi:10.1111/j.1755-0238.2007.tb00236.x CrossRefGoogle Scholar
  66. Sadras VO, Moran MA (2012) Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Aust J Grape Wine Res 18:115–122. doi:10.1111/j.1755-0238.2012.00180.x CrossRefGoogle Scholar
  67. Sadras VO, Petrie PR (2011) Quantifying the onset, rate and duration of sugar accumulation in berries from commercial vineyards in contrasting climates of Australia. Aust J Grape Wine Res 17:190–198. doi:10.1111/j.1755-0238.2011.00135.x CrossRefGoogle Scholar
  68. Singleton VL, Ough CS, Nelson KE (1966) Density separations of wine grape berries and ripeness distribution. Am J Enol Vitic 17:95–105Google Scholar
  69. Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article3. doi:10.2202/1544-6115.1027
  70. Stein U, Blaich R, Wind R (1983) A novel method for non-destructive determination of the sugar content and for classification of grape berries. Vitis 22:15–22Google Scholar
  71. Suklje K et al (2012) Classification of grape berries according to diameter and total soluble solids to study the effect of light and temperature on methoxypyrazine, glutathione, and hydroxycinnamate evolution during ripening of Sauvignon blanc (Vitis vinifera L.). J Agric Food Chem 60:9454–9461. doi:10.1021/jf3020766 CrossRefPubMedGoogle Scholar
  72. Sweetman C, Wong DC, Ford CM, Drew DP (2012) Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression. BMC Genomics 13:691. doi:10.1186/1471-2164-13-691 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Terrier N et al (2005) Isogene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (Vitis vinifera L.) development. Planta 222:832–847. doi:10.1007/s00425-005-0017-y CrossRefPubMedGoogle Scholar
  74. Tibshirani R, Walther G, Hastie T (2001) Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc B 63:411–423CrossRefGoogle Scholar
  75. Torchio F, Cagnasso E, Gerbi V, Rolle L (2010) Mechanical properties, phenolic composition and extractability indices of Barbera grapes of different soluble solids contents from several growing areas. Anal Chim Acta 660:183–189. doi:10.1016/j.aca.2009.10.017 CrossRefPubMedGoogle Scholar
  76. Ziliotto F, Corso M, Rizzini FM, Rasori A, Botton A, Bonghi C (2012) Grape berry ripening delay induced by a pre-veraison NAA treatment is paralleled by a shift in the expression pattern of auxin- and ethylene-related genes. BMC Plant Biol 12:185. doi:10.1186/1471-2229-12-185 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Brazilian Society of Plant Physiology 2016

Authors and Affiliations

  • Pablo Carbonell-Bejerano
    • 1
  • Virginia Rodríguez
    • 2
  • Silvia Hernáiz
    • 1
  • Carolina Royo
    • 1
  • Silvia Dal Santo
    • 3
  • Mario Pezzotti
    • 3
  • José Miguel Martínez-Zapater
    • 1
  1. 1.Instituto de Ciencias de la Vid y del Vino (ICVV)Consejo Superior de Investigaciones Científicas CSIC-Universidad de La Rioja-Gobierno de La RiojaLogroñoSpain
  2. 2.Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
  3. 3.Department of BiotechnologyUniversity of VeronaVeronaItaly

Personalised recommendations